메뉴 건너뛰기




Volumn 186, Issue 7, 2017, Pages 762-770

Update on the State of the Science for Analytical Methods for Gene-Environment Interactions

Author keywords

Exposure; Gene environment interaction; GWAS; Power; Software; Statistical models

Indexed keywords

ANALYTICAL METHOD; COMPLEXITY; ENVIRONMENTAL FACTOR; ETIOLOGY; GENOME; GENOTYPE-ENVIRONMENT INTERACTION; QUANTITATIVE ANALYSIS; SOFTWARE; STATISTICAL ANALYSIS;

EID: 85030653459     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kwx228     Document Type: Conference Paper
Times cited : (79)

References (83)
  • 1
    • 85030627250 scopus 로고    scopus 로고
    • Current challenges and new opportunities for gene-environment interaction studies of complex diseases
    • McAllister K, Mechanic LE, Amos C, et al. Current challenges and new opportunities for gene-environment interaction studies of complex diseases. Am J Epidemiol. 2017;186(7): 753-761
    • (2017) Am J Epidemiol , vol.186 , Issue.7 , pp. 753-761
    • McAllister, K.1    Mechanic, L.E.2    Amos, C.3
  • 2
    • 84975795680 scopus 로고    scopus 로고
    • An integrated map of genetic variation from 1,092 human genomes
    • 1000 Genomes Project Consortium
    • 1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56-65.
    • (2012) Nature , vol.491 , Issue.7422 , pp. 56-65
    • Abecasis, G.R.1    Auton, A.2
  • 3
    • 84983479616 scopus 로고    scopus 로고
    • A reference panel of 64,976 haplotypes for genotype imputation
    • McCarthy S, Das S, Kretzschmar W, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016; 48(10):1279-1283.
    • (2016) Nat Genet , vol.48 , Issue.10 , pp. 1279-1283
    • McCarthy, S.1    Das, S.2    Kretzschmar, W.3
  • 4
    • 84978312790 scopus 로고    scopus 로고
    • A perspective on interaction effects in genetic association studies
    • Aschard H. A perspective on interaction effects in genetic association studies. Genet Epidemiol. 2016;40(8):678-688.
    • (2016) Genet Epidemiol , vol.40 , Issue.8 , pp. 678-688
    • Aschard, H.1
  • 7
    • 0018671320 scopus 로고
    • Logistic disease incidence models and case-control studies
    • Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrika. 1979;66(3):403-411.
    • (1979) Biometrika , vol.66 , Issue.3 , pp. 403-411
    • Prentice, R.L.1    Pyke, R.2
  • 8
    • 22744434433 scopus 로고    scopus 로고
    • Causation and causal inference in epidemiology
    • Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health. 2005;95(suppl 1): S144-S150.
    • (2005) Am J Public Health , vol.95 , pp. S144-S150
    • Rothman, K.J.1    Greenland, S.2
  • 9
    • 80052568394 scopus 로고    scopus 로고
    • Causal models for investigating complex disease: I
    • Madsen AM, Hodge SE, Ottman R. Causal models for investigating complex disease: I. A primer. Hum Hered. 2011; 72(1):54-62.
    • (2011) A Primer. Hum Hered , vol.72 , Issue.1 , pp. 54-62
    • Madsen, A.M.1    Hodge, S.E.2    Ottman, R.3
  • 10
    • 67349266632 scopus 로고    scopus 로고
    • Sufficient cause interactions and statistical interactions
    • VanderWeele TJ. Sufficient cause interactions and statistical interactions. Epidemiology. 2009;20(1):6-13.
    • (2009) Epidemiology , vol.20 , Issue.1 , pp. 6-13
    • VanderWeele, T.J.1
  • 11
    • 84875976264 scopus 로고    scopus 로고
    • Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer
    • Garcia-Closas M, Rothman N, Figueroa JD, et al. Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer. Cancer Res. 2013;73(7): 2211-2220.
    • (2013) Cancer Res , vol.73 , Issue.7 , pp. 2211-2220
    • Garcia-Closas, M.1    Rothman, N.2    Figueroa, J.D.3
  • 12
    • 80051961905 scopus 로고    scopus 로고
    • Interactions between genetic variants and breast cancer risk factors in the Breast and Prostate Cancer Cohort Consortium
    • Campa D, Kaaks R, Le Marchand L, et al. Interactions between genetic variants and breast cancer risk factors in the Breast and Prostate Cancer Cohort Consortium. J Natl Cancer Inst. 2011; 103(16):1252-1263.
    • (2011) J Natl Cancer Inst , vol.103 , Issue.16 , pp. 1252-1263
    • Campa, D.1    Kaaks, R.2    Le Marchand, L.3
  • 13
    • 84929481929 scopus 로고    scopus 로고
    • Post-GWAS geneenvironment interplay in breast cancer: Results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79,000 women
    • Barrdahl M, Canzian F, Joshi AD, et al. Post-GWAS geneenvironment interplay in breast cancer: results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79,000 women. Hum Mol Genet. 2014;23(19):5260-5270.
    • (2014) Hum Mol Genet , vol.23 , Issue.19 , pp. 5260-5270
    • Barrdahl, M.1    Canzian, F.2    Joshi, A.D.3
  • 14
    • 85013768524 scopus 로고    scopus 로고
    • Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States
    • Maas P, Barrdahl M, Joshi AD, et al. Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States. JAMA Oncol. 2016;2(10):1295-1302.
    • (2016) JAMA Oncol , vol.2 , Issue.10 , pp. 1295-1302
    • Maas, P.1    Barrdahl, M.2    Joshi, A.D.3
  • 15
    • 84922545268 scopus 로고    scopus 로고
    • Testing calibration of risk models at extremes of disease risk
    • Song M, Kraft P, Joshi AD, et al. Testing calibration of risk models at extremes of disease risk. Biostatistics. 2015;16(1): 143-154.
    • (2015) Biostatistics , vol.16 , Issue.1 , pp. 143-154
    • Song, M.1    Kraft, P.2    Joshi, A.D.3
  • 16
    • 23844512858 scopus 로고    scopus 로고
    • NAT2 slow acetylation, gstm1 null genotype, and risk of bladder cancer: Results from the Spanish bladder cancer study and metaanalyses
    • Garcia-Closas M, Malats N, Silverman D, et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and metaanalyses. Lancet. 2005;366(9486):649-659.
    • (2005) Lancet , vol.366 , Issue.9486 , pp. 649-659
    • Garcia-Closas, M.1    Malats, N.2    Silverman, D.3
  • 17
    • 33847059098 scopus 로고    scopus 로고
    • Exploiting geneenvironment interaction to detect genetic associations
    • Kraft P, Yen YC, Stram DO, et al. Exploiting geneenvironment interaction to detect genetic associations. Hum Hered. 2007;63(2):111-119.
    • (2007) Hum Hered , vol.63 , Issue.2 , pp. 111-119
    • Kraft, P.1    Yen, Y.C.2    Stram, D.O.3
  • 18
    • 84866238664 scopus 로고    scopus 로고
    • Simultaneously testing for marginal genetic association and gene-environment interaction
    • Dai JY, Logsdon BA, Huang Y, et al. Simultaneously testing for marginal genetic association and gene-environment interaction. Am J Epidemiol. 2012;176(2):164-173.
    • (2012) Am J Epidemiol , vol.176 , Issue.2 , pp. 164-173
    • Dai, J.Y.1    Logsdon, B.A.2    Huang, Y.3
  • 19
    • 84889584152 scopus 로고    scopus 로고
    • Gene environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution
    • Keller MC. Gene environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution. Biol Psychiatry. 2014;75(1):18-24.
    • (2014) Biol Psychiatry , vol.75 , Issue.1 , pp. 18-24
    • Keller, M.C.1
  • 20
    • 79951577537 scopus 로고    scopus 로고
    • On the robustness of tests of genetic associations incorporating gene-environment interaction when the environmental exposure is misspecified
    • Tchetgen Tchetgen EJ, Kraft P. On the robustness of tests of genetic associations incorporating gene-environment interaction when the environmental exposure is misspecified. Epidemiology. 2011;22(2):257-261.
    • (2011) Epidemiology , vol.22 , Issue.2 , pp. 257-261
    • Tchetgen, E.J.1    Kraft, P.2
  • 21
    • 84859466792 scopus 로고    scopus 로고
    • Likelihood ratio test for detecting gene (G)-environment (E) interactions under an additive risk model exploiting G-E independence for case-control data
    • Han SS, Rosenberg PS, Garcia-Closas M, et al. Likelihood ratio test for detecting gene (G)-environment (E) interactions under an additive risk model exploiting G-E independence for case-control data. Am J Epidemiol. 2012;176(11):1060-1067.
    • (2012) Am J Epidemiol , vol.176 , Issue.11 , pp. 1060-1067
    • Han, S.S.1    Rosenberg, P.S.2    Garcia-Closas, M.3
  • 22
    • 0028089404 scopus 로고
    • Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies
    • Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Stat Med. 1994;13(2):153-162.
    • (1994) Stat Med , vol.13 , Issue.2 , pp. 153-162
    • Piegorsch, W.W.1    Weinberg, C.R.2    Taylor, J.A.3
  • 23
    • 0030762960 scopus 로고    scopus 로고
    • Designing and analysing casecontrol studies to exploit independence of genotype and exposure
    • Umbach DM, Weinberg CR. Designing and analysing casecontrol studies to exploit independence of genotype and exposure. Stat Med. 1997;16(15):1731-1743.
    • (1997) Stat Med , vol.16 , Issue.15 , pp. 1731-1743
    • Umbach, D.M.1    Weinberg, C.R.2
  • 24
    • 12744255341 scopus 로고    scopus 로고
    • Semiparametric maximum likelihood estimation exploiting gene-environment independence in casecontrol studies
    • Chatterjee N, Carroll RJ. Semiparametric maximum likelihood estimation exploiting gene-environment independence in casecontrol studies. Biometrika. 2005;92(2):399-418.
    • (2005) Biometrika , vol.92 , Issue.2 , pp. 399-418
    • Chatterjee, N.1    Carroll, R.J.2
  • 25
    • 0035887888 scopus 로고    scopus 로고
    • Limitations of the case-only design for identifying gene-environment interactions
    • Albert PS, Ratnasinghe D, Tangrea J, et al. Limitations of the case-only design for identifying gene-environment interactions. Am J Epidemiol. 2001;154(8):687-693.
    • (2001) Am J Epidemiol , vol.154 , Issue.8 , pp. 687-693
    • Albert, P.S.1    Ratnasinghe, D.2    Tangrea, J.3
  • 26
    • 49749089301 scopus 로고    scopus 로고
    • Exploiting gene-environment independence for analysis of case-control studies: An empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency
    • Mukherjee B, Chatterjee N. Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics. 2008;64(3):685-694.
    • (2008) Biometrics , vol.64 , Issue.3 , pp. 685-694
    • Mukherjee, B.1    Chatterjee, N.2
  • 27
    • 70350335073 scopus 로고    scopus 로고
    • Shrinkage estimators for robust and efficient inference in haplotype-based case-control studies
    • Chen YH, Chatterjee N, Carroll RJ. Shrinkage estimators for robust and efficient inference in haplotype-based case-control studies. J Am Stat Assoc. 2009;104(485):220-233.
    • (2009) J Am Stat Assoc , vol.104 , Issue.485 , pp. 220-233
    • Chen, Y.H.1    Chatterjee, N.2    Carroll, R.J.3
  • 29
    • 60149103126 scopus 로고    scopus 로고
    • Detecting gene-environment interactions using a combined case-only and case-control approach
    • Li D, Conti DV. Detecting gene-environment interactions using a combined case-only and case-control approach. Am J Epidemiol. 2009;169(4):497-504.
    • (2009) Am J Epidemiol , vol.169 , Issue.4 , pp. 497-504
    • Li, D.1    Conti, D.V.2
  • 30
    • 79953666873 scopus 로고    scopus 로고
    • Efficient genome-wide association testing of gene-environment interaction in case-parent trios
    • GaudermanWJ, Thomas DC,Murcray CE, et al. Efficient genome-wide association testing of gene-environment interaction in case-parent trios. Am J Epidemiol. 2010;172(1):116-122.
    • (2010) Am J Epidemiol , vol.172 , Issue.1 , pp. 116-122
    • Gauderman, W.J.1    Thomas, D.C.2    Murcray, C.E.3
  • 31
    • 84881611825 scopus 로고    scopus 로고
    • Finding novel genes by testing G e interactions in a genome-wide association study
    • Gauderman WJ, Zhang P, Morrison JL, et al. Finding novel genes by testing G E interactions in a genome-wide association study. Genet Epidemiol. 2013;37(6):603-613.
    • (2013) Genet Epidemiol , vol.37 , Issue.6 , pp. 603-613
    • Gauderman, W.J.1    Zhang, P.2    Morrison, J.L.3
  • 32
    • 84867614472 scopus 로고    scopus 로고
    • Powerful cocktail methods for detecting genome-wide gene-environment interaction
    • Hsu L, Jiao S, Dai JY, et al. Powerful cocktail methods for detecting genome-wide gene-environment interaction. Genet Epidemiol. 2012;36(3):183-194.
    • (2012) Genet Epidemiol , vol.36 , Issue.3 , pp. 183-194
    • Hsu, L.1    Jiao, S.2    Dai, J.Y.3
  • 33
    • 42249099044 scopus 로고    scopus 로고
    • Increasing the power of identifying gene gene interactions in genome-wide association studies
    • Kooperberg C, Leblanc M. Increasing the power of identifying gene gene interactions in genome-wide association studies. Genet Epidemiol. 2008;32(3):255-263.
    • (2008) Genet Epidemiol , vol.32 , Issue.3 , pp. 255-263
    • Kooperberg, C.1    Leblanc, M.2
  • 34
    • 79952494521 scopus 로고    scopus 로고
    • Sample size requirements to detect gene-environment interactions in genome-wide association studies
    • Murcray CE, Lewinger JP, Conti DV, et al. Sample size requirements to detect gene-environment interactions in genome-wide association studies. Genet Epidemiol. 2011; 35(3):201-210.
    • (2011) Genet Epidemiol , vol.35 , Issue.3 , pp. 201-210
    • Murcray, C.E.1    Lewinger, J.P.2    Conti, D.V.3
  • 35
    • 58449107994 scopus 로고    scopus 로고
    • Gene-environment interaction in genome-wide association studies
    • Murcray CE, Lewinger JP, Gauderman WJ. Gene-environment interaction in genome-wide association studies. Am J Epidemiol. 2009;169(2):219-226.
    • (2009) Am J Epidemiol , vol.169 , Issue.2 , pp. 219-226
    • Murcray, C.E.1    Lewinger, J.P.2    Gauderman, W.J.3
  • 36
    • 77954157546 scopus 로고    scopus 로고
    • On the use of variance per genotype as a tool to identify quantitative trait interaction effects: A report from the Women's Genome Health Study
    • Paré G, Cook NR, Ridker PM, et al. On the use of variance per genotype as a tool to identify quantitative trait interaction effects: a report from the Women's Genome Health Study. PLoS Genet. 2010;6(6):e1000981.
    • (2010) PLoS Genet , vol.6 , Issue.6 , pp. e1000981
    • Paré, G.1    Cook, N.R.2    Ridker, P.M.3
  • 37
    • 84971420326 scopus 로고    scopus 로고
    • Detecting geneenvironment interactions for a quantitative trait in a genomewide association study
    • Zhang P, Lewinger JP, Conti D, et al. Detecting geneenvironment interactions for a quantitative trait in a genomewide association study. Genet Epidemiol. 2016;40(5): 394-403.
    • (2016) Genet Epidemiol , vol.40 , Issue.5 , pp. 394-403
    • Zhang, P.1    Lewinger, J.P.2    Conti, D.3
  • 38
    • 84869473073 scopus 로고    scopus 로고
    • Two-stage testing procedures with independent filtering for genome-wide geneenvironment interaction
    • Dai JY, Kooperberg C, Leblanc M, et al. Two-stage testing procedures with independent filtering for genome-wide geneenvironment interaction. Biometrika. 2012;99(4):929-944.
    • (2012) Biometrika , vol.99 , Issue.4 , pp. 929-944
    • Dai, J.Y.1    Kooperberg, C.2    Leblanc, M.3
  • 40
    • 0033979887 scopus 로고    scopus 로고
    • Genotypeenvironment interaction for quantitative trait loci affecting life span in Drosophila melanogaster
    • Vieira C, Pasyukova EG, Zeng ZB, et al. Genotypeenvironment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics. 2000;154(1): 213-227.
    • (2000) Genetics , vol.154 , Issue.1 , pp. 213-227
    • Vieira, C.1    Pasyukova, E.G.2    Zeng, Z.B.3
  • 41
    • 13244253551 scopus 로고    scopus 로고
    • Epistasis and genotypeenvironment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana
    • Juenger TE, Sen S, Stowe KA, et al. Epistasis and genotypeenvironment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana. Genetica. 2005; 123(1-2):87-105.
    • (2005) Genetica , vol.123 , Issue.1-2 , pp. 87-105
    • Juenger, T.E.1    Sen, S.2    Stowe, K.A.3
  • 42
    • 84961711372 scopus 로고    scopus 로고
    • The influence of age and sex on genetic associations with adult body size and shape: A large-scale genome-wide interaction study
    • Winkler TW, Justice AE, Graff M, et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 2015;11(10):e1005378.
    • (2015) PLoS Genet , vol.11 , Issue.10 , pp. e1005378
    • Winkler, T.W.1    Justice, A.E.2    Graff, M.3
  • 43
    • 84856405512 scopus 로고    scopus 로고
    • The mystery of missing heritability: Genetic interactions create phantom heritability
    • Zuk O, Hechter E, Sunyaev SR, et al. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA. 2012;109(4):1193-1198.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.4 , pp. 1193-1198
    • Zuk, O.1    Hechter, E.2    Sunyaev, S.R.3
  • 44
    • 79551567086 scopus 로고    scopus 로고
    • Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects
    • Aschard H, Hancock DB, London SJ, et al. Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects. Hum Hered. 2010;70(4):292-300.
    • (2010) Hum Hered , vol.70 , Issue.4 , pp. 292-300
    • Aschard, H.1    Hancock, D.B.2    London, S.J.3
  • 45
    • 78650332973 scopus 로고    scopus 로고
    • Meta-analysis of gene-environment interaction: Joint estimation of SNP and SNP environment regression coefficients
    • Manning AK, LaValley M, Liu CT, et al. Meta-analysis of gene-environment interaction: joint estimation of SNP and SNP environment regression coefficients. Genet Epidemiol. 2011;35(1):11-18.
    • (2011) Genet Epidemiol , vol.35 , Issue.1 , pp. 11-18
    • Manning, A.K.1    LaValley, M.2    Liu, C.T.3
  • 46
    • 84872034012 scopus 로고    scopus 로고
    • Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function
    • Hancock DB, Soler Artigas M, Gharib SA, et al. Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function. PLoS Genet. 2012;8(12):e1003098.
    • (2012) PLoS Genet , vol.8 , Issue.12 , pp. e1003098
    • Hancock, D.B.1    Soler Artigas, M.2    Gharib, S.A.3
  • 47
    • 84876413661 scopus 로고    scopus 로고
    • A nonparametric test to detect quantitative trait loci where the phenotypic distribution differs by genotypes
    • Aschard H, Zaitlen N, Tamimi RM, et al. A nonparametric test to detect quantitative trait loci where the phenotypic distribution differs by genotypes. Genet Epidemiol. 2013; 37(4):323-333.
    • (2013) Genet Epidemiol , vol.37 , Issue.4 , pp. 323-333
    • Aschard, H.1    Zaitlen, N.2    Tamimi, R.M.3
  • 48
    • 84879176921 scopus 로고    scopus 로고
    • SBERIA: Set-based geneenvironment interaction test for rare and common variants in complex diseases
    • Jiao S, Hsu L, Bezieau S, et al. SBERIA: set-based geneenvironment interaction test for rare and common variants in complex diseases. Genet Epidemiol. 2013;37(5):452-464.
    • (2013) Genet Epidemiol , vol.37 , Issue.5 , pp. 452-464
    • Jiao, S.1    Hsu, L.2    Bezieau, S.3
  • 49
    • 85028270599 scopus 로고    scopus 로고
    • A unified set-based test with adaptive filtering for gene-environment interaction analyses
    • Liu Q, Chen LS, Nicolae DL, et al. A unified set-based test with adaptive filtering for gene-environment interaction analyses. Biometrics. 2016;72(2):629-638.
    • (2016) Biometrics , vol.72 , Issue.2 , pp. 629-638
    • Liu, Q.1    Chen, L.S.2    Nicolae, D.L.3
  • 50
    • 84885870289 scopus 로고    scopus 로고
    • Test for interactions between a genetic marker set and environment in generalized linear models
    • Lin X, Lee S, Christiani DC, et al. Test for interactions between a genetic marker set and environment in generalized linear models. Biostatistics. 2013;14(4):667-681.
    • (2013) Biostatistics , vol.14 , Issue.4 , pp. 667-681
    • Lin, X.1    Lee, S.2    Christiani, D.C.3
  • 51
    • 80051636106 scopus 로고    scopus 로고
    • Studying gene and gene-environment effects of uncommon and common variants on continuous traits: A marker-set approach using gene-trait similarity regression
    • Tzeng JY, Zhang D, Pongpanich M, et al. Studying gene and gene-environment effects of uncommon and common variants on continuous traits: a marker-set approach using gene-trait similarity regression. Am J Hum Genet. 2011;89(2):277-288.
    • (2011) Am J Hum Genet , vol.89 , Issue.2 , pp. 277-288
    • Tzeng, J.Y.1    Zhang, D.2    Pongpanich, M.3
  • 52
    • 84924973526 scopus 로고    scopus 로고
    • Assessing geneenvironment interactions for common and rare variants with binary traits using gene-trait similarity regression
    • Zhao G, Marceau R, Zhang D, et al. Assessing geneenvironment interactions for common and rare variants with binary traits using gene-trait similarity regression. Genetics. 2015;199(3):695-710.
    • (2015) Genetics , vol.199 , Issue.3 , pp. 695-710
    • Zhao, G.1    Marceau, R.2    Zhang, D.3
  • 53
    • 84962658495 scopus 로고    scopus 로고
    • Test for rare variants by environment interactions in sequencing association studies
    • Lin X, Lee S, Wu MC, et al. Test for rare variants by environment interactions in sequencing association studies. Biometrics. 2016;72(1):156-164.
    • (2016) Biometrics , vol.72 , Issue.1 , pp. 156-164
    • Lin, X.1    Lee, S.2    Wu, M.C.3
  • 54
    • 84954373131 scopus 로고    scopus 로고
    • Powerful set-based geneenvironment interaction testing framework for complex diseases
    • Jiao S, Peters U, Berndt S, et al. Powerful set-based geneenvironment interaction testing framework for complex diseases. Genet Epidemiol. 2015;39(8):609-618.
    • (2015) Genet Epidemiol , vol.39 , Issue.8 , pp. 609-618
    • Jiao, S.1    Peters, U.2    Berndt, S.3
  • 55
    • 85021337322 scopus 로고    scopus 로고
    • A unified powerful set-based test for sequencing data analysis of GxE interactions
    • Su YR, Di CZ, Hsu L, et al. A unified powerful set-based test for sequencing data analysis of GxE interactions. Biostatistics. 2017;18(1):119-131.
    • (2017) Biostatistics , vol.18 , Issue.1 , pp. 119-131
    • Su, Y.R.1    Di, C.Z.2    Hsu, L.3
  • 56
    • 84876472678 scopus 로고    scopus 로고
    • Does accounting for geneenvironment interactions help uncover association between rare variants and complex diseases?
    • Kazma R, Cardin NJ, Witte JS. Does accounting for geneenvironment interactions help uncover association between rare variants and complex diseases? Hum Hered. 2012; 74(3-4):205-214.
    • (2012) Hum Hered , vol.74 , Issue.3-4 , pp. 205-214
    • Kazma, R.1    Cardin, N.J.2    Witte, J.S.3
  • 57
    • 84934442872 scopus 로고    scopus 로고
    • Kernel approach for modeling interaction effects in genetic association studies of complex quantitative traits
    • Broadaway KA, Duncan R, Conneely KN, et al. Kernel approach for modeling interaction effects in genetic association studies of complex quantitative traits. Genet Epidemiol. 2015; 39(5):366-375.
    • (2015) Genet Epidemiol , vol.39 , Issue.5 , pp. 366-375
    • Broadaway, K.A.1    Duncan, R.2    Conneely, K.N.3
  • 58
    • 77049105601 scopus 로고    scopus 로고
    • Researching genetic versus nongenetic determinants of disease: A comparison and proposed unification
    • Ioannidis JP, Loy EY, Poulton R, et al. Researching genetic versus nongenetic determinants of disease: a comparison and proposed unification. Sci Transl Med. 2009;1(7):7ps8.
    • (2009) Sci Transl Med , vol.1 , Issue.7 , pp. 7ps8
    • Ioannidis, J.P.1    Loy, E.Y.2    Poulton, R.3
  • 59
    • 33750286237 scopus 로고    scopus 로고
    • Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: A comparison between inductively coupled plasma-mass spectrometry and atomic absorption spectrometry
    • Palmer CD, Lewis ME, Geraghtya CM, et al. Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: a comparison between inductively coupled plasma-mass spectrometry and atomic absorption spectrometry. Spectrochim Acta Part B At Spectrosc. 2006; 61(8):980-990.
    • (2006) Spectrochim Acta Part B at Spectrosc , vol.61 , Issue.8 , pp. 980-990
    • Palmer, C.D.1    Lewis, M.E.2    Geraghtya, C.M.3
  • 60
    • 0033947604 scopus 로고    scopus 로고
    • Exposure measurement error in time-series studies of air pollution: Concepts and consequences
    • Zeger SL, Thomas D, Dominici F, et al. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect. 2000; 108(5):419-426.
    • (2000) Environ Health Perspect , vol.108 , Issue.5 , pp. 419-426
    • Zeger, S.L.1    Thomas, D.2    Dominici, F.3
  • 61
    • 84942122563 scopus 로고    scopus 로고
    • Emissions reduction policies and recent trends in Southern California's ambient air quality
    • Lurmann F, Avol E, Gilliland F. Emissions reduction policies and recent trends in Southern California's ambient air quality. J Air Waste Manag Assoc. 2015;65(3):324-335.
    • (2015) J Air Waste Manag Assoc , vol.65 , Issue.3 , pp. 324-335
    • Lurmann, F.1    Avol, E.2    Gilliland, F.3
  • 62
    • 84924454832 scopus 로고    scopus 로고
    • Association of improved air quality with lung development in children
    • Gauderman WJ, Urman R, Avol E, et al. Association of improved air quality with lung development in children. N Engl J Med. 2015;372(10):905-913.
    • (2015) N Engl J Med , vol.372 , Issue.10 , pp. 905-913
    • Gauderman, W.J.1    Urman, R.2    Avol, E.3
  • 63
    • 1542686315 scopus 로고    scopus 로고
    • Urinary levels of seven phthalate metabolites in the US population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000
    • Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the US population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect. 2004;112(3):331-338.
    • (2004) Environ Health Perspect , vol.112 , Issue.3 , pp. 331-338
    • Silva, M.J.1    Barr, D.B.2    Reidy, J.A.3
  • 64
    • 84898618696 scopus 로고    scopus 로고
    • Spatial cluster detection of air pollution exposure inequities across the United States
    • Zou B, Peng F, Wan N, et al. Spatial cluster detection of air pollution exposure inequities across the United States. PLoS One. 2014;9(3):e91917.
    • (2014) PLoS One , vol.9 , Issue.3 , pp. e91917
    • Zou, B.1    Peng, F.2    Wan, N.3
  • 65
    • 4444367099 scopus 로고    scopus 로고
    • The effect of air pollution on lung development from 10 to 18 years of age
    • Gauderman WJ, Avol E, Gilliland F, et al. The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med. 2004;351(11):1057-1067.
    • (2004) N Engl J Med , vol.351 , Issue.11 , pp. 1057-1067
    • Gauderman, W.J.1    Avol, E.2    Gilliland, F.3
  • 66
    • 84911368398 scopus 로고    scopus 로고
    • Placing epidemiological results in the context ofmultiplicity and typical correlations of exposures
    • Patel CJ, Ioannidis JP. Placing epidemiological results in the context ofmultiplicity and typical correlations of exposures. J Epidemiol Community Health. 2014;68(11):1096-1100.
    • (2014) J Epidemiol Community Health , vol.68 , Issue.11 , pp. 1096-1100
    • Patel, C.J.1    Ioannidis, J.P.2
  • 67
    • 84971326365 scopus 로고    scopus 로고
    • Development of exposome correlation globes to map out environment-wide associations
    • Patel CJ, Manrai AK. Development of exposome correlation globes to map out environment-wide associations. Pac Symp Biocomput. 2015:231-242.
    • (2015) Pac Symp Biocomput , pp. 231-242
    • Patel, C.J.1    Manrai, A.K.2
  • 68
    • 38049023073 scopus 로고    scopus 로고
    • Clustered environments and randomized genes: A fundamental distinction between conventional and genetic epidemiology
    • Smith GD, Lawlor DA, Harbord R, et al. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med. 2007;4(12):e352.
    • (2007) PLoS Med , vol.4 , Issue.12 , pp. e352
    • Smith, G.D.1    Lawlor, D.A.2    Harbord, R.3
  • 69
    • 85046263574 scopus 로고    scopus 로고
    • Opportunities and challenges for environmental exposure assessment in population-based studies
    • published online ahead of print July 14
    • Patel CJ, Kerr J, Thomas DC, et al. Opportunities and challenges for environmental exposure assessment in population-based studies [published online ahead of print July 14, 2017]. Cancer Epidemiol Biomarkers Prev. (doi:10.1016/j.cmpb.2003.08.003).
    • (2017) Cancer Epidemiol Biomarkers Prev
    • Patel, C.J.1    Kerr, J.2    Thomas, D.C.3
  • 70
    • 75649083856 scopus 로고    scopus 로고
    • Meta-analysis of genome-wide association studies: No efficiency gain in using individual participant data
    • Lin DY, Zeng D. Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data. Genet Epidemiol. 2010;34(1):60-66.
    • (2010) Genet Epidemiol , vol.34 , Issue.1 , pp. 60-66
    • Lin, D.Y.1    Zeng, D.2
  • 71
    • 84899112197 scopus 로고    scopus 로고
    • An empirical comparison of meta-analysis and mega-analysis of individual participant data for identifying gene-environment interactions
    • Sung YJ, Schwander K, Arnett DK, et al. An empirical comparison of meta-analysis and mega-analysis of individual participant data for identifying gene-environment interactions. Genet Epidemiol. 2014;38(4):369-378.
    • (2014) Genet Epidemiol , vol.38 , Issue.4 , pp. 369-378
    • Sung, Y.J.1    Schwander, K.2    Arnett, D.K.3
  • 72
    • 84879677633 scopus 로고    scopus 로고
    • Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits
    • Randall JC, Winkler TW, Kutalik Z, et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 2013;9(6):e1003500.
    • (2013) PLoS Genet , vol.9 , Issue.6 , pp. e1003500
    • Randall, J.C.1    Winkler, T.W.2    Kutalik, Z.3
  • 73
    • 84962948889 scopus 로고    scopus 로고
    • Genome-wide interaction studies reveal sex-specific asthma risk alleles
    • Myers RA, Scott NM, Gauderman WJ, et al. Genome-wide interaction studies reveal sex-specific asthma risk alleles. Hum Mol Genet. 2014;23(19):5251-5259.
    • (2014) Hum Mol Genet , vol.23 , Issue.19 , pp. 5251-5259
    • Myers, R.A.1    Scott, N.M.2    Gauderman, W.J.3
  • 74
    • 78649505227 scopus 로고    scopus 로고
    • Meta-analysis of sexspecific genome-wide association studies
    • Magi R, Lindgren CM, Morris AP. Meta-analysis of sexspecific genome-wide association studies. Genet Epidemiol. 2010;34(8):846-853
    • (2010) Genet Epidemiol , vol.34 , Issue.8 , pp. 846-853
    • Magi, R.1    Lindgren, C.M.2    Morris, A.P.3
  • 75
    • 84943171338 scopus 로고    scopus 로고
    • A global reference for human genetic variation
    • 1000 Genomes Project Consortium
    • 1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74.
    • (2015) Nature , vol.526 , Issue.7571 , pp. 68-74
    • Auton, A.1    Brooks, L.D.2
  • 76
    • 84865614768 scopus 로고    scopus 로고
    • Common genetic variants and central adiposity among Asian-Indians
    • Moore SC, Gunter MJ, Daniel CR, et al. Common genetic variants and central adiposity among Asian-Indians. Obesity (Silver Spring). 2012;20(9):1902-1908.
    • (2012) Obesity (Silver Spring) , vol.20 , Issue.9 , pp. 1902-1908
    • Moore, S.C.1    Gunter, M.J.2    Daniel, C.R.3
  • 77
    • 84890149270 scopus 로고    scopus 로고
    • Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions
    • Schoeps A, Rudolph A, Seibold P, et al. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions. Genet Epidemiol. 2014;38(1):84-93.
    • (2014) Genet Epidemiol , vol.38 , Issue.1 , pp. 84-93
    • Schoeps, A.1    Rudolph, A.2    Seibold, P.3
  • 78
    • 34447331985 scopus 로고    scopus 로고
    • Evidence for an intensity-dependent interaction of NAT2 acetylation genotype and cigarette smoking in the Spanish Bladder Cancer Study
    • Lubin JH, Kogevinas M, Silverman D, et al. Evidence for an intensity-dependent interaction of NAT2 acetylation genotype and cigarette smoking in the Spanish Bladder Cancer Study. Int J Epidemiol. 2007;36(1):236-241.
    • (2007) Int J Epidemiol , vol.36 , Issue.1 , pp. 236-241
    • Lubin, J.H.1    Kogevinas, M.2    Silverman, D.3
  • 79
    • 85030643747 scopus 로고    scopus 로고
    • Lessons learned from past gene-environment interaction successes
    • Ritz BR, Chatterjee N, Garcia-Closas M, et al. Lessons learned from past gene-environment interaction successes. Am J Epidemiol. 2017;186(7):778-786.
    • (2017) Am J Epidemiol , vol.186 , Issue.7 , pp. 778-786
    • Ritz, B.R.1    Chatterjee, N.2    Garcia-Closas, M.3
  • 80
    • 0242515957 scopus 로고    scopus 로고
    • The detection of geneenvironment interaction for continuous traits: Should we deal with measurement error by bigger studies or better measurement?
    • Wong MY, Day NE, Luan JA, et al. The detection of geneenvironment interaction for continuous traits: should we deal with measurement error by bigger studies or better measurement? Int J Epidemiol. 2003;32(1):51-57.
    • (2003) Int J Epidemiol , vol.32 , Issue.1 , pp. 51-57
    • Wong, M.Y.1    Day, N.E.2    Luan, J.A.3
  • 81
    • 84937571216 scopus 로고    scopus 로고
    • Variation in predictive ability of common genetic variants by established strata: The example of breast cancer and age
    • Aschard H, Zaitlen N, Lindström S, et al. Variation in predictive ability of common genetic variants by established strata: the example of breast cancer and age. Epidemiology. 2015;26(1):51-58.
    • (2015) Epidemiology , vol.26 , Issue.1 , pp. 51-58
    • Aschard, H.1    Zaitlen, N.2    Lindström, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.