-
1
-
-
84903159476
-
Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond
-
Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 2014; 14:455-67. https://doi.org/10.1038/nrc3760.
-
(2014)
Nat Rev Cancer
, vol.14
, pp. 455-467
-
-
Holderfield, M.1
Deuker, M.M.2
McCormick, F.3
McMahon, M.4
-
2
-
-
84894300510
-
Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer
-
Lin L, Asthana S, Chan E, Bandyopadhyay S, Martins MM, Olivas V, Yan JJ, Pham L, Wang MM, Bollag G, Solit DB, Collisson EA, Rudin CM, et al. Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer. Proc Natl Acad Sci USA. 2014; 111:E748-57. https://doi.org/10.1073/pnas.1320956111.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. E748-E757
-
-
Lin, L.1
Asthana, S.2
Chan, E.3
Bandyopadhyay, S.4
Martins, M.M.5
Olivas, V.6
Yan, J.J.7
Pham, L.8
Wang, M.M.9
Bollag, G.10
Solit, D.B.11
Collisson, E.A.12
Rudin, C.M.13
-
3
-
-
80053014471
-
Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations
-
Marchetti A, Felicioni L, Malatesta S, Grazia Sciarrotta M, Guetti L, Chella A, Viola P, Pullara C, Mucilli F, Buttitta F. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol. 2011; 29:3574-79. https://doi.org/10.1200/JCO.2011.35.9638.
-
(2011)
J Clin Oncol
, vol.29
, pp. 3574-3579
-
-
Marchetti, A.1
Felicioni, L.2
Malatesta, S.3
Grazia Sciarrotta, M.4
Guetti, L.5
Chella, A.6
Viola, P.7
Pullara, C.8
Mucilli, F.9
Buttitta, F.10
-
4
-
-
84922228061
-
Clinical characteristics and course of 63 patients with BRAF mutant lung cancers
-
Litvak AM, Paik PK, Woo KM, Sima CS, Hellmann MD, Arcila ME, Ladanyi M, Rudin CM, Kris MG, Riely GJ. Clinical characteristics and course of 63 patients with BRAF mutant lung cancers. J Thorac Oncol. 2014; 9:1669-74. https://doi.org/10.1097/JTO.0000000000000344.
-
(2014)
J Thorac Oncol
, vol.9
, pp. 1669-1674
-
-
Litvak, A.M.1
Paik, P.K.2
Woo, K.M.3
Sima, C.S.4
Hellmann, M.D.5
Arcila, M.E.6
Ladanyi, M.7
Rudin, C.M.8
Kris, M.G.9
Riely, G.J.10
-
5
-
-
84901826745
-
Clinicopathological features of nonsmall cell lung carcinomas with BRAF mutations
-
Kinno T, Tsuta K, Shiraishi K, Mizukami T, Suzuki M, Yoshida A, Suzuki K, Asamura H, Furuta K, Kohno T, Kushima R. Clinicopathological features of nonsmall cell lung carcinomas with BRAF mutations. Ann Oncol. 2014; 25:138-42. https://doi.org/10.1093/annonc/mdt495.
-
(2014)
Ann Oncol
, vol.25
, pp. 138-142
-
-
Kinno, T.1
Tsuta, K.2
Shiraishi, K.3
Mizukami, T.4
Suzuki, M.5
Yoshida, A.6
Suzuki, K.7
Asamura, H.8
Furuta, K.9
Kohno, T.10
Kushima, R.11
-
6
-
-
84883022821
-
Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer
-
Cardarella S, Ogino A, Nishino M, Butaney M, Shen J, Lydon C, Yeap BY, Sholl LM, Johnson BE, Jänne PA. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res. 2013; 19:4532-40. https://doi.org/10.1158/1078-0432. CCR-13-0657.
-
(2013)
Clin Cancer Res
, vol.19
, pp. 4532-4540
-
-
Cardarella, S.1
Ogino, A.2
Nishino, M.3
Butaney, M.4
Shen, J.5
Lydon, C.6
Yeap, B.Y.7
Sholl, L.M.8
Johnson, B.E.9
Jänne, P.A.10
-
7
-
-
84866410479
-
Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing
-
Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence MS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012; 150:1107-20. https://doi.org/10.1016/j.cell.2012.08.029.
-
(2012)
Cell
, vol.150
, pp. 1107-1120
-
-
Imielinski, M.1
Berger, A.H.2
Hammerman, P.S.3
Hernandez, B.4
Pugh, T.J.5
Hodis, E.6
Cho, J.7
Suh, J.8
Capelletti, M.9
Sivachenko, A.10
Sougnez, C.11
Auclair, D.12
Lawrence, M.S.13
-
8
-
-
77952867730
-
Targets of Raf in tumorigenesis
-
Niault TS, Baccarini M. Targets of Raf in tumorigenesis. Carcinogenesis. 2010; 31:1165-74. https://doi.org/10.1093/carcin/bgp337.
-
(2010)
Carcinogenesis
, vol.31
, pp. 1165-1174
-
-
Niault, T.S.1
Baccarini, M.2
-
9
-
-
12144289677
-
Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF
-
Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R, and Cancer Genome Project. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004; 116:855-67. https://doi.org/10.1016/S0092-8674(04)00215-6.
-
(2004)
Cell
, vol.116
, pp. 855-867
-
-
Wan, P.T.1
Garnett, M.J.2
Roe, S.M.3
Lee, S.4
Niculescu-Duvaz, D.5
Good, V.M.6
Jones, C.M.7
Marshall, C.J.8
Springer, C.J.9
Barford, D.10
Marais, R.11
-
10
-
-
84861740806
-
Kinaseimpaired BRAF mutations in lung cancer confer sensitivity to dasatinib
-
Sen B, Peng S, Tang X, Erickson HS, Galindo H, Mazumdar T, Stewart DJ, Wistuba I, Johnson FM. Kinaseimpaired BRAF mutations in lung cancer confer sensitivity to dasatinib. Sci Transl Med. 2012; 4:136ra70. https://doi.org/10.1126/scitranslmed.3003513.
-
(2012)
Sci Transl Med
, vol.4
-
-
Sen, B.1
Peng, S.2
Tang, X.3
Erickson, H.S.4
Galindo, H.5
Mazumdar, T.6
Stewart, D.J.7
Wistuba, I.8
Johnson, F.M.9
-
11
-
-
74849109743
-
Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF
-
Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010; 140:209-21. https://doi.org/10.1016/j. cell.2009.12.040.
-
(2010)
Cell
, vol.140
, pp. 209-221
-
-
Heidorn, S.J.1
Milagre, C.2
Whittaker, S.3
Nourry, A.4
Niculescu-Duvas, I.5
Dhomen, N.6
Hussain, J.7
Reis-Filho, J.S.8
Springer, C.J.9
Pritchard, C.10
Marais, R.11
-
12
-
-
31144453233
-
BRAF mutation predicts sensitivity to MEK inhibition
-
Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006; 439:358-62. https://doi.org/10.1038/nature04304.
-
(2006)
Nature
, vol.439
, pp. 358-362
-
-
Solit, D.B.1
Garraway, L.A.2
Pratilas, C.A.3
Sawai, A.4
Getz, G.5
Basso, A.6
Ye, Q.7
Lobo, J.M.8
She, Y.9
Osman, I.10
Golub, T.R.11
Sebolt-Leopold, J.12
Sellers, W.R.13
Rosen, N.14
-
13
-
-
78449292368
-
BRAF inactivation drives aneuploidy by deregulating CRAF
-
Kamata T, Hussain J, Giblett S, Hayward R, Marais R, Pritchard C. BRAF inactivation drives aneuploidy by deregulating CRAF. Cancer Res. 2010; 70:8475-86. https://doi.org/10.1158/0008-5472.CAN-10-0603.
-
(2010)
Cancer Res
, vol.70
, pp. 8475-8486
-
-
Kamata, T.1
Hussain, J.2
Giblett, S.3
Hayward, R.4
Marais, R.5
Pritchard, C.6
-
15
-
-
84862732834
-
Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations
-
Greger JG, Eastman SD, Zhang V, Bleam MR, Hughes AM, Smitheman KN, Dickerson SH, Laquerre SG, Liu L, Gilmer TM. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther. 2012; 11:909-20. https://doi.org/10.1158/1535-7163.MCT-11-0989.
-
(2012)
Mol Cancer Ther
, vol.11
, pp. 909-920
-
-
Greger, J.G.1
Eastman, S.D.2
Zhang, V.3
Bleam, M.R.4
Hughes, A.M.5
Smitheman, K.N.6
Dickerson, S.H.7
Laquerre, S.G.8
Liu, L.9
Gilmer, T.M.10
-
16
-
-
77956513286
-
Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma
-
Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, Burton EA, Wong B, Tsang G, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010; 467:596-99. https://doi.org/10.1038/nature09454.
-
(2010)
Nature
, vol.467
, pp. 596-599
-
-
Bollag, G.1
Hirth, P.2
Tsai, J.3
Zhang, J.4
Ibrahim, P.N.5
Cho, H.6
Spevak, W.7
Zhang, C.8
Zhang, Y.9
Habets, G.10
Burton, E.A.11
Wong, B.12
Tsang, G.13
-
17
-
-
84906075553
-
Mechanism and consequences of RAF kinase activation by small-molecule inhibitors
-
Holderfield M, Nagel TE, Stuart DD. Mechanism and consequences of RAF kinase activation by small-molecule inhibitors. Br J Cancer. 2014; 111:640-45. https://doi.org/10.1038/bjc.2014.139.
-
(2014)
Br J Cancer
, vol.111
, pp. 640-645
-
-
Holderfield, M.1
Nagel, T.E.2
Stuart, D.D.3
-
18
-
-
77949685981
-
RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth
-
Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010; 464:431-35. https://doi.org/10.1038/nature08833.
-
(2010)
Nature
, vol.464
, pp. 431-435
-
-
Hatzivassiliou, G.1
Song, K.2
Yen, I.3
Brandhuber, B.J.4
Anderson, D.J.5
Alvarado, R.6
Ludlam, M.J.7
Stokoe, D.8
Gloor, S.L.9
Vigers, G.10
Morales, T.11
Aliagas, I.12
Liu, B.13
-
19
-
-
77949732073
-
RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF
-
Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010; 464:427-30. https://doi.org/10.1038/nature08902.
-
(2010)
Nature
, vol.464
, pp. 427-430
-
-
Poulikakos, P.I.1
Zhang, C.2
Bollag, G.3
Shokat, K.M.4
Rosen, N.5
-
20
-
-
84877825519
-
RAF inhibitors activate the MAPK pathway by relieving inhibitory autophosphorylation
-
Holderfield M, Merritt H, Chan J, Wallroth M, Tandeske L, Zhai H, Tellew J, Hardy S, Hekmat-Nejad M, Stuart DD, McCormick F, Nagel TE. RAF inhibitors activate the MAPK pathway by relieving inhibitory autophosphorylation. Cancer Cell. 2013; 23:594-602. https://doi.org/10.1016/j.ccr.2013.03.033.
-
(2013)
Cancer Cell
, vol.23
, pp. 594-602
-
-
Holderfield, M.1
Merritt, H.2
Chan, J.3
Wallroth, M.4
Tandeske, L.5
Zhai, H.6
Tellew, J.7
Hardy, S.8
Hekmat-Nejad, M.9
Stuart, D.D.10
McCormick, F.11
Nagel, T.E.12
-
21
-
-
84916897464
-
Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma
-
Spagnolo F, Ghiorzo P, Queirolo P. Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. Oncotarget. 2014; 5:10206-21. https://doi.org/10.18632/oncotarget.2602.
-
(2014)
Oncotarget
, vol.5
, pp. 10206-10221
-
-
Spagnolo, F.1
Ghiorzo, P.2
Queirolo, P.3
-
22
-
-
84897531613
-
Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma
-
Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C, Haanen J, Blank C, Wesseling J, Willems SM, Zecchin D, Hobor S, Bajpe PK, et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature. 2014; 508:118-22. https://doi.org/10.1038/nature13121.
-
(2014)
Nature
, vol.508
, pp. 118-122
-
-
Sun, C.1
Wang, L.2
Huang, S.3
Heynen, G.J.4
Prahallad, A.5
Robert, C.6
Haanen, J.7
Blank, C.8
Wesseling, J.9
Willems, S.M.10
Zecchin, D.11
Hobor, S.12
Bajpe, P.K.13
-
23
-
-
84887478023
-
Tumor adaptation and resistance to RAF inhibitors
-
Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat Med. 2013; 19:1401-09. https://doi.org/10.1038/nm.3392.
-
(2013)
Nat Med
, vol.19
, pp. 1401-1409
-
-
Lito, P.1
Rosen, N.2
Solit, D.B.3
-
24
-
-
84869067183
-
Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas
-
Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, Huang A, Wong WL, Callahan MK, Merghoub T, Wolchok JD, de Stanchina E, Chandarlapaty S, et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell. 2012; 22:668-82. https://doi.org/10.1016/j.ccr.2012.10.009.
-
(2012)
Cancer Cell
, vol.22
, pp. 668-682
-
-
Lito, P.1
Pratilas, C.A.2
Joseph, E.W.3
Tadi, M.4
Halilovic, E.5
Zubrowski, M.6
Huang, A.7
Wong, W.L.8
Callahan, M.K.9
Merghoub, T.10
Wolchok, J.D.11
de Stanchina, E.12
Chandarlapaty, S.13
-
25
-
-
84861863158
-
EGFRmediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib
-
Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP, Brown RD, Della Pelle P, Dias-Santagata D, Hung KE, Flaherty KT, Piris A, Wargo JA, et al. EGFRmediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012; 2:227-35. https://doi.org/10.1158/2159-8290.CD-11-0341.
-
(2012)
Cancer Discov
, vol.2
, pp. 227-235
-
-
Corcoran, R.B.1
Ebi, H.2
Turke, A.B.3
Coffee, E.M.4
Nishino, M.5
Cogdill, A.P.6
Brown, R.D.7
Della Pelle, P.8
Dias-Santagata, D.9
Hung, K.E.10
Flaherty, K.T.11
Piris, A.12
Wargo, J.A.13
-
26
-
-
49649118852
-
Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma
-
Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE, Dias-Santagata D, Stubbs H, Lee DY, Singh A, Drew L, Haber DA, Settleman J. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 2008; 68:4853-61. https://doi.org/10.1158/0008-5472.CAN-07-6787.
-
(2008)
Cancer Res
, vol.68
, pp. 4853-4861
-
-
Montagut, C.1
Sharma, S.V.2
Shioda, T.3
McDermott, U.4
Ulman, M.5
Ulkus, L.E.6
Dias-Santagata, D.7
Stubbs, H.8
Lee, D.Y.9
Singh, A.10
Drew, L.11
Haber, D.A.12
Settleman, J.13
-
27
-
-
84951757209
-
Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma
-
Gray ES, Rizos H, Reid AL, Boyd SC, Pereira MR, Lo J, Tembe V, Freeman J, Lee JH, Scolyer RA, Siew K, Lomma C, Cooper A, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015; 6:42008-18. https://doi.org/10.18632/oncotarget.5788.
-
(2015)
Oncotarget
, vol.6
, pp. 42008-42018
-
-
Gray, E.S.1
Rizos, H.2
Reid, A.L.3
Boyd, S.C.4
Pereira, M.R.5
Lo, J.6
Tembe, V.7
Freeman, J.8
Lee, J.H.9
Scolyer, R.A.10
Siew, K.11
Lomma, C.12
Cooper, A.13
-
29
-
-
84938739283
-
Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial
-
Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A, Grob JJ, Chiarion-Sileni V, Lebbe C, Mandalà M, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015; 386:444-51. https://doi.org/10.1016/S0140-6736(15)60898-4.
-
(2015)
Lancet
, vol.386
, pp. 444-451
-
-
Long, G.V.1
Stroyakovskiy, D.2
Gogas, H.3
Levchenko, E.4
de Braud, F.5
Larkin, J.6
Garbe, C.7
Jouary, T.8
Hauschild, A.9
Grob, J.J.10
Chiarion-Sileni, V.11
Lebbe, C.12
Mandalà, M.13
-
30
-
-
84962393746
-
Reduced Proteolytic Shedding of Receptor Tyrosine Kinases Is a Post-Translational Mechanism of Kinase Inhibitor Resistance
-
Miller MA, Oudin MJ, Sullivan RJ, Wang SJ, Meyer AS, Im H, Frederick DT, Tadros J, Griffith LG, Lee H, Weissleder R, Flaherty KT, Gertler FB, Lauffenburger DA. Reduced Proteolytic Shedding of Receptor Tyrosine Kinases Is a Post-Translational Mechanism of Kinase Inhibitor Resistance. Cancer Discov. 2016; 6:382-99. https://doi.org/10.1158/2159-8290.CD-15-0933.
-
(2016)
Cancer Discov
, vol.6
, pp. 382-399
-
-
Miller, M.A.1
Oudin, M.J.2
Sullivan, R.J.3
Wang, S.J.4
Meyer, A.S.5
Im, H.6
Frederick, D.T.7
Tadros, J.8
Griffith, L.G.9
Lee, H.10
Weissleder, R.11
Flaherty, K.T.12
Gertler, F.B.13
Lauffenburger, D.A.14
-
31
-
-
84920394727
-
Improved overall survival in melanoma with combined dabrafenib and trametinib
-
Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, Lichinitser M, Dummer R, Grange F, Mortier L, Chiarion-Sileni V, Drucis K, Krajsova I, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015; 372:30-39. https://doi.org/10.1056/NEJMoa1412690.
-
(2015)
N Engl J Med
, vol.372
, pp. 30-39
-
-
Robert, C.1
Karaszewska, B.2
Schachter, J.3
Rutkowski, P.4
Mackiewicz, A.5
Stroiakovski, D.6
Lichinitser, M.7
Dummer, R.8
Grange, F.9
Mortier, L.10
Chiarion-Sileni, V.11
Drucis, K.12
Krajsova, I.13
-
32
-
-
82655173695
-
Resistance to BRAF inhibitors: unraveling mechanisms and future treatment options
-
Villanueva J, Vultur A, Herlyn M. Resistance to BRAF inhibitors: unraveling mechanisms and future treatment options. Cancer Res. 2011; 71:7137-40. https://doi.org/10.1158/0008-5472.CAN-11-1243.
-
(2011)
Cancer Res
, vol.71
, pp. 7137-7140
-
-
Villanueva, J.1
Vultur, A.2
Herlyn, M.3
-
33
-
-
84925262623
-
Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma
-
Hu-Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, Pinheiro EM, Koya RC, Graeber TG, Comin-Anduix B, Ribas A. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med. 2015; 7:279ra41. https://doi.org/10.1126/scitranslmed.aaa4691.
-
(2015)
Sci Transl Med
, vol.7
-
-
Hu-Lieskovan, S.1
Mok, S.2
Homet Moreno, B.3
Tsoi, J.4
Robert, L.5
Goedert, L.6
Pinheiro, E.M.7
Koya, R.C.8
Graeber, T.G.9
Comin-Anduix, B.10
Ribas, A.11
-
35
-
-
84955204924
-
Updated efficacy of the MEK inhibitor trametinib (T), BRAF inhibitor dabrafenib (D), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E mutated (BRAFm) metastatic colorectal cancer (mCRC)
-
Atreya CE. Updated efficacy of the MEK inhibitor trametinib (T), BRAF inhibitor dabrafenib (D), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E mutated (BRAFm) metastatic colorectal cancer (mCRC). 2015 ASCO Annual Meeting. 2015; Abstract Number: 103.
-
(2015)
2015 ASCO Annual Meeting
-
-
Atreya, C.E.1
-
36
-
-
20144378490
-
Human malignant melanoma: detection of BRAF-and c-kit-activating mutations by high-resolution amplicon melting analysis
-
Willmore-Payne C, Holden JA, Tripp S, Layfield LJ. Human malignant melanoma: detection of BRAF-and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum Pathol. 2005; 36:486-93. https://doi.org/10.1016/j.humpath.2005.03.015.
-
(2005)
Hum Pathol
, vol.36
, pp. 486-493
-
-
Willmore-Payne, C.1
Holden, J.A.2
Tripp, S.3
Layfield, L.J.4
-
38
-
-
84883311219
-
Allosteric activation of functionally asymmetric RAF kinase dimers
-
Hu J, Stites EC, Yu H, Germino EA, Meharena HS, Stork PJ, Kornev AP, Taylor SS, Shaw AS. Allosteric activation of functionally asymmetric RAF kinase dimers. Cell. 2013; 154:1036-46. https://doi.org/10.1016/j.cell.2013.07.046.
-
(2013)
Cell
, vol.154
, pp. 1036-1046
-
-
Hu, J.1
Stites, E.C.2
Yu, H.3
Germino, E.A.4
Meharena, H.S.5
Stork, P.J.6
Kornev, A.P.7
Taylor, S.S.8
Shaw, A.S.9
-
39
-
-
84900442808
-
Disruption of CRAFmediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors
-
Lito P, Saborowski A, Yue J, Solomon M, Joseph E, Gadal S, Saborowski M, Kastenhuber E, Fellmann C, Ohara K, Morikami K, Miura T, Lukacs C, et al. Disruption of CRAFmediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell. 2014; 25:697-710. https://doi.org/10.1016/j.ccr.2014.03.011.
-
(2014)
Cancer Cell
, vol.25
, pp. 697-710
-
-
Lito, P.1
Saborowski, A.2
Yue, J.3
Solomon, M.4
Joseph, E.5
Gadal, S.6
Saborowski, M.7
Kastenhuber, E.8
Fellmann, C.9
Ohara, K.10
Morikami, K.11
Miura, T.12
Lukacs, C.13
-
40
-
-
84929077789
-
Regulation of RAF protein kinases in ERK signalling
-
Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015; 16:281-98. https://doi.org/10.1038/nrm3979.
-
(2015)
Nat Rev Mol Cell Biol
, vol.16
, pp. 281-298
-
-
Lavoie, H.1
Therrien, M.2
-
41
-
-
84867232702
-
Prognostic impact of Raf-1 and p-Raf-1 expressions for poor survival rate in non-small cell lung cancer
-
Qiu ZX, Wang L, Han J, Liu D, Huang W, Altaf K, Qiu XS, Javed MA, Zheng J, Chen BJ, Li WM. Prognostic impact of Raf-1 and p-Raf-1 expressions for poor survival rate in non-small cell lung cancer. Cancer Sci. 2012; 103:1774-79. https://doi.org/10.1111/j.1349-7006.2012.02375.x.
-
(2012)
Cancer Sci
, vol.103
, pp. 1774-1779
-
-
Qiu, Z.X.1
Wang, L.2
Han, J.3
Liu, D.4
Huang, W.5
Altaf, K.6
Qiu, X.S.7
Javed, M.A.8
Zheng, J.9
Chen, B.J.10
Li, W.M.11
-
42
-
-
33947253249
-
Overexpressed Raf-1 and phosphorylated cyclic adenosine 3'-5'-monophosphatate response element-binding protein are early markers for lung adenocarcinoma
-
Cekanova M, Majidy M, Masi T, Al-Wadei HA, Schuller HM. Overexpressed Raf-1 and phosphorylated cyclic adenosine 3'-5'-monophosphatate response element-binding protein are early markers for lung adenocarcinoma. Cancer. 2007; 109:1164-73. https://doi.org/10.1002/cncr.22520.
-
(2007)
Cancer
, vol.109
, pp. 1164-1173
-
-
Cekanova, M.1
Majidy, M.2
Masi, T.3
Al-Wadei, H.A.4
Schuller, H.M.5
-
43
-
-
0038036832
-
Loss of p53 in craf-induced transgenic lung adenoma leads to tumor acceleration and phenotypic switch
-
Fedorov LM, Papadopoulos T, Tyrsin OY, Twardzik T, Götz R, Rapp UR. Loss of p53 in craf-induced transgenic lung adenoma leads to tumor acceleration and phenotypic switch. Cancer Res. 2003; 63:2268-77.
-
(2003)
Cancer Res
, vol.63
, pp. 2268-2277
-
-
Fedorov, L.M.1
Papadopoulos, T.2
Tyrsin, O.Y.3
Twardzik, T.4
Götz, R.5
Rapp, U.R.6
-
44
-
-
84866618040
-
C-Raf is required for the initiation of lung cancer by K-Ras(G12D)
-
Karreth FA, Frese KK, DeNicola GM, Baccarini M, Tuveson DA. C-Raf is required for the initiation of lung cancer by K-Ras(G12D). Cancer Discov. 2011; 1:128-36. https://doi.org/10.1158/2159-8290.CD-10-0044.
-
(2011)
Cancer Discov
, vol.1
, pp. 128-136
-
-
Karreth, F.A.1
Frese, K.K.2
DeNicola, G.M.3
Baccarini, M.4
Tuveson, D.A.5
-
45
-
-
79955980366
-
c-Raf, but not B-Raf, is essential for development of K-Ras oncogenedriven non-small cell lung carcinoma
-
Blasco RB, Francoz S, Santamaría D, Cañamero M, Dubus P, Charron J, Baccarini M, Barbacid M. c-Raf, but not B-Raf, is essential for development of K-Ras oncogenedriven non-small cell lung carcinoma. Cancer Cell. 2011; 19:652-63. https://doi.org/10.1016/j.ccr.2011.04.002.
-
(2011)
Cancer Cell
, vol.19
, pp. 652-663
-
-
Blasco, R.B.1
Francoz, S.2
Santamaría, D.3
Cañamero, M.4
Dubus, P.5
Charron, J.6
Baccarini, M.7
Barbacid, M.8
-
46
-
-
84874225181
-
Effects of Raf dimerization and its inhibition on normal and diseaseassociated Raf signaling
-
Freeman AK, Ritt DA, Morrison DK. Effects of Raf dimerization and its inhibition on normal and diseaseassociated Raf signaling. Mol Cell. 2013; 49:751-58. https://doi.org/10.1016/j.molcel.2012.12.018.
-
(2013)
Mol Cell
, vol.49
, pp. 751-758
-
-
Freeman, A.K.1
Ritt, D.A.2
Morrison, D.K.3
-
47
-
-
57649129418
-
Characterization of Ser338 phosphorylation for Raf-1 activation
-
Zang M, Gong J, Luo L, Zhou J, Xiang X, Huang W, Huang Q, Luo X, Olbrot M, Peng Y, Chen C, Luo Z. Characterization of Ser338 phosphorylation for Raf-1 activation. J Biol Chem. 2008; 283:31429-37. https://doi.org/10.1074/jbc.M802855200.
-
(2008)
J Biol Chem
, vol.283
, pp. 31429-31437
-
-
Zang, M.1
Gong, J.2
Luo, L.3
Zhou, J.4
Xiang, X.5
Huang, W.6
Huang, Q.7
Luo, X.8
Olbrot, M.9
Peng, Y.10
Chen, C.11
Luo, Z.12
-
48
-
-
65249103982
-
Positive-and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway
-
Shin SY, Rath O, Choo SM, Fee F, McFerran B, Kolch W, Cho KH. Positive-and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. J Cell Sci. 2009; 122:425-35. https://doi.org/10.1242/jcs.036319.
-
(2009)
J Cell Sci
, vol.122
, pp. 425-435
-
-
Shin, S.Y.1
Rath, O.2
Choo, S.M.3
Fee, F.4
McFerran, B.5
Kolch, W.6
Cho, K.H.7
-
49
-
-
0034944380
-
Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism
-
Chen J, Fujii K, Zhang L, Roberts T, Fu H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA. 2001; 98:7783-88. https://doi.org/10.1073/pnas.141224398.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 7783-7788
-
-
Chen, J.1
Fujii, K.2
Zhang, L.3
Roberts, T.4
Fu, H.5
-
50
-
-
80051802020
-
Raf kinases in cancer-roles and therapeutic opportunities
-
Maurer G, Tarkowski B, Baccarini M. Raf kinases in cancer-roles and therapeutic opportunities. Oncogene. 2011; 30:3477-88. https://doi.org/10.1038/onc.2011.160.
-
(2011)
Oncogene
, vol.30
, pp. 3477-3488
-
-
Maurer, G.1
Tarkowski, B.2
Baccarini, M.3
-
51
-
-
84856097810
-
A MEK-independent role for CRAF in mitosis and tumor progression
-
Mielgo A, Seguin L, Huang M, Camargo MF, Anand S, Franovic A, Weis SM, Advani SJ, Murphy EA, Cheresh DA. A MEK-independent role for CRAF in mitosis and tumor progression. Nat Med. 2011; 17:1641-45. https://doi.org/10.1038/nm.2464.
-
(2011)
Nat Med
, vol.17
, pp. 1641-1645
-
-
Mielgo, A.1
Seguin, L.2
Huang, M.3
Camargo, M.F.4
Anand, S.5
Franovic, A.6
Weis, S.M.7
Advani, S.J.8
Murphy, E.A.9
Cheresh, D.A.10
-
52
-
-
0031596370
-
Bc1-2, Raf-1 and mitochondrial regulation of apoptosis
-
Wang HG, Reed JC. Bc1-2, Raf-1 and mitochondrial regulation of apoptosis. Biofactors. 1998; 8:13-16. https://doi.org/10.1002/biof.5520080103.
-
(1998)
Biofactors
, vol.8
, pp. 13-16
-
-
Wang, H.G.1
Reed, J.C.2
-
53
-
-
58149328950
-
CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations
-
Smalley KS, Xiao M, Villanueva J, Nguyen TK, Flaherty KT, Letrero R, Van Belle P, Elder DE, Wang Y, Nathanson KL, Herlyn M. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations Oncogene. 2009; 28:85-94. https://doi.org/10.1038/onc.2008.362.
-
(2009)
Oncogene
, vol.28
, pp. 85-94
-
-
Smalley, K.S.1
Xiao, M.2
Villanueva, J.3
Nguyen, T.K.4
Flaherty, K.T.5
Letrero, R.6
Van Belle, P.7
Elder, D.E.8
Wang, Y.9
Nathanson, K.L.10
Herlyn, M.11
-
54
-
-
84951177470
-
Overexpression of Mcl-1 confers resistance to BRAFV600E inhibitors alone and in combination with MEK1/2 inhibitors in melanoma
-
Fofaria NM, Frederick DT, Sullivan RJ, Flaherty KT, Srivastava SK. Overexpression of Mcl-1 confers resistance to BRAFV600E inhibitors alone and in combination with MEK1/2 inhibitors in melanoma. Oncotarget. 2015; 6:40535-56. https://doi.org/10.18632/oncotarget.5755.
-
(2015)
Oncotarget
, vol.6
, pp. 40535-40556
-
-
Fofaria, N.M.1
Frederick, D.T.2
Sullivan, R.J.3
Flaherty, K.T.4
Srivastava, S.K.5
-
55
-
-
55949097252
-
Genetic predictors of MEK dependence in non-small cell lung cancer
-
Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale D, Shigematsu H, Yamamoto H, Sawai A, Janakiraman M, Taylor BS, Pao W, Toyooka S, et al. Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res. 2008; 68:9375-83. https://doi.org/10.1158/0008-5472.CAN-08-2223.
-
(2008)
Cancer Res
, vol.68
, pp. 9375-9383
-
-
Pratilas, C.A.1
Hanrahan, A.J.2
Halilovic, E.3
Persaud, Y.4
Soh, J.5
Chitale, D.6
Shigematsu, H.7
Yamamoto, H.8
Sawai, A.9
Janakiraman, M.10
Taylor, B.S.11
Pao, W.12
Toyooka, S.13
-
56
-
-
84923295009
-
Trametinib with or without vemurafenib in BRAF mutated non-small cell lung cancer
-
Joshi M, Rice SJ, Liu X, Miller B, Belani CP. Trametinib with or without vemurafenib in BRAF mutated non-small cell lung cancer. PLoS One. 2015; 10:e0118210. https://doi.org/10.1371/journal.pone.0118210.
-
(2015)
PLoS One
, vol.10
-
-
Joshi, M.1
Rice, S.J.2
Liu, X.3
Miller, B.4
Belani, C.P.5
-
57
-
-
78651380816
-
Activation and involvement of Ral GTPases in colorectal cancer
-
Martin TD, Samuel JC, Routh ED, Der CJ, Yeh JJ. Activation and involvement of Ral GTPases in colorectal cancer. Cancer Res. 2011; 71:206-15. https://doi.org/10.1158/0008-5472.CAN-10-1517.
-
(2011)
Cancer Res
, vol.71
, pp. 206-215
-
-
Martin, T.D.1
Samuel, J.C.2
Routh, E.D.3
Der, C.J.4
Yeh, J.J.5
-
58
-
-
84881223991
-
Rational combination of a MEK inhibitor, selumetinib, and the Wnt/calcium pathway modulator, cyclosporin A, in preclinical models of colorectal cancer
-
Spreafico A, Tentler JJ, Pitts TM, Tan AC, Gregory MA, Arcaroli JJ, Klauck PJ, McManus MC, Hansen RJ, Kim J, Micel LN, Selby HM, Newton TP, et al. Rational combination of a MEK inhibitor, selumetinib, and the Wnt/calcium pathway modulator, cyclosporin A, in preclinical models of colorectal cancer. Clin Cancer Res. 2013; 19:4149-62. https://doi.org/10.1158/1078-0432. CCR-12-3140.
-
(2013)
Clin Cancer Res
, vol.19
, pp. 4149-4162
-
-
Spreafico, A.1
Tentler, J.J.2
Pitts, T.M.3
Tan, A.C.4
Gregory, M.A.5
Arcaroli, J.J.6
Klauck, P.J.7
McManus, M.C.8
Hansen, R.J.9
Kim, J.10
Micel, L.N.11
Selby, H.M.12
Newton, T.P.13
-
59
-
-
84863012433
-
Antitumor activity of BRAF inhibitor vemurafenib in preclinical models of BRAF-mutant colorectal cancer
-
Yang H, Higgins B, Kolinsky K, Packman K, Bradley WD, Lee RJ, Schostack K, Simcox ME, Kopetz S, Heimbrook D, Lestini B, Bollag G, Su F. Antitumor activity of BRAF inhibitor vemurafenib in preclinical models of BRAF-mutant colorectal cancer. Cancer Res. 2012; 72:779-89. https://doi.org/10.1158/0008-5472.CAN-11-2941.
-
(2012)
Cancer Res
, vol.72
, pp. 779-789
-
-
Yang, H.1
Higgins, B.2
Kolinsky, K.3
Packman, K.4
Bradley, W.D.5
Lee, R.J.6
Schostack, K.7
Simcox, M.E.8
Kopetz, S.9
Heimbrook, D.10
Lestini, B.11
Bollag, G.12
Su, F.13
-
60
-
-
77954592048
-
Identification of common predictive markers of in vitro response to the Mek inhibitor selumetinib (AZD6244; ARRY-142886) in human breast cancer and non-small cell lung cancer cell lines
-
Garon EB, Finn RS, Hosmer W, Dering J, Ginther C, Adhami S, Kamranpour N, Pitts S, Desai A, Elashoff D, French T, Smith P, Slamon DJ. Identification of common predictive markers of in vitro response to the Mek inhibitor selumetinib (AZD6244; ARRY-142886) in human breast cancer and non-small cell lung cancer cell lines. Mol Cancer Ther. 2010; 9:1985-94. https://doi.org/10.1158/1535-7163. MCT-10-0037.
-
(2010)
Mol Cancer Ther
, vol.9
, pp. 1985-1994
-
-
Garon, E.B.1
Finn, R.S.2
Hosmer, W.3
Dering, J.4
Ginther, C.5
Adhami, S.6
Kamranpour, N.7
Pitts, S.8
Desai, A.9
Elashoff, D.10
French, T.11
Smith, P.12
Slamon, D.J.13
-
61
-
-
55949097252
-
Genetic predictors of MEK dependence in non-small cell lung cancer
-
Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale D, Shigematsu H, Yamamoto H, Sawai A, Janakiraman M, Taylor BS, Pao W, Toyooka S, et al. Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res. 2008; 68:9375-83. https://doi.org/10.1158/0008-5472.CAN-08-2223.
-
(2008)
Cancer Res
, vol.68
, pp. 9375-9383
-
-
Pratilas, C.A.1
Hanrahan, A.J.2
Halilovic, E.3
Persaud, Y.4
Soh, J.5
Chitale, D.6
Shigematsu, H.7
Yamamoto, H.8
Sawai, A.9
Janakiraman, M.10
Taylor, B.S.11
Pao, W.12
Toyooka, S.13
-
62
-
-
84925862743
-
Detection of EGFR-TK domain-activating mutations in NSCLC with generic PCR-based methods
-
Shahi RB, De Brakeleer S, De Grève J, Geers C, In't Veld P, Teugels E. Detection of EGFR-TK domain-activating mutations in NSCLC with generic PCR-based methods. Appl Immunohistochem Mol Morphol. 2015; 23:163-71. https://doi.org/10.1097/PDM.0000000000000035.
-
(2015)
Appl Immunohistochem Mol Morphol
, vol.23
, pp. 163-171
-
-
Shahi, R.B.1
De Brakeleer, S.2
De Grève, J.3
Geers, C.4
In't Veld, P.5
Teugels, E.6
-
63
-
-
51649088367
-
E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines
-
Kitagawa M, Aonuma M, Lee SH, Fukutake S, McCormick F. E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene. 2008; 27:5303-14. https://doi.org/10.1038/onc.2008.164.
-
(2008)
Oncogene
, vol.27
, pp. 5303-5314
-
-
Kitagawa, M.1
Aonuma, M.2
Lee, S.H.3
Fukutake, S.4
McCormick, F.5
-
64
-
-
84885178969
-
Imidazo[4,5-b]pyridine inhibitors of B-Raf kinase
-
Newhouse BJ, Wenglowsky S, Grina J, Laird ER, Voegtli WC, Ren L, Ahrendt K, Buckmelter A, Gloor SL, Klopfenstein N, Rudolph J, Wen Z, Li X, Feng B. Imidazo[4,5-b]pyridine inhibitors of B-Raf kinase. Bioorg Med Chem Lett. 2013; 23:5896-99. https://doi.org/10.1016/j.bmcl.2013.08.086.
-
(2013)
Bioorg Med Chem Lett
, vol.23
, pp. 5896-5899
-
-
Newhouse, B.J.1
Wenglowsky, S.2
Grina, J.3
Laird, E.R.4
Voegtli, W.C.5
Ren, L.6
Ahrendt, K.7
Buckmelter, A.8
Gloor, S.L.9
Klopfenstein, N.10
Rudolph, J.11
Wen, Z.12
Li, X.13
Feng, B.14
|