-
1
-
-
84897544737
-
Theano: New features and speed improvements
-
Bastien, F.; Lamblin, P.; Pascanu, R.; Bergstra, J.; Goodfellow, I. J.; Bergeron, A.; Bouchard, N.; and Bengio, Y. 2012. Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop.
-
(2012)
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.J.5
Bergeron, A.6
Bouchard, N.7
Bengio, Y.8
-
2
-
-
84857819132
-
Theano: A CPU and GPU math expression compiler
-
Oral Presentation
-
Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu, R.; Desjardins, G.; Turian, J.; Warde-Farley, D.; and Bengio, Y. 2010. Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy). Oral Presentation.
-
(2010)
Proceedings of the Python for Scientific Computing Conference (SciPy)
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
3
-
-
85072753030
-
Generating sentences from a continuous space
-
Berlin, Germany, August 11-12, 2016
-
Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A. M.; Józefowicz, R.; and Bengio, S. 2016. Generating sentences from a continuous space. In Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany, August 11-12, 2016, 10-21.
-
(2016)
Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016
, pp. 10-21
-
-
Bowman, S.R.1
Vilnis, L.2
Vinyals, O.3
Dai, A.M.4
Józefowicz, R.5
Bengio, S.6
-
5
-
-
84973384984
-
-
Zenodo: Geneva, Switzerland
-
Dieleman, S.; Schlüter, J.; Raffel, C.; Olson, E.; Sønderby, S.; Nouri, D.; Maturana, D.; Thoma, M.; Battenberg, E.; Kelly, J.; et al. 2015. Lasagne: First release. Zenodo: Geneva, Switzerland.
-
(2015)
Lasagne: First Release
-
-
Dieleman, S.1
Schlüter, J.2
Raffel, C.3
Olson, E.4
Sønderby, S.5
Nouri, D.6
Maturana, D.7
Thoma, M.8
Battenberg, E.9
Kelly, J.10
-
6
-
-
84988877050
-
-
arXiv preprint arXiv:1602.06291
-
Ghosh, S.; Vinyals, O.; Strope, B.; Roy, S.; Dean, T.; and Heck, L. 2016. Contextual lstm (clstm) models for large scale nlp tasks. arXiv preprint arXiv:1602.06291.
-
(2016)
Contextual Lstm (clstm) Models for Large Scale Nlp Tasks
-
-
Ghosh, S.1
Vinyals, O.2
Strope, B.3
Roy, S.4
Dean, T.5
Heck, L.6
-
8
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, 448-456.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
9
-
-
84960120039
-
Effective use of word order for text categorization with convolutional neural networks
-
Johnson, R., and Zhang, T. 2015. Effective use of word order for text categorization with convolutional neural networks. In NAACL HLT 2015, Denver, Colorado, USA, May 31 - June 5, 2015, 103-112.
-
(2015)
NAACL HLT 2015, Denver, Colorado, USA, May 31 - June 5, 2015
, pp. 103-112
-
-
Johnson, R.1
Zhang, T.2
-
10
-
-
85018887151
-
-
arXiv preprint arXiv:1602.02282
-
Kaae Sønderby, C.; Raiko, T.; Maaløe, L.; Kaae Sønderby, S.; and Winther, O. 2016. How to train deep variational autoencoders and probabilistic ladder networks. arXiv preprint arXiv:1602.02282.
-
(2016)
How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
-
-
Kaae Sønderby, C.1
Raiko, T.2
Maaløe, L.3
Kaae Sønderby, S.4
Winther, O.5
-
13
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Kingma, D. P.; Mohamed, S.; Rezende, D. J.; and Welling, M. 2014. Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems, 3581-3589.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
14
-
-
84919829999
-
Distributed representations of sentences and documents
-
Le, Q. V., and Mikolov, T. 2014. Distributed representations of sentences and documents. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, 1188-1196.
-
(2014)
Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014
, pp. 1188-1196
-
-
Le, Q.V.1
Mikolov, T.2
-
15
-
-
84997812859
-
Auxiliary deep generative models
-
New York City, NY, USA, June 19-24, 2016
-
Maaløe, L.; Sønderby, C. K.; Sønderby, S. K.; and Winther, O. 2016. Auxiliary deep generative models. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, 1445-1453.
-
(2016)
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016
, pp. 1445-1453
-
-
Maaløe, L.1
Sønderby, C.K.2
Sønderby, S.K.3
Winther, O.4
-
16
-
-
84859023447
-
Learning word vectors for sentiment analysis
-
Portland, Oregon, USA: Association for Computational Linguistics
-
Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng, A. Y.; and Potts, C. 2011. Learning word vectors for sentiment analysis. In NAACL HLT 2011, 142-150. Portland, Oregon, USA: Association for Computational Linguistics.
-
(2011)
NAACL HLT 2011
, pp. 142-150
-
-
Maas, A.L.1
Daly, R.E.2
Pham, P.T.3
Huang, D.4
Ng, A.Y.5
Potts, C.6
-
18
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih, A., and Gregor, K. 2014. Neural variational inference and learning in belief networks. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, 1791-1799.
-
(2014)
Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014
, pp. 1791-1799
-
-
Mnih, A.1
Gregor, K.2
-
19
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochastic backpropagation and approximate inference in deep generative models. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, 1278-1286.
-
(2014)
Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
20
-
-
84980367197
-
Building end-to-end dialogue systems using generative hierarchical neural network models
-
Serban, I. V.; Sordoni, A.; Bengio, Y.; Courville, A.; and Pineau, J. 2016. Building end-to-end dialogue systems using generative hierarchical neural network models. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-16), 3776-3784.
-
(2016)
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-16)
, pp. 3776-3784
-
-
Serban, I.V.1
Sordoni, A.2
Bengio, Y.3
Courville, A.4
Pineau, J.5
-
21
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment treebank
-
Citeseer
-
Socher, R.; Perelygin, A.; Wu, J. Y.; Chuang, J.; Manning, C. D.; Ng, A. Y.; and Potts, C. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the conference on empirical methods in natural language processing, volume 1631, 1642. Citeseer.
-
(2013)
Proceedings of the Conference on Empirical Methods in Natural Language Processing
, vol.1631
, pp. 1642
-
-
Socher, R.1
Perelygin, A.2
Wu, J.Y.3
Chuang, J.4
Manning, C.D.5
Ng, A.Y.6
Potts, C.7
-
22
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and Salakhutdinov, R. 2014. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1):1929-1958.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
23
-
-
84875872773
-
Baselines and bigrams: Simple, good sentiment and topic classification
-
Association for Computational Linguistics
-
Wang, S., and Manning, C. D. 2012. Baselines and bigrams: Simple, good sentiment and topic classification. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2, 90-94. Association for Computational Linguistics.
-
(2012)
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers
, vol.2
, pp. 90-94
-
-
Wang, S.1
Manning, C.D.2
-
25
-
-
84959897734
-
Semantically conditioned lstm-based natural language generation for spoken dialogue systems
-
Lisbon, Portugal, September 17-21, 2015
-
Wen, T.; Gasic, M.; Mrksic, N.; Su, P.; Vandyke, D.; and Young, S. J. 2015. Semantically conditioned lstm-based natural language generation for spoken dialogue systems. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, 1711-1721.
-
(2015)
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015
, pp. 1711-1721
-
-
Wen, T.1
Gasic, M.2
Mrksic, N.3
Su, P.4
Vandyke, D.5
Young, S.J.6
-
26
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
Williams, R. J. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning 8(3-4):229-256.
-
(1992)
Machine Learning
, vol.8
, Issue.3-4
, pp. 229-256
-
-
Williams, R.J.1
-
27
-
-
84990026425
-
Attribute2image: Conditional image generation from visual attributes
-
Yan, X.; Yang, J.; Sohn, K.; and Lee, H. 2016. Attribute2image: Conditional image generation from visual attributes. In Computer Vision - ECCV 2016-14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV, 776-791.
-
(2016)
Computer Vision - ECCV 2016-14th European Conference, Amsterdam, the Netherlands, October 11-14, 2016, Proceedings, Part IV
, pp. 776-791
-
-
Yan, X.1
Yang, J.2
Sohn, K.3
Lee, H.4
-
28
-
-
84965162393
-
Character-level convolutional networks for text classification
-
December 7-12, 2015, Montreal, Quebec, Canada
-
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level convolutional networks for text classification. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, 649-657.
-
(2015)
Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015
, pp. 649-657
-
-
Zhang, X.1
Zhao, J.2
LeCun, Y.3
|