메뉴 건너뛰기




Volumn 72, Issue 16-18, 2009, Pages 3704-3712

Variational Bayesian learning of nonlinear hidden state-space models for model predictive control

Author keywords

Model predictive control; Neural network; Nonlinear system; Partially observable Markov decision process; State space method; Stochastic optimal control; Variational methods

Indexed keywords

CART-POLE SYSTEM; CONTROL SCHEMES; HIDDEN STATE; HIGH NOISE; INDIRECT CONTROL; NON-LINEARITY; PARTIALLY OBSERVABLE MARKOV DECISION PROCESS; PROBABILISTIC INFERENCE; STATE-SPACE METHOD; STOCHASTIC APPROACH; STOCHASTIC OPTIMAL CONTROL; SYSTEM STATE; VARIATIONAL BAYESIAN LEARNING; VARIATIONAL METHODS;

EID: 69249203563     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.06.009     Document Type: Article
Times cited : (32)

References (37)
  • 4
    • 0039816976 scopus 로고
    • Using local trajectory optimizers to speed up global optimization in dynamic programming
    • Cowan J.D., Tesauro G., and Alspector J. (Eds), Morgan Kaufmann Publishers Inc., Los Altos, CA
    • Atkeson C.G. Using local trajectory optimizers to speed up global optimization in dynamic programming. In: Cowan J.D., Tesauro G., and Alspector J. (Eds). Advances in Neural Information Processing Systems vol. 6 (1994), Morgan Kaufmann Publishers Inc., Los Altos, CA
    • (1994) Advances in Neural Information Processing Systems , vol.6
    • Atkeson, C.G.1
  • 7
    • 0019624645 scopus 로고
    • Stochastic dynamic programming: caution and probing
    • Bar-Shalom Y. Stochastic dynamic programming: caution and probing. IEEE Transactions on Automatic Control 26 5 (1981) 1184-1195
    • (1981) IEEE Transactions on Automatic Control , vol.26 , Issue.5 , pp. 1184-1195
    • Bar-Shalom, Y.1
  • 9
    • 0346982426 scopus 로고    scopus 로고
    • Using expectation-maximization for reinforcement learning
    • Dayan P., and Hinton G.E. Using expectation-maximization for reinforcement learning. Neural Computation 9 2 (1997) 271-278
    • (1997) Neural Computation , vol.9 , Issue.2 , pp. 271-278
    • Dayan, P.1    Hinton, G.E.2
  • 13
    • 27844480834 scopus 로고    scopus 로고
    • Unsupervised variational Bayesian learning of nonlinear models
    • Saul L., Weiss Y., and Bottou L. (Eds), MIT Press, Cambridge, MA, USA
    • Honkela A., and Valpola H. Unsupervised variational Bayesian learning of nonlinear models. In: Saul L., Weiss Y., and Bottou L. (Eds). Advances in Neural Information Processing Systems 17 (2005), MIT Press, Cambridge, MA, USA 593-600
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 593-600
    • Honkela, A.1    Valpola, H.2
  • 14
    • 28844435646 scopus 로고    scopus 로고
    • A linear theory for control of non-linear stochastic systems
    • H. Kappen, A linear theory for control of non-linear stochastic systems, Physical Review Letters 95 (20) (2005).
    • (2005) Physical Review Letters , vol.95 , Issue.20
    • Kappen, H.1
  • 15
    • 0000823028 scopus 로고    scopus 로고
    • Efficient non-linear control by combining Q-learning with local linear controllers
    • H. Kimura, S. Kobayashi, Efficient non-linear control by combining Q-learning with local linear controllers, in: Proceedings of the ICML, 1999.
    • (1999) Proceedings of the ICML
    • Kimura, H.1    Kobayashi, S.2
  • 18
    • 0033876326 scopus 로고    scopus 로고
    • Constrained model predictive control: stability and optimality
    • Mayne D., Rawlings J., Rao C., and Scokaert P. Constrained model predictive control: stability and optimality. Automatica 36 (2000) 789-814
    • (2000) Automatica , vol.36 , pp. 789-814
    • Mayne, D.1    Rawlings, J.2    Rao, C.3    Scokaert, P.4
  • 19
    • 33748167220 scopus 로고
    • Acquisition of dynamic control knowledge for a robotic manipulator
    • M.B. Morgan Ed, Morgan Kaufmann, San Francisco, CA 94104
    • A. Moore, Acquisition of dynamic control knowledge for a robotic manipulator, in: M.B. Morgan (Ed.), Proceedings of the 7th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA 94104, 1990.
    • (1990) Proceedings of the 7th International Conference on Machine Learning
    • Moore, A.1
  • 25
    • 33745701295 scopus 로고    scopus 로고
    • Learning nonlinear state-space models for control
    • Montreal, Canada
    • T. Raiko, M. Tornio, Learning nonlinear state-space models for control, in: Proceedings of the IJCNN'05, Montreal, Canada, 2005.
    • (2005) Proceedings of the IJCNN'05
    • Raiko, T.1    Tornio, M.2
  • 26
    • 69249236627 scopus 로고    scopus 로고
    • State inference in variational Bayesian nonlinear state-space models
    • Charleston, South Carolina, USA
    • T. Raiko, M. Tornio, A. Honkela, J. Karhunen, State inference in variational Bayesian nonlinear state-space models, in: Proceedings of the ICA 2006, Charleston, South Carolina, USA, 2006.
    • (2006) Proceedings of the ICA
    • Raiko, T.1    Tornio, M.2    Honkela, A.3    Karhunen, J.4
  • 27
    • 58449109750 scopus 로고    scopus 로고
    • Probabilistic inference for fast learning in control
    • Recent Advances in Reinforcement Learning, Springer, Berlin
    • C.E. Rasmussen, M.P. Deisenroth, Probabilistic inference for fast learning in control, in: Recent Advances in Reinforcement Learning, Lecture Notes in Computer Science, vol. 5323, Springer, Berlin, 2008, pp. 229-242.
    • (2008) Lecture Notes in Computer Science , vol.5323 , pp. 229-242
    • Rasmussen, C.E.1    Deisenroth, M.P.2
  • 29
    • 13244261083 scopus 로고    scopus 로고
    • Realisation and estimation of piecewise-linear output-error models
    • Rosenqvist F., and Karlstrüm A. Realisation and estimation of piecewise-linear output-error models. Automatica 41 3 (2005) 545-551
    • (2005) Automatica , vol.41 , Issue.3 , pp. 545-551
    • Rosenqvist, F.1    Karlstrüm, A.2
  • 30
    • 0036639869 scopus 로고    scopus 로고
    • Scalable techniques from nonparameteric statistics for real-time robot learning
    • Schaal S., Atkeson C.G., and Vijayakumar S. Scalable techniques from nonparameteric statistics for real-time robot learning. Applied Intelligence 1 (2002) 49-60
    • (2002) Applied Intelligence , vol.1 , pp. 49-60
    • Schaal, S.1    Atkeson, C.G.2    Vijayakumar, S.3
  • 31
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal differences
    • Sutton R. Learning to predict by the methods of temporal differences. Machine Learning 3 (1988) 9-44
    • (1988) Machine Learning , vol.3 , pp. 9-44
    • Sutton, R.1
  • 33
    • 69249247820 scopus 로고    scopus 로고
    • Bayesian inference for motion control and planning
    • Technical Report 22, Technische Universität Berlin
    • M. Toussaint, Bayesian inference for motion control and planning, Technical Report 22, Technische Universität Berlin, 2007.
    • (2007)
    • Toussaint, M.1
  • 35
    • 0038132747 scopus 로고    scopus 로고
    • An unsupervised ensemble learning method for nonlinear dynamic state-space models
    • Valpola H., and Karhunen J. An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural Computation 14 11 (2002) 2647-2692
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2647-2692
    • Valpola, H.1    Karhunen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.