-
1
-
-
84867117736
-
How to grade a test without knowing the answers - A Bayesian graphical model for adaptive Crowdsourcing and aptitude testing
-
Bachrach, Y., Graepel, T., Minka, T., and Guiver, J. How to grade a test without knowing the answers - A Bayesian graphical model for adaptive Crowdsourcing and aptitude testing. In Proc. of the 29th Int. Conf. on Machine Learning, 2012.
-
(2012)
Proc. of the 29th Int. Conf. on Machine Learning
-
-
Bachrach, Y.1
Graepel, T.2
Minka, T.3
Guiver, J.4
-
3
-
-
84897543509
-
Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing
-
Chen, X., Lin, Q., and Zhou, D. Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing. In Proc. of the 30th Int. Conf. on Machine Learning, pp. 64-72, 2013.
-
(2013)
Proc. of the 30th Int. Conf. on Machine Learning
, pp. 64-72
-
-
Chen, X.1
Lin, Q.2
Zhou, D.3
-
4
-
-
0003102944
-
Maximum likelihood estimation of observer error-rates using the EM algorithm
-
Dawid, A. P. and Skene, A. M. Maximum likelihood estimation of observer error-rates using the EM algorithm. Journal of the Royal Statistical Society. Series C, 28(1): 20-28, 1979.
-
(1979)
Journal of the Royal Statistical Society. Series C
, vol.28
, Issue.1
, pp. 20-28
-
-
Dawid, A.P.1
Skene, A.M.2
-
5
-
-
79959360995
-
Learning from multiple annotators with Gaussian processes
-
Groot, P., Birlutiu, A., and Heskes, T. Learning from multiple annotators with Gaussian processes. In Proc. of the 21st Int. Conf. on Artificial Neural Networks, volume 6792, pp. 159-164, 2011.
-
(2011)
Proc. of the 21st Int. Conf. on Artificial Neural Networks
, vol.6792
, pp. 159-164
-
-
Groot, P.1
Birlutiu, A.2
Heskes, T.3
-
6
-
-
56849109269
-
-
Crown Publishing Group, New York, NY, USA, 1 edition
-
Howe, J. Crowdsourcing: why the power of the Crowd is driving the future of business. Crown Publishing Group, New York, NY, USA, 1 edition, 2008.
-
(2008)
Crowdsourcing: Why the Power of the Crowd is Driving the Future of Business
-
-
Howe, J.1
-
7
-
-
50649102302
-
Active learning with Gaussian processes for object categorization
-
Kapoor, A., Grauman, K., Urtasun, R., and Darrell, T. Active learning with Gaussian processes for object categorization. In Int. Conf. on Computer Vision (ICCV), pp. 1-8, 2007.
-
(2007)
Int. Conf. on Computer Vision (ICCV)
, pp. 1-8
-
-
Kapoor, A.1
Grauman, K.2
Urtasun, R.3
Darrell, T.4
-
8
-
-
80053225881
-
Fast sparse Gaussian process methods: The informative vector machine
-
MIT Press
-
Lawrence, N. D., Seeger, M., and Herbrich, R. Fast sparse Gaussian process methods: The informative vector machine. In Advances in Neural Information Processing Systems 15, pp. 609-616. MIT Press, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 609-616
-
-
Lawrence, N.D.1
Seeger, M.2
Herbrich, R.3
-
9
-
-
84867130103
-
TrueLabel + Confusions: A spectrum of probabilistic models in analyzing multiple ratings
-
Liu, C. and Wang, Y. TrueLabel + Confusions: A spectrum of probabilistic models in analyzing multiple ratings. In Proc. of the 29th Int. Conf. on Machine Learning, 2012.
-
(2012)
Proc. of the 29th Int. Conf. on Machine Learning
-
-
Liu, C.1
Wang, Y.2
-
12
-
-
77951954464
-
Learning from crowds
-
Raykar, V., Yu, S., Zhao, L., Valadez, G., Florin, C., Bogoni, L., and Moy, L. Learning from Crowds. Journal of Machine Learning Research, pp. 1297-1322, 2010.
-
(2010)
Journal of Machine Learning Research
, pp. 1297-1322
-
-
Raykar, V.1
Yu, S.2
Zhao, L.3
Valadez, G.4
Florin, C.5
Bogoni, L.6
Moy, L.7
-
13
-
-
84878784643
-
Learning from multiple annotators: Distinguishing good from random labelers
-
Rodrigues, F., Pereira, F., and Ribeiro, B. Learning from multiple annotators: distinguishing good from random labelers. Pattern Recognition Letters, pp. 1428-1436, 2013a.
-
(2013)
Pattern Recognition Letters
, pp. 1428-1436
-
-
Rodrigues, F.1
Pereira, F.2
Ribeiro, B.3
-
14
-
-
84906923512
-
Sequence labeling with multiple annotators
-
Rodrigues, F., Pereira, F., and Ribeiro, B. Sequence labeling with multiple annotators. Machine Learning, pp. 1-17, 2013b.
-
(2013)
Machine Learning
, pp. 1-17
-
-
Rodrigues, F.1
Pereira, F.2
Ribeiro, B.3
-
15
-
-
80053360508
-
Cheap and fast - but is it good?: Evaluating non-expert annotations for natural language tasks
-
Snow, R., O'Connor, B., Jurafsky, D., and Ng, A. Cheap and fast - but is it good?: Evaluating non-expert annotations for natural language tasks. In Proc. of the Conf. on Empirical Methods in Natural Language Processing, pp. 254-263, 2008.
-
(2008)
Proc. of the Conf. on Empirical Methods in Natural Language Processing
, pp. 254-263
-
-
Snow, R.1
O'Connor, B.2
Jurafsky, D.3
Ng, A.4
-
16
-
-
85162055266
-
The multidimensional wisdom of crowds
-
Welinder, P., Branson, S., Belongie, S., and Perona, P. The multidimensional wisdom of crowds. In Advances in Neural Information Processing Systems 23, pp. 2424- 2432, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 2424-2432
-
-
Welinder, P.1
Branson, S.2
Belongie, S.3
Perona, P.4
-
17
-
-
84878803625
-
Learning to rank under multiple annotators
-
Wu, O., Hu, W., and Gao, I. Learning to rank under multiple annotators. In Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence, pp. 1571-1576, 2011.
-
(2011)
Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence
, pp. 1571-1576
-
-
Wu, O.1
Hu, W.2
Gao, I.3
-
18
-
-
80052400610
-
Modeling annotator expertise: Learning when everybody knows a bit of something
-
Yan, Y., Rosales, R., Fung, G., Schmidt, M., Valadez, G., Bogoni, L., Moy, L., and Dy, J. Modeling annotator expertise: Learning when everybody knows a bit of something. Journal of Machine Learning Research, 9:932- 939, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.9
, pp. 932-939
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Schmidt, M.4
Valadez, G.5
Bogoni, L.6
Moy, L.7
Dy, J.8
-
19
-
-
80053455236
-
Active learning from crowds
-
Yan, Y., Rosales, R., Fung, G., and Dy, J. Active learning from Crowds. In Proc. of the 28th Int. Conf. on Machine Learning, pp. 1161-1168, 2011.
-
(2011)
Proc. of the 28th Int. Conf. on Machine Learning
, pp. 1161-1168
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Dy, J.4
|