-
1
-
-
85019133612
-
Regressor basis learning for anchored super-resolution
-
E. Agustsson, R. Timofte, and L. Van Gool, "Regressor basis learning for anchored super-resolution, " in ICPR, 2016.
-
(2016)
ICPR
-
-
Agustsson, E.1
Timofte, R.2
Van Gool, L.3
-
2
-
-
24644478715
-
A non-local algorithm for image denoising
-
IEEE
-
A. Buades, B. Coll, and J.-M. Morel, "A non-local algorithm for image denoising, " in CVPR, vol. 2. IEEE, 2005, pp. 60-65.
-
(2005)
CVPR
, vol.2
, pp. 60-65
-
-
Buades, A.1
Coll, B.2
Morel, J.-M.3
-
4
-
-
85016191844
-
Learning how to combine internal and external denoising methods
-
H. C. Burger, C. Schuler, and S. Harmeling, "Learning how to combine internal and external denoising methods, " in GCPR, 2013.
-
(2013)
GCPR
-
-
Burger, H.C.1
Schuler, C.2
Harmeling, S.3
-
5
-
-
5044219639
-
Super-resolution through neighbor embedding
-
H. Chang, D.-Y. Yeung, and Y. Xiong, "Super-resolution through neighbor embedding, " CVPR, 2004.
-
(2004)
CVPR
-
-
Chang, H.1
Yeung, D.-Y.2
Xiong, Y.3
-
6
-
-
77949674075
-
Is denoising dead
-
April
-
P. Chatterjee and P. Milanfar, "Is denoising dead" IEEE Transactions on Image Processing, vol. 19, no. 4, pp. 895-911, April 2010.
-
(2010)
IEEE Transactions on Image Processing
, vol.19
, Issue.4
, pp. 895-911
-
-
Chatterjee, P.1
Milanfar, P.2
-
7
-
-
84886425335
-
Revisiting loss-specific training of filter-based mrfs for image restoration
-
Springer
-
Y. Chen, T. Pock, R. Ranftl, and H. Bischof, "Revisiting loss-specific training of filter-based mrfs for image restoration, " in Pattern Recogni-tion. Springer, 2013, pp. 271-281.
-
(2013)
Pattern Recogni-tion
, pp. 271-281
-
-
Chen, Y.1
Pock, T.2
Ranftl, R.3
Bischof, H.4
-
8
-
-
84959197704
-
On learning optimized reaction diffusion processes for effective image restoration
-
Y. Chen, W. Yu, and T. Pock, "On learning optimized reaction diffusion processes for effective image restoration, " in CVPR, 2015, pp. 5261-5269.
-
(2015)
CVPR
, pp. 5261-5269
-
-
Chen, Y.1
Yu, W.2
Pock, T.3
-
9
-
-
34547760736
-
Image denoising by sparse 3d transform-domain collaborative filtering
-
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3d transform-domain collaborative filtering, " IEEE Trans. Image Processing, vol. 16, pp. 2080-2095, 2007.
-
(2007)
IEEE Trans. Image Processing
, vol.16
, pp. 2080-2095
-
-
Dabov, K.1
Foi, A.2
Katkovnik, V.3
Egiazarian, K.4
-
10
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
Feb
-
C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp. 295-307, Feb 2016.
-
(2016)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
11
-
-
0036500772
-
Example-based superresolution
-
W. T. Freeman, T. R. Jones, and E. C. Pasztor, "Example-based superresolution, " IEEE Computer Graphics and Applications, vol. 22, no. 2, pp. 56-65, 2002.
-
(2002)
IEEE Computer Graphics and Applications
, vol.22
, Issue.2
, pp. 56-65
-
-
Freeman, W.T.1
Jones, T.R.2
Pasztor, E.C.3
-
12
-
-
77953187337
-
Super-resolution from a single image
-
D. Glasner, S. Bagon, and M. Irani, "Super-resolution from a single image, " in ICCV, 2009.
-
(2009)
ICCV
-
-
Glasner, D.1
Bagon, S.2
Irani, M.3
-
13
-
-
84911360659
-
Weighted nuclear norm minimization with application to image denoising
-
S. Gu, L. Zhang, W. Zuo, and X. Feng, "Weighted nuclear norm minimization with application to image denoising, " in CVPR, 2014.
-
(2014)
CVPR
-
-
Gu, S.1
Zhang, L.2
Zuo, W.3
Feng, X.4
-
14
-
-
84959188745
-
Single image super-resolution from transformed self-exemplars
-
June
-
J.-B. Huang, A. Singh, and N. Ahuja, "Single image super-resolution from transformed self-exemplars, " in CVPR, June 2015.
-
(2015)
CVPR
-
-
Huang, J.-B.1
Singh, A.2
Ahuja, N.3
-
17
-
-
84986325587
-
Accurate image super-resolution using very deep convolutional networks
-
J. Kim, J. K. Lee, and K. M. Lee, "Accurate image super-resolution using very deep convolutional networks, " in CVPR, 2016.
-
(2016)
CVPR
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
18
-
-
84872047821
-
Secrets of image denoising cuisine
-
M. Lebrun, M. Colom, A. Buades, and J. Morel, "Secrets of image denoising cuisine, " Acta Numerica, 2012.
-
(2012)
Acta Numerica
-
-
Lebrun, M.1
Colom, M.2
Buades, A.3
Morel, J.4
-
19
-
-
84885580358
-
Patch complexity, finite pixel correlations and optimal denoising
-
A. Levin, B. Nadler, F. Durand, and W. Freeman, "Patch complexity, finite pixel correlations and optimal denoising, " in European Conference on Computer Vision (ECCV), 2012.
-
(2012)
European Conference on Computer Vision (ECCV)
-
-
Levin, A.1
Nadler, B.2
Durand, F.3
Freeman, W.4
-
20
-
-
77952739016
-
Nonlocal sparse models for image restoration
-
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, "Nonlocal sparse models for image restoration, " in IEEE 12th International Conference on Computer Vision, 2009, pp. 2272-2279.
-
(2009)
IEEE 12th International Conference on Computer Vision
, pp. 2272-2279
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
Zisserman, A.5
-
21
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
-
July
-
D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, " in Proc. 8th Int'l Conf. Computer Vision, vol. 2, July 2001, pp. 416-423.
-
(2001)
Proc. 8th Int'l Conf. Computer Vision
, vol.2
, pp. 416-423
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
22
-
-
84881080901
-
Combining the power of internal and external denoising
-
April
-
I. Mosseri, M. Zontak, and M. Irani, "Combining the power of internal and external denoising, " in Computational Photography (ICCP), 2013 IEEE International Conference on, April 2013, pp. 1-9.
-
(2013)
Computational Photography (ICCP), 2013 IEEE International Conference on
, pp. 1-9
-
-
Mosseri, I.1
Zontak, M.2
Irani, M.3
-
23
-
-
60449120149
-
Fields of experts
-
S. Roth and M. J. Black, "Fields of experts, " International Journal of Computer Vision, vol. 82, no. 2, pp. 205-229, 2009.
-
(2009)
International Journal of Computer Vision
, vol.82
, Issue.2
, pp. 205-229
-
-
Roth, S.1
Black, M.J.2
-
24
-
-
84963532659
-
Cascades of regression tree fields for image restoration
-
April
-
U. Schmidt, J. Jancsary, S. Nowozin, S. Roth, and C. Rother, "Cascades of regression tree fields for image restoration, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 4, pp. 677-689, April 2016.
-
(2016)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.38
, Issue.4
, pp. 677-689
-
-
Schmidt, U.1
Jancsary, J.2
Nowozin, S.3
Roth, S.4
Rother, C.5
-
25
-
-
84911451024
-
Shrinkage fields for effective image restoration
-
U. Schmidt and S. Roth, "Shrinkage fields for effective image restoration, " in CVPR, 2014, pp. 2774-2781.
-
(2014)
CVPR
, pp. 2774-2781
-
-
Schmidt, U.1
Roth, S.2
-
26
-
-
84959234116
-
Fast and accurate image upscaling with super-resolution forests
-
S. Schulter, C. Leistner, and H. Bischof, "Fast and accurate image upscaling with super-resolution forests, " in CVPR, 2015, pp. 3791-3799.
-
(2015)
CVPR
, pp. 3791-3799
-
-
Schulter, S.1
Leistner, C.2
Bischof, H.3
-
28
-
-
84898792173
-
Anchored neighborhood regression for fast example-based super resolution
-
R. Timofte, V. De Smet, and L. Van Gool, "Anchored neighborhood regression for fast example-based super resolution, " in ICCV, 2013.
-
(2013)
ICCV
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
29
-
-
84983684720
-
A+: Adjusted anchored neighborhood regression for fast super-resolution
-
Springer
-
R. Timofte, V. De Smet, and L. Van Gool, "A+: Adjusted anchored neighborhood regression for fast super-resolution, " in Computer Vision-ACCV 2014. Springer, 2014, pp. 111-126.
-
(2014)
Computer Vision-ACCV 2014
, pp. 111-126
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
30
-
-
84946887644
-
Semantic super-resolution: When and where is it useful
-
R. Timofte, V. De Smet, and L. Van Gool, "Semantic super-resolution: When and where is it useful" Computer Vision and Image Understand-ing, vol. 142, pp. 1-12, 2016.
-
(2016)
Computer Vision and Image Understand-ing
, vol.142
, pp. 1-12
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
32
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, "Deep networks for image super-resolution with sparse prior, " in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 370-378.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 370-378
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
34
-
-
84978977145
-
Demosaicing based on directional difference regression and efficient regression priors
-
August
-
J. Wu, R. Timofte, and L. Van Gool, "Demosaicing based on directional difference regression and efficient regression priors, " IEEE transactions on image processing, vol. 25, no. 8, pp. 3862-3874, August 2016.
-
(2016)
IEEE Transactions on Image Processing
, vol.25
, Issue.8
, pp. 3862-3874
-
-
Wu, J.1
Timofte, R.2
Van Gool, L.3
-
35
-
-
78049312324
-
Image super-resolution via sparse representation
-
J. Yang, J. Wright, T. Huang, and Y. Ma, "Image super-resolution via sparse representation, " IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861-2873, 2010.
-
(2010)
IEEE Trans. Image Process
, vol.19
, Issue.11
, pp. 2861-2873
-
-
Yang, J.1
Wright, J.2
Huang, T.3
Ma, Y.4
-
37
-
-
84860189704
-
Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity
-
G. Yu, G. Sapiro, and S. Mallat, "Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity, " IEEE Trans. Image Processing, 2012.
-
(2012)
IEEE Trans. Image Processing
-
-
Yu, G.1
Sapiro, G.2
Mallat, S.3
-
38
-
-
84887359177
-
Separating signal from noise using patch recurrence across scales
-
M. Zontak, I. Mosseri, and M. Irani, "Separating signal from noise using patch recurrence across scales, " in CVPR, 2013.
-
(2013)
CVPR
-
-
Zontak, M.1
Mosseri, I.2
Irani, M.3
-
39
-
-
84856650948
-
From learning models of natural image patches to whole image restoration
-
D. Zoran and Y. Weiss, "From learning models of natural image patches to whole image restoration, " in ICCV, 2011, pp. 479-486.
-
(2011)
ICCV
, pp. 479-486
-
-
Zoran, D.1
Weiss, Y.2
|