-
1
-
-
85030627250
-
Current challenges and new opportunities for gene-environment interaction studies of complex diseases
-
McAllister K, Mechanic LE, Amos C, et al. Current challenges and new opportunities for gene-environment interaction studies of complex diseases. Am J Epidemiol. 2017;186(7): 753-761
-
(2017)
Am J Epidemiol
, vol.186
, Issue.7
, pp. 753-761
-
-
McAllister, K.1
Mechanic, L.E.2
Amos, C.3
-
2
-
-
84975795680
-
An integrated map of genetic variation from 1,092 human genomes
-
1000 Genomes Project Consortium
-
1000 Genomes Project Consortium, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56-65.
-
(2012)
Nature
, vol.491
, Issue.7422
, pp. 56-65
-
-
Abecasis, G.R.1
Auton, A.2
-
3
-
-
84983479616
-
A reference panel of 64,976 haplotypes for genotype imputation
-
McCarthy S, Das S, Kretzschmar W, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016; 48(10):1279-1283.
-
(2016)
Nat Genet
, vol.48
, Issue.10
, pp. 1279-1283
-
-
McCarthy, S.1
Das, S.2
Kretzschmar, W.3
-
4
-
-
84978312790
-
A perspective on interaction effects in genetic association studies
-
Aschard H. A perspective on interaction effects in genetic association studies. Genet Epidemiol. 2016;40(8):678-688.
-
(2016)
Genet Epidemiol
, vol.40
, Issue.8
, pp. 678-688
-
-
Aschard, H.1
-
7
-
-
0018671320
-
Logistic disease incidence models and case-control studies
-
Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrika. 1979;66(3):403-411.
-
(1979)
Biometrika
, vol.66
, Issue.3
, pp. 403-411
-
-
Prentice, R.L.1
Pyke, R.2
-
8
-
-
22744434433
-
Causation and causal inference in epidemiology
-
Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health. 2005;95(suppl 1): S144-S150.
-
(2005)
Am J Public Health
, vol.95
, pp. S144-S150
-
-
Rothman, K.J.1
Greenland, S.2
-
9
-
-
80052568394
-
Causal models for investigating complex disease: I
-
Madsen AM, Hodge SE, Ottman R. Causal models for investigating complex disease: I. A primer. Hum Hered. 2011; 72(1):54-62.
-
(2011)
A Primer. Hum Hered
, vol.72
, Issue.1
, pp. 54-62
-
-
Madsen, A.M.1
Hodge, S.E.2
Ottman, R.3
-
10
-
-
67349266632
-
Sufficient cause interactions and statistical interactions
-
VanderWeele TJ. Sufficient cause interactions and statistical interactions. Epidemiology. 2009;20(1):6-13.
-
(2009)
Epidemiology
, vol.20
, Issue.1
, pp. 6-13
-
-
VanderWeele, T.J.1
-
11
-
-
84875976264
-
Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer
-
Garcia-Closas M, Rothman N, Figueroa JD, et al. Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer. Cancer Res. 2013;73(7): 2211-2220.
-
(2013)
Cancer Res
, vol.73
, Issue.7
, pp. 2211-2220
-
-
Garcia-Closas, M.1
Rothman, N.2
Figueroa, J.D.3
-
12
-
-
80051961905
-
Interactions between genetic variants and breast cancer risk factors in the Breast and Prostate Cancer Cohort Consortium
-
Campa D, Kaaks R, Le Marchand L, et al. Interactions between genetic variants and breast cancer risk factors in the Breast and Prostate Cancer Cohort Consortium. J Natl Cancer Inst. 2011; 103(16):1252-1263.
-
(2011)
J Natl Cancer Inst
, vol.103
, Issue.16
, pp. 1252-1263
-
-
Campa, D.1
Kaaks, R.2
Le Marchand, L.3
-
13
-
-
84929481929
-
Post-GWAS geneenvironment interplay in breast cancer: Results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79,000 women
-
Barrdahl M, Canzian F, Joshi AD, et al. Post-GWAS geneenvironment interplay in breast cancer: results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79,000 women. Hum Mol Genet. 2014;23(19):5260-5270.
-
(2014)
Hum Mol Genet
, vol.23
, Issue.19
, pp. 5260-5270
-
-
Barrdahl, M.1
Canzian, F.2
Joshi, A.D.3
-
14
-
-
85013768524
-
Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States
-
Maas P, Barrdahl M, Joshi AD, et al. Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States. JAMA Oncol. 2016;2(10):1295-1302.
-
(2016)
JAMA Oncol
, vol.2
, Issue.10
, pp. 1295-1302
-
-
Maas, P.1
Barrdahl, M.2
Joshi, A.D.3
-
15
-
-
84922545268
-
Testing calibration of risk models at extremes of disease risk
-
Song M, Kraft P, Joshi AD, et al. Testing calibration of risk models at extremes of disease risk. Biostatistics. 2015;16(1): 143-154.
-
(2015)
Biostatistics
, vol.16
, Issue.1
, pp. 143-154
-
-
Song, M.1
Kraft, P.2
Joshi, A.D.3
-
16
-
-
23844512858
-
NAT2 slow acetylation, gstm1 null genotype, and risk of bladder cancer: Results from the Spanish bladder cancer study and metaanalyses
-
Garcia-Closas M, Malats N, Silverman D, et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and metaanalyses. Lancet. 2005;366(9486):649-659.
-
(2005)
Lancet
, vol.366
, Issue.9486
, pp. 649-659
-
-
Garcia-Closas, M.1
Malats, N.2
Silverman, D.3
-
17
-
-
33847059098
-
Exploiting geneenvironment interaction to detect genetic associations
-
Kraft P, Yen YC, Stram DO, et al. Exploiting geneenvironment interaction to detect genetic associations. Hum Hered. 2007;63(2):111-119.
-
(2007)
Hum Hered
, vol.63
, Issue.2
, pp. 111-119
-
-
Kraft, P.1
Yen, Y.C.2
Stram, D.O.3
-
18
-
-
84866238664
-
Simultaneously testing for marginal genetic association and gene-environment interaction
-
Dai JY, Logsdon BA, Huang Y, et al. Simultaneously testing for marginal genetic association and gene-environment interaction. Am J Epidemiol. 2012;176(2):164-173.
-
(2012)
Am J Epidemiol
, vol.176
, Issue.2
, pp. 164-173
-
-
Dai, J.Y.1
Logsdon, B.A.2
Huang, Y.3
-
19
-
-
84889584152
-
Gene environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution
-
Keller MC. Gene environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution. Biol Psychiatry. 2014;75(1):18-24.
-
(2014)
Biol Psychiatry
, vol.75
, Issue.1
, pp. 18-24
-
-
Keller, M.C.1
-
20
-
-
79951577537
-
On the robustness of tests of genetic associations incorporating gene-environment interaction when the environmental exposure is misspecified
-
Tchetgen Tchetgen EJ, Kraft P. On the robustness of tests of genetic associations incorporating gene-environment interaction when the environmental exposure is misspecified. Epidemiology. 2011;22(2):257-261.
-
(2011)
Epidemiology
, vol.22
, Issue.2
, pp. 257-261
-
-
Tchetgen, E.J.1
Kraft, P.2
-
21
-
-
84859466792
-
Likelihood ratio test for detecting gene (G)-environment (E) interactions under an additive risk model exploiting G-E independence for case-control data
-
Han SS, Rosenberg PS, Garcia-Closas M, et al. Likelihood ratio test for detecting gene (G)-environment (E) interactions under an additive risk model exploiting G-E independence for case-control data. Am J Epidemiol. 2012;176(11):1060-1067.
-
(2012)
Am J Epidemiol
, vol.176
, Issue.11
, pp. 1060-1067
-
-
Han, S.S.1
Rosenberg, P.S.2
Garcia-Closas, M.3
-
22
-
-
0028089404
-
Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies
-
Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies. Stat Med. 1994;13(2):153-162.
-
(1994)
Stat Med
, vol.13
, Issue.2
, pp. 153-162
-
-
Piegorsch, W.W.1
Weinberg, C.R.2
Taylor, J.A.3
-
23
-
-
0030762960
-
Designing and analysing casecontrol studies to exploit independence of genotype and exposure
-
Umbach DM, Weinberg CR. Designing and analysing casecontrol studies to exploit independence of genotype and exposure. Stat Med. 1997;16(15):1731-1743.
-
(1997)
Stat Med
, vol.16
, Issue.15
, pp. 1731-1743
-
-
Umbach, D.M.1
Weinberg, C.R.2
-
24
-
-
12744255341
-
Semiparametric maximum likelihood estimation exploiting gene-environment independence in casecontrol studies
-
Chatterjee N, Carroll RJ. Semiparametric maximum likelihood estimation exploiting gene-environment independence in casecontrol studies. Biometrika. 2005;92(2):399-418.
-
(2005)
Biometrika
, vol.92
, Issue.2
, pp. 399-418
-
-
Chatterjee, N.1
Carroll, R.J.2
-
25
-
-
0035887888
-
Limitations of the case-only design for identifying gene-environment interactions
-
Albert PS, Ratnasinghe D, Tangrea J, et al. Limitations of the case-only design for identifying gene-environment interactions. Am J Epidemiol. 2001;154(8):687-693.
-
(2001)
Am J Epidemiol
, vol.154
, Issue.8
, pp. 687-693
-
-
Albert, P.S.1
Ratnasinghe, D.2
Tangrea, J.3
-
26
-
-
49749089301
-
Exploiting gene-environment independence for analysis of case-control studies: An empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency
-
Mukherjee B, Chatterjee N. Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics. 2008;64(3):685-694.
-
(2008)
Biometrics
, vol.64
, Issue.3
, pp. 685-694
-
-
Mukherjee, B.1
Chatterjee, N.2
-
27
-
-
70350335073
-
Shrinkage estimators for robust and efficient inference in haplotype-based case-control studies
-
Chen YH, Chatterjee N, Carroll RJ. Shrinkage estimators for robust and efficient inference in haplotype-based case-control studies. J Am Stat Assoc. 2009;104(485):220-233.
-
(2009)
J Am Stat Assoc
, vol.104
, Issue.485
, pp. 220-233
-
-
Chen, Y.H.1
Chatterjee, N.2
Carroll, R.J.3
-
29
-
-
60149103126
-
Detecting gene-environment interactions using a combined case-only and case-control approach
-
Li D, Conti DV. Detecting gene-environment interactions using a combined case-only and case-control approach. Am J Epidemiol. 2009;169(4):497-504.
-
(2009)
Am J Epidemiol
, vol.169
, Issue.4
, pp. 497-504
-
-
Li, D.1
Conti, D.V.2
-
30
-
-
79953666873
-
Efficient genome-wide association testing of gene-environment interaction in case-parent trios
-
GaudermanWJ, Thomas DC,Murcray CE, et al. Efficient genome-wide association testing of gene-environment interaction in case-parent trios. Am J Epidemiol. 2010;172(1):116-122.
-
(2010)
Am J Epidemiol
, vol.172
, Issue.1
, pp. 116-122
-
-
Gauderman, W.J.1
Thomas, D.C.2
Murcray, C.E.3
-
31
-
-
84881611825
-
Finding novel genes by testing G e interactions in a genome-wide association study
-
Gauderman WJ, Zhang P, Morrison JL, et al. Finding novel genes by testing G E interactions in a genome-wide association study. Genet Epidemiol. 2013;37(6):603-613.
-
(2013)
Genet Epidemiol
, vol.37
, Issue.6
, pp. 603-613
-
-
Gauderman, W.J.1
Zhang, P.2
Morrison, J.L.3
-
32
-
-
84867614472
-
Powerful cocktail methods for detecting genome-wide gene-environment interaction
-
Hsu L, Jiao S, Dai JY, et al. Powerful cocktail methods for detecting genome-wide gene-environment interaction. Genet Epidemiol. 2012;36(3):183-194.
-
(2012)
Genet Epidemiol
, vol.36
, Issue.3
, pp. 183-194
-
-
Hsu, L.1
Jiao, S.2
Dai, J.Y.3
-
33
-
-
42249099044
-
Increasing the power of identifying gene gene interactions in genome-wide association studies
-
Kooperberg C, Leblanc M. Increasing the power of identifying gene gene interactions in genome-wide association studies. Genet Epidemiol. 2008;32(3):255-263.
-
(2008)
Genet Epidemiol
, vol.32
, Issue.3
, pp. 255-263
-
-
Kooperberg, C.1
Leblanc, M.2
-
34
-
-
79952494521
-
Sample size requirements to detect gene-environment interactions in genome-wide association studies
-
Murcray CE, Lewinger JP, Conti DV, et al. Sample size requirements to detect gene-environment interactions in genome-wide association studies. Genet Epidemiol. 2011; 35(3):201-210.
-
(2011)
Genet Epidemiol
, vol.35
, Issue.3
, pp. 201-210
-
-
Murcray, C.E.1
Lewinger, J.P.2
Conti, D.V.3
-
35
-
-
58449107994
-
Gene-environment interaction in genome-wide association studies
-
Murcray CE, Lewinger JP, Gauderman WJ. Gene-environment interaction in genome-wide association studies. Am J Epidemiol. 2009;169(2):219-226.
-
(2009)
Am J Epidemiol
, vol.169
, Issue.2
, pp. 219-226
-
-
Murcray, C.E.1
Lewinger, J.P.2
Gauderman, W.J.3
-
36
-
-
77954157546
-
On the use of variance per genotype as a tool to identify quantitative trait interaction effects: A report from the Women's Genome Health Study
-
Paré G, Cook NR, Ridker PM, et al. On the use of variance per genotype as a tool to identify quantitative trait interaction effects: a report from the Women's Genome Health Study. PLoS Genet. 2010;6(6):e1000981.
-
(2010)
PLoS Genet
, vol.6
, Issue.6
, pp. e1000981
-
-
Paré, G.1
Cook, N.R.2
Ridker, P.M.3
-
37
-
-
84971420326
-
Detecting geneenvironment interactions for a quantitative trait in a genomewide association study
-
Zhang P, Lewinger JP, Conti D, et al. Detecting geneenvironment interactions for a quantitative trait in a genomewide association study. Genet Epidemiol. 2016;40(5): 394-403.
-
(2016)
Genet Epidemiol
, vol.40
, Issue.5
, pp. 394-403
-
-
Zhang, P.1
Lewinger, J.P.2
Conti, D.3
-
38
-
-
84869473073
-
Two-stage testing procedures with independent filtering for genome-wide geneenvironment interaction
-
Dai JY, Kooperberg C, Leblanc M, et al. Two-stage testing procedures with independent filtering for genome-wide geneenvironment interaction. Biometrika. 2012;99(4):929-944.
-
(2012)
Biometrika
, vol.99
, Issue.4
, pp. 929-944
-
-
Dai, J.Y.1
Kooperberg, C.2
Leblanc, M.3
-
40
-
-
0033979887
-
Genotypeenvironment interaction for quantitative trait loci affecting life span in Drosophila melanogaster
-
Vieira C, Pasyukova EG, Zeng ZB, et al. Genotypeenvironment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics. 2000;154(1): 213-227.
-
(2000)
Genetics
, vol.154
, Issue.1
, pp. 213-227
-
-
Vieira, C.1
Pasyukova, E.G.2
Zeng, Z.B.3
-
41
-
-
13244253551
-
Epistasis and genotypeenvironment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana
-
Juenger TE, Sen S, Stowe KA, et al. Epistasis and genotypeenvironment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana. Genetica. 2005; 123(1-2):87-105.
-
(2005)
Genetica
, vol.123
, Issue.1-2
, pp. 87-105
-
-
Juenger, T.E.1
Sen, S.2
Stowe, K.A.3
-
42
-
-
84961711372
-
The influence of age and sex on genetic associations with adult body size and shape: A large-scale genome-wide interaction study
-
Winkler TW, Justice AE, Graff M, et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 2015;11(10):e1005378.
-
(2015)
PLoS Genet
, vol.11
, Issue.10
, pp. e1005378
-
-
Winkler, T.W.1
Justice, A.E.2
Graff, M.3
-
43
-
-
84856405512
-
The mystery of missing heritability: Genetic interactions create phantom heritability
-
Zuk O, Hechter E, Sunyaev SR, et al. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA. 2012;109(4):1193-1198.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.4
, pp. 1193-1198
-
-
Zuk, O.1
Hechter, E.2
Sunyaev, S.R.3
-
44
-
-
79551567086
-
Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects
-
Aschard H, Hancock DB, London SJ, et al. Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects. Hum Hered. 2010;70(4):292-300.
-
(2010)
Hum Hered
, vol.70
, Issue.4
, pp. 292-300
-
-
Aschard, H.1
Hancock, D.B.2
London, S.J.3
-
45
-
-
78650332973
-
Meta-analysis of gene-environment interaction: Joint estimation of SNP and SNP environment regression coefficients
-
Manning AK, LaValley M, Liu CT, et al. Meta-analysis of gene-environment interaction: joint estimation of SNP and SNP environment regression coefficients. Genet Epidemiol. 2011;35(1):11-18.
-
(2011)
Genet Epidemiol
, vol.35
, Issue.1
, pp. 11-18
-
-
Manning, A.K.1
LaValley, M.2
Liu, C.T.3
-
46
-
-
84872034012
-
Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function
-
Hancock DB, Soler Artigas M, Gharib SA, et al. Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function. PLoS Genet. 2012;8(12):e1003098.
-
(2012)
PLoS Genet
, vol.8
, Issue.12
, pp. e1003098
-
-
Hancock, D.B.1
Soler Artigas, M.2
Gharib, S.A.3
-
47
-
-
84876413661
-
A nonparametric test to detect quantitative trait loci where the phenotypic distribution differs by genotypes
-
Aschard H, Zaitlen N, Tamimi RM, et al. A nonparametric test to detect quantitative trait loci where the phenotypic distribution differs by genotypes. Genet Epidemiol. 2013; 37(4):323-333.
-
(2013)
Genet Epidemiol
, vol.37
, Issue.4
, pp. 323-333
-
-
Aschard, H.1
Zaitlen, N.2
Tamimi, R.M.3
-
48
-
-
84879176921
-
SBERIA: Set-based geneenvironment interaction test for rare and common variants in complex diseases
-
Jiao S, Hsu L, Bezieau S, et al. SBERIA: set-based geneenvironment interaction test for rare and common variants in complex diseases. Genet Epidemiol. 2013;37(5):452-464.
-
(2013)
Genet Epidemiol
, vol.37
, Issue.5
, pp. 452-464
-
-
Jiao, S.1
Hsu, L.2
Bezieau, S.3
-
49
-
-
85028270599
-
A unified set-based test with adaptive filtering for gene-environment interaction analyses
-
Liu Q, Chen LS, Nicolae DL, et al. A unified set-based test with adaptive filtering for gene-environment interaction analyses. Biometrics. 2016;72(2):629-638.
-
(2016)
Biometrics
, vol.72
, Issue.2
, pp. 629-638
-
-
Liu, Q.1
Chen, L.S.2
Nicolae, D.L.3
-
50
-
-
84885870289
-
Test for interactions between a genetic marker set and environment in generalized linear models
-
Lin X, Lee S, Christiani DC, et al. Test for interactions between a genetic marker set and environment in generalized linear models. Biostatistics. 2013;14(4):667-681.
-
(2013)
Biostatistics
, vol.14
, Issue.4
, pp. 667-681
-
-
Lin, X.1
Lee, S.2
Christiani, D.C.3
-
51
-
-
80051636106
-
Studying gene and gene-environment effects of uncommon and common variants on continuous traits: A marker-set approach using gene-trait similarity regression
-
Tzeng JY, Zhang D, Pongpanich M, et al. Studying gene and gene-environment effects of uncommon and common variants on continuous traits: a marker-set approach using gene-trait similarity regression. Am J Hum Genet. 2011;89(2):277-288.
-
(2011)
Am J Hum Genet
, vol.89
, Issue.2
, pp. 277-288
-
-
Tzeng, J.Y.1
Zhang, D.2
Pongpanich, M.3
-
52
-
-
84924973526
-
Assessing geneenvironment interactions for common and rare variants with binary traits using gene-trait similarity regression
-
Zhao G, Marceau R, Zhang D, et al. Assessing geneenvironment interactions for common and rare variants with binary traits using gene-trait similarity regression. Genetics. 2015;199(3):695-710.
-
(2015)
Genetics
, vol.199
, Issue.3
, pp. 695-710
-
-
Zhao, G.1
Marceau, R.2
Zhang, D.3
-
53
-
-
84962658495
-
Test for rare variants by environment interactions in sequencing association studies
-
Lin X, Lee S, Wu MC, et al. Test for rare variants by environment interactions in sequencing association studies. Biometrics. 2016;72(1):156-164.
-
(2016)
Biometrics
, vol.72
, Issue.1
, pp. 156-164
-
-
Lin, X.1
Lee, S.2
Wu, M.C.3
-
54
-
-
84954373131
-
Powerful set-based geneenvironment interaction testing framework for complex diseases
-
Jiao S, Peters U, Berndt S, et al. Powerful set-based geneenvironment interaction testing framework for complex diseases. Genet Epidemiol. 2015;39(8):609-618.
-
(2015)
Genet Epidemiol
, vol.39
, Issue.8
, pp. 609-618
-
-
Jiao, S.1
Peters, U.2
Berndt, S.3
-
55
-
-
85021337322
-
A unified powerful set-based test for sequencing data analysis of GxE interactions
-
Su YR, Di CZ, Hsu L, et al. A unified powerful set-based test for sequencing data analysis of GxE interactions. Biostatistics. 2017;18(1):119-131.
-
(2017)
Biostatistics
, vol.18
, Issue.1
, pp. 119-131
-
-
Su, Y.R.1
Di, C.Z.2
Hsu, L.3
-
56
-
-
84876472678
-
Does accounting for geneenvironment interactions help uncover association between rare variants and complex diseases?
-
Kazma R, Cardin NJ, Witte JS. Does accounting for geneenvironment interactions help uncover association between rare variants and complex diseases? Hum Hered. 2012; 74(3-4):205-214.
-
(2012)
Hum Hered
, vol.74
, Issue.3-4
, pp. 205-214
-
-
Kazma, R.1
Cardin, N.J.2
Witte, J.S.3
-
57
-
-
84934442872
-
Kernel approach for modeling interaction effects in genetic association studies of complex quantitative traits
-
Broadaway KA, Duncan R, Conneely KN, et al. Kernel approach for modeling interaction effects in genetic association studies of complex quantitative traits. Genet Epidemiol. 2015; 39(5):366-375.
-
(2015)
Genet Epidemiol
, vol.39
, Issue.5
, pp. 366-375
-
-
Broadaway, K.A.1
Duncan, R.2
Conneely, K.N.3
-
58
-
-
77049105601
-
Researching genetic versus nongenetic determinants of disease: A comparison and proposed unification
-
Ioannidis JP, Loy EY, Poulton R, et al. Researching genetic versus nongenetic determinants of disease: a comparison and proposed unification. Sci Transl Med. 2009;1(7):7ps8.
-
(2009)
Sci Transl Med
, vol.1
, Issue.7
, pp. 7ps8
-
-
Ioannidis, J.P.1
Loy, E.Y.2
Poulton, R.3
-
59
-
-
33750286237
-
Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: A comparison between inductively coupled plasma-mass spectrometry and atomic absorption spectrometry
-
Palmer CD, Lewis ME, Geraghtya CM, et al. Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: a comparison between inductively coupled plasma-mass spectrometry and atomic absorption spectrometry. Spectrochim Acta Part B At Spectrosc. 2006; 61(8):980-990.
-
(2006)
Spectrochim Acta Part B at Spectrosc
, vol.61
, Issue.8
, pp. 980-990
-
-
Palmer, C.D.1
Lewis, M.E.2
Geraghtya, C.M.3
-
60
-
-
0033947604
-
Exposure measurement error in time-series studies of air pollution: Concepts and consequences
-
Zeger SL, Thomas D, Dominici F, et al. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect. 2000; 108(5):419-426.
-
(2000)
Environ Health Perspect
, vol.108
, Issue.5
, pp. 419-426
-
-
Zeger, S.L.1
Thomas, D.2
Dominici, F.3
-
61
-
-
84942122563
-
Emissions reduction policies and recent trends in Southern California's ambient air quality
-
Lurmann F, Avol E, Gilliland F. Emissions reduction policies and recent trends in Southern California's ambient air quality. J Air Waste Manag Assoc. 2015;65(3):324-335.
-
(2015)
J Air Waste Manag Assoc
, vol.65
, Issue.3
, pp. 324-335
-
-
Lurmann, F.1
Avol, E.2
Gilliland, F.3
-
62
-
-
84924454832
-
Association of improved air quality with lung development in children
-
Gauderman WJ, Urman R, Avol E, et al. Association of improved air quality with lung development in children. N Engl J Med. 2015;372(10):905-913.
-
(2015)
N Engl J Med
, vol.372
, Issue.10
, pp. 905-913
-
-
Gauderman, W.J.1
Urman, R.2
Avol, E.3
-
63
-
-
1542686315
-
Urinary levels of seven phthalate metabolites in the US population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000
-
Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the US population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect. 2004;112(3):331-338.
-
(2004)
Environ Health Perspect
, vol.112
, Issue.3
, pp. 331-338
-
-
Silva, M.J.1
Barr, D.B.2
Reidy, J.A.3
-
64
-
-
84898618696
-
Spatial cluster detection of air pollution exposure inequities across the United States
-
Zou B, Peng F, Wan N, et al. Spatial cluster detection of air pollution exposure inequities across the United States. PLoS One. 2014;9(3):e91917.
-
(2014)
PLoS One
, vol.9
, Issue.3
, pp. e91917
-
-
Zou, B.1
Peng, F.2
Wan, N.3
-
65
-
-
4444367099
-
The effect of air pollution on lung development from 10 to 18 years of age
-
Gauderman WJ, Avol E, Gilliland F, et al. The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med. 2004;351(11):1057-1067.
-
(2004)
N Engl J Med
, vol.351
, Issue.11
, pp. 1057-1067
-
-
Gauderman, W.J.1
Avol, E.2
Gilliland, F.3
-
66
-
-
84911368398
-
Placing epidemiological results in the context ofmultiplicity and typical correlations of exposures
-
Patel CJ, Ioannidis JP. Placing epidemiological results in the context ofmultiplicity and typical correlations of exposures. J Epidemiol Community Health. 2014;68(11):1096-1100.
-
(2014)
J Epidemiol Community Health
, vol.68
, Issue.11
, pp. 1096-1100
-
-
Patel, C.J.1
Ioannidis, J.P.2
-
67
-
-
84971326365
-
Development of exposome correlation globes to map out environment-wide associations
-
Patel CJ, Manrai AK. Development of exposome correlation globes to map out environment-wide associations. Pac Symp Biocomput. 2015:231-242.
-
(2015)
Pac Symp Biocomput
, pp. 231-242
-
-
Patel, C.J.1
Manrai, A.K.2
-
68
-
-
38049023073
-
Clustered environments and randomized genes: A fundamental distinction between conventional and genetic epidemiology
-
Smith GD, Lawlor DA, Harbord R, et al. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med. 2007;4(12):e352.
-
(2007)
PLoS Med
, vol.4
, Issue.12
, pp. e352
-
-
Smith, G.D.1
Lawlor, D.A.2
Harbord, R.3
-
69
-
-
85046263574
-
Opportunities and challenges for environmental exposure assessment in population-based studies
-
published online ahead of print July 14
-
Patel CJ, Kerr J, Thomas DC, et al. Opportunities and challenges for environmental exposure assessment in population-based studies [published online ahead of print July 14, 2017]. Cancer Epidemiol Biomarkers Prev. (doi:10.1016/j.cmpb.2003.08.003).
-
(2017)
Cancer Epidemiol Biomarkers Prev
-
-
Patel, C.J.1
Kerr, J.2
Thomas, D.C.3
-
70
-
-
75649083856
-
Meta-analysis of genome-wide association studies: No efficiency gain in using individual participant data
-
Lin DY, Zeng D. Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data. Genet Epidemiol. 2010;34(1):60-66.
-
(2010)
Genet Epidemiol
, vol.34
, Issue.1
, pp. 60-66
-
-
Lin, D.Y.1
Zeng, D.2
-
71
-
-
84899112197
-
An empirical comparison of meta-analysis and mega-analysis of individual participant data for identifying gene-environment interactions
-
Sung YJ, Schwander K, Arnett DK, et al. An empirical comparison of meta-analysis and mega-analysis of individual participant data for identifying gene-environment interactions. Genet Epidemiol. 2014;38(4):369-378.
-
(2014)
Genet Epidemiol
, vol.38
, Issue.4
, pp. 369-378
-
-
Sung, Y.J.1
Schwander, K.2
Arnett, D.K.3
-
72
-
-
84879677633
-
Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits
-
Randall JC, Winkler TW, Kutalik Z, et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 2013;9(6):e1003500.
-
(2013)
PLoS Genet
, vol.9
, Issue.6
, pp. e1003500
-
-
Randall, J.C.1
Winkler, T.W.2
Kutalik, Z.3
-
73
-
-
84962948889
-
Genome-wide interaction studies reveal sex-specific asthma risk alleles
-
Myers RA, Scott NM, Gauderman WJ, et al. Genome-wide interaction studies reveal sex-specific asthma risk alleles. Hum Mol Genet. 2014;23(19):5251-5259.
-
(2014)
Hum Mol Genet
, vol.23
, Issue.19
, pp. 5251-5259
-
-
Myers, R.A.1
Scott, N.M.2
Gauderman, W.J.3
-
74
-
-
78649505227
-
Meta-analysis of sexspecific genome-wide association studies
-
Magi R, Lindgren CM, Morris AP. Meta-analysis of sexspecific genome-wide association studies. Genet Epidemiol. 2010;34(8):846-853
-
(2010)
Genet Epidemiol
, vol.34
, Issue.8
, pp. 846-853
-
-
Magi, R.1
Lindgren, C.M.2
Morris, A.P.3
-
75
-
-
84943171338
-
A global reference for human genetic variation
-
1000 Genomes Project Consortium
-
1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74.
-
(2015)
Nature
, vol.526
, Issue.7571
, pp. 68-74
-
-
Auton, A.1
Brooks, L.D.2
-
76
-
-
84865614768
-
Common genetic variants and central adiposity among Asian-Indians
-
Moore SC, Gunter MJ, Daniel CR, et al. Common genetic variants and central adiposity among Asian-Indians. Obesity (Silver Spring). 2012;20(9):1902-1908.
-
(2012)
Obesity (Silver Spring)
, vol.20
, Issue.9
, pp. 1902-1908
-
-
Moore, S.C.1
Gunter, M.J.2
Daniel, C.R.3
-
77
-
-
84890149270
-
Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions
-
Schoeps A, Rudolph A, Seibold P, et al. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions. Genet Epidemiol. 2014;38(1):84-93.
-
(2014)
Genet Epidemiol
, vol.38
, Issue.1
, pp. 84-93
-
-
Schoeps, A.1
Rudolph, A.2
Seibold, P.3
-
78
-
-
34447331985
-
Evidence for an intensity-dependent interaction of NAT2 acetylation genotype and cigarette smoking in the Spanish Bladder Cancer Study
-
Lubin JH, Kogevinas M, Silverman D, et al. Evidence for an intensity-dependent interaction of NAT2 acetylation genotype and cigarette smoking in the Spanish Bladder Cancer Study. Int J Epidemiol. 2007;36(1):236-241.
-
(2007)
Int J Epidemiol
, vol.36
, Issue.1
, pp. 236-241
-
-
Lubin, J.H.1
Kogevinas, M.2
Silverman, D.3
-
79
-
-
85030643747
-
Lessons learned from past gene-environment interaction successes
-
Ritz BR, Chatterjee N, Garcia-Closas M, et al. Lessons learned from past gene-environment interaction successes. Am J Epidemiol. 2017;186(7):778-786.
-
(2017)
Am J Epidemiol
, vol.186
, Issue.7
, pp. 778-786
-
-
Ritz, B.R.1
Chatterjee, N.2
Garcia-Closas, M.3
-
80
-
-
0242515957
-
The detection of geneenvironment interaction for continuous traits: Should we deal with measurement error by bigger studies or better measurement?
-
Wong MY, Day NE, Luan JA, et al. The detection of geneenvironment interaction for continuous traits: should we deal with measurement error by bigger studies or better measurement? Int J Epidemiol. 2003;32(1):51-57.
-
(2003)
Int J Epidemiol
, vol.32
, Issue.1
, pp. 51-57
-
-
Wong, M.Y.1
Day, N.E.2
Luan, J.A.3
-
81
-
-
84937571216
-
Variation in predictive ability of common genetic variants by established strata: The example of breast cancer and age
-
Aschard H, Zaitlen N, Lindström S, et al. Variation in predictive ability of common genetic variants by established strata: the example of breast cancer and age. Epidemiology. 2015;26(1):51-58.
-
(2015)
Epidemiology
, vol.26
, Issue.1
, pp. 51-58
-
-
Aschard, H.1
Zaitlen, N.2
Lindström, S.3
|