메뉴 건너뛰기




Volumn 23, Issue 5, 2017, Pages 499-516

Small-World Brain Networks Revisited

Author keywords

connectomics; graph theory; network neuroscience; small world network; small world propensity

Indexed keywords

BRAIN CORTEX; CONNECTOME; GRAY MATTER; HUMAN; NEUROANATOMICAL TRACT TRACING; NEUROANATOMY; NEUROIMAGING; NEUROSCIENCE; NONHUMAN; PRIORITY JOURNAL; REVIEW; WHITE MATTER; ANATOMY AND HISTOLOGY; ANIMAL; BRAIN; NERVE CELL NETWORK; NERVE TRACT; PHYSIOLOGY;

EID: 85029540758     PISSN: 10738584     EISSN: 10894098     Source Type: Journal    
DOI: 10.1177/1073858416667720     Document Type: Review
Times cited : (602)

References (129)
  • 1
    • 30744439313 scopus 로고    scopus 로고
    • A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E,. 2006. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26 (1): 63-72.
    • (2006) J Neurosci , vol.26 , Issue.1 , pp. 63-72
    • Achard, S.1    Salvador, R.2    Whitcher, B.3    Suckling, J.4    Bullmore, E.5
  • 2
    • 84935865748 scopus 로고    scopus 로고
    • The effects of neuron morphology on graph theoretic measures of network connectivity: The analysis of a two-level statistical model
    • Acimovic J, Mäki-Marttunen T, Linne ML,. 2015. The effects of neuron morphology on graph theoretic measures of network connectivity: the analysis of a two-level statistical model. Front Neuroanat 9: 76.
    • (2015) Front Neuroanat , vol.9 , pp. 76
    • Acimovic, J.1    Mäki-Marttunen, T.2    Linne, M.L.3
  • 3
    • 84876682042 scopus 로고    scopus 로고
    • Imaging structural co-variance between human brain regions
    • Alexander-Bloch A, Giedd JN, Bullmore E,. 2013. Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14 (5): 322-36.
    • (2013) Nat Rev Neurosci , vol.14 , Issue.5 , pp. 322-336
    • Alexander-Bloch, A.1    Giedd, J.N.2    Bullmore, E.3
  • 6
    • 3343010976 scopus 로고    scopus 로고
    • Synchronization in small-world systems
    • Barahona M, Pecora LM,. 2002. Synchronization in small-world systems. Phys Rev Lett 89 (5): 054101.
    • (2002) Phys Rev Lett , vol.89 , Issue.5 , pp. 054101
    • Barahona, M.1    Pecora, L.M.2
  • 8
    • 79451475362 scopus 로고    scopus 로고
    • Spatial networks
    • Barthélemy M,. 2011. Spatial networks. Phys Rep 499: 1-101.
    • (2011) Phys Rep , vol.499 , pp. 1-101
    • Barthélemy, M.1
  • 9
    • 78649714368 scopus 로고    scopus 로고
    • Conserved and variable architecture of human white matter connectivity
    • Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST,. 2011 a. Conserved and variable architecture of human white matter connectivity. Neuroimage 54 (2): 1262-79.
    • (2011) Neuroimage , vol.54 , Issue.2 , pp. 1262-1279
    • Bassett, D.S.1    Brown, J.A.2    Deshpande, V.3    Carlson, J.M.4    Grafton, S.T.5
  • 10
    • 33750466904 scopus 로고    scopus 로고
    • Small-world brain networks
    • Bassett DS, Bullmore E,. 2006. Small-world brain networks. Neuroscientist 12 (6): 512-23.
    • (2006) Neuroscientist , vol.12 , Issue.6 , pp. 512-523
    • Bassett, D.S.1    Bullmore, E.2
  • 17
    • 84925609620 scopus 로고    scopus 로고
    • Extraction of force-chain network architecture in granular materials using community detection
    • Bassett DS, Owens ET, Porter MA, Manning ML, Daniels KE,. 2015. Extraction of force-chain network architecture in granular materials using community detection. Soft Matter 11 (14): 2731-44.
    • (2015) Soft Matter , vol.11 , Issue.14 , pp. 2731-2744
    • Bassett, D.S.1    Owens, E.T.2    Porter, M.A.3    Manning, M.L.4    Daniels, K.E.5
  • 23
    • 84979916757 scopus 로고    scopus 로고
    • Optimally controlling the human connectome: The role of network topology
    • Betzel RF, Gu S, Medaglia JD, Pasqualetti F, Bassett DS,. 2016 b. Optimally controlling the human connectome: the role of network topology. Sci Rep 6: 30770.
    • (2016) Sci Rep , vol.6 , pp. 30770
    • Betzel, R.F.1    Gu, S.2    Medaglia, J.D.3    Pasqualetti, F.4    Bassett, D.S.5
  • 24
    • 84868221926 scopus 로고    scopus 로고
    • A weighted small world network measure for assessing functional connectivity
    • Bolaños M, Bernat EM, He B, Aviyente S,. 2013. A weighted small world network measure for assessing functional connectivity. J Neurosci Methods 212 (1): 133-42.
    • (2013) J Neurosci Methods , vol.212 , Issue.1 , pp. 133-142
    • Bolaños, M.1    Bernat, E.M.2    He, B.3    Aviyente, S.4
  • 26
    • 0004219960 scopus 로고
    • London, England: Academic Press
    • Bollobás B,. 1985. Random graphs. London, England: Academic Press.
    • (1985) Random Graphs
    • Bollobás, B.1
  • 27
    • 84874200282 scopus 로고    scopus 로고
    • Social network analysis of physician interactions: The effect of institutional boundaries on breast cancer care
    • Bridewell W, Das AK,. 2011. Social network analysis of physician interactions: the effect of institutional boundaries on breast cancer care. AMIA Annu Symp Proc 2011: 152-60.
    • (2011) AMIA Annu Symp Proc , vol.2011 , pp. 152-160
    • Bridewell, W.1    Das, A.K.2
  • 28
    • 67651031684 scopus 로고    scopus 로고
    • Generic aspects of complexity in brain imaging data and other biological systems
    • Bullmore E, Barnes A, Bassett DS, Fornito A, Kitzbichler M, Meunier D, and others. 2009. Generic aspects of complexity in brain imaging data and other biological systems. Neuroimage 47 (3): 1125-34.
    • (2009) Neuroimage , vol.47 , Issue.3 , pp. 1125-1134
    • Bullmore, E.1    Barnes, A.2    Bassett, D.S.3    Fornito, A.4    Kitzbichler, M.5    Meunier, D.6
  • 29
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: Graph theoretical analysis of structural and functional systems
    • Bullmore E, Sporns O,. 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10 (3): 186-98.
    • (2009) Nat Rev Neurosci , vol.10 , Issue.3 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 30
    • 84859948255 scopus 로고    scopus 로고
    • The economy of brain network organization
    • Bullmore E, Sporns O,. 2012. The economy of brain network organization. Nat Rev Neurosci 13 (5): 336-49.
    • (2012) Nat Rev Neurosci , vol.13 , Issue.5 , pp. 336-349
    • Bullmore, E.1    Sporns, O.2
  • 31
    • 79953664777 scopus 로고    scopus 로고
    • Brain graphs: Graphical models of the human brain connectome
    • Bullmore ET, Bassett DS,. 2011. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7: 113-40.
    • (2011) Annu Rev Clin Psychol , vol.7 , pp. 113-140
    • Bullmore, E.T.1    Bassett, D.S.2
  • 32
    • 58149184695 scopus 로고    scopus 로고
    • Revealing modular architecture of human brain structural networks by using cortical thickness from MRI
    • Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC,. 2008. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex 18 (10): 2374-81.
    • (2008) Cereb Cortex , vol.18 , Issue.10 , pp. 2374-2381
    • Chen, Z.J.1    He, Y.2    Rosa-Neto, P.3    Germann, J.4    Evans, A.C.5
  • 33
    • 84865331246 scopus 로고    scopus 로고
    • Distributed control in a mean-field cortical network model: Implications for seizure suppression
    • Ching S, Brown EN, Kramer MA,. 2012. Distributed control in a mean-field cortical network model: implications for seizure suppression. Phys Rev E Stat Nonlin Soft Matter Phys 86 (2 Pt 1): 021920.
    • (2012) Phys Rev e Stat Nonlin Soft Matter Phys , vol.86 , Issue.2 , pp. 021920
    • Ching, S.1    Brown, E.N.2    Kramer, M.A.3
  • 34
    • 84862838133 scopus 로고    scopus 로고
    • Global connectivity of prefrontal cortex predicts cognitive control and intelligence
    • Cole MW, Yarkoni T, Repovs G, Anticevic A, Braver TS,. 2012. Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J Neurosci 32 (26): 8988-99.
    • (2012) J Neurosci , vol.32 , Issue.26 , pp. 8988-8999
    • Cole, M.W.1    Yarkoni, T.2    Repovs, G.3    Anticevic, A.4    Braver, T.S.5
  • 35
    • 84884811455 scopus 로고    scopus 로고
    • A predictive network model of cerebral cortical connectivity based on a distance rule
    • Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, and others. 2013. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80 (1): 184-97.
    • (2013) Neuron , vol.80 , Issue.1 , pp. 184-197
    • Ercsey-Ravasz, M.1    Markov, N.T.2    Lamy, C.3    Van Essen, D.C.4    Knoblauch, K.5    Toroczkai, Z.6
  • 37
    • 0025718412 scopus 로고
    • Distributed hierarchical processing in the primate cerebral cortex
    • Felleman DJ, Van Essen DC,. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1 (1): 1-47.
    • (1991) Cereb Cortex , vol.1 , Issue.1 , pp. 1-47
    • Felleman, D.J.1    Van Essen, D.C.2
  • 38
    • 79952274702 scopus 로고    scopus 로고
    • Genetic influences on cost-efficient organization of human cortical functional networks
    • Fornito A, Zalesky A, Bassett DS, Meunier D, Ellison-Wright I, Yücel M, and others. 2011. Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci 31 (9): 3261-70.
    • (2011) J Neurosci , vol.31 , Issue.9 , pp. 3261-3270
    • Fornito, A.1    Zalesky, A.2    Bassett, D.S.3    Meunier, D.4    Ellison-Wright, I.5    Yücel, M.6
  • 40
    • 84956879903 scopus 로고    scopus 로고
    • A transcriptional signature of hub connectivity in the mouse connectome
    • Fulcher BD, Fornito A,. 2016. A transcriptional signature of hub connectivity in the mouse connectome. Proc Natl Acad Sci U S A 113 (5): 1435-40.
    • (2016) Proc Natl Acad Sci U S A , vol.113 , Issue.5 , pp. 1435-1440
    • Fulcher, B.D.1    Fornito, A.2
  • 41
    • 84891634739 scopus 로고    scopus 로고
    • Beyond modules and hubs: The potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders
    • Gaiteri C, Ding Y, French B, Tseng GC, Sibille E,. 2014. Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain Behav 13 (1): 13-24.
    • (2014) Genes Brain Behav , vol.13 , Issue.1 , pp. 13-24
    • Gaiteri, C.1    Ding, Y.2    French, B.3    Tseng, G.C.4    Sibille, E.5
  • 42
    • 79959354385 scopus 로고    scopus 로고
    • Sparse low-order interaction network underlies a highly correlated and learnable neural population code
    • Ganmor E, Segev R, Schneidman E,. 2011 a. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proc Natl Acad Sci U S A 108 (23): 9679-84.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , Issue.23 , pp. 9679-9684
    • Ganmor, E.1    Segev, R.2    Schneidman, E.3
  • 43
    • 79951967267 scopus 로고    scopus 로고
    • The architecture of functional interaction networks in the retina
    • Ganmor E, Segev R, Schneidman E,. 2011 b. The architecture of functional interaction networks in the retina. J Neurosci 31 (8): 3044-54.
    • (2011) J Neurosci , vol.31 , Issue.8 , pp. 3044-3054
    • Ganmor, E.1    Segev, R.2    Schneidman, E.3
  • 44
    • 79960882474 scopus 로고    scopus 로고
    • Brain network analysis: Separating cost from topology using cost-integration
    • Ginestet CE, Nichols TE, Bullmore ET, Simmons A,. 2011. Brain network analysis: separating cost from topology using cost-integration. PLoS One 6 (7): e21570.
    • (2011) PLoS One , vol.6 , Issue.7 , pp. e21570
    • Ginestet, C.E.1    Nichols, T.E.2    Bullmore, E.T.3    Simmons, A.4
  • 45
    • 84973617915 scopus 로고    scopus 로고
    • Two's company, three (or more) is a simplex: Algebraic-topological tools for understanding higher-order structure in neural data
    • Giusti C, Ghrist R, Bassett DS,. 2016. Two's company, three (or more) is a simplex: algebraic-topological tools for understanding higher-order structure in neural data. J Comput Neurosci 41 (1): 1-14.
    • (2016) J Comput Neurosci , vol.41 , Issue.1 , pp. 1-14
    • Giusti, C.1    Ghrist, R.2    Bassett, D.S.3
  • 46
    • 84946594591 scopus 로고    scopus 로고
    • Clique topology reveals intrinsic geometric structure in neural correlations
    • Giusti C, Pastalkova E, Curto C, Itskov V,. 2015. Clique topology reveals intrinsic geometric structure in neural correlations. Proc Natl Acad Sci U S A 112 (44): 13455-60.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , Issue.44 , pp. 13455-13460
    • Giusti, C.1    Pastalkova, E.2    Curto, C.3    Itskov, V.4
  • 47
    • 84940586463 scopus 로고    scopus 로고
    • The strength of weak connections in the macaque cortico-cortical network
    • Goulas A, Schaefer A, Margulies DS,. The strength of weak connections in the macaque cortico-cortical network. Brain Struct Funct 220 (5): 2939-51.
    • Brain Struct Funct , vol.220 , Issue.5 , pp. 2939-2951
    • Goulas, A.1    Schaefer, A.2    Margulies, D.S.3
  • 48
    • 34247960076 scopus 로고
    • The strength of weak ties
    • Granovetter MS,. 1973. The strength of weak ties. Am J Sociol 78: 1360-80.
    • (1973) Am J Sociol , vol.78 , pp. 1360-1380
    • Granovetter, M.S.1
  • 52
    • 11844303236 scopus 로고    scopus 로고
    • Clustered organization of cortical connectivity
    • Hilgetag CC, Kaiser M,. 2004. Clustered organization of cortical connectivity. Neuroinformatics 2 (2): 353-60.
    • (2004) Neuroinformatics , vol.2 , Issue.2 , pp. 353-360
    • Hilgetag, C.C.1    Kaiser, M.2
  • 53
    • 34547219105 scopus 로고    scopus 로고
    • Network structure of cerebral cortex shapes functional connectivity on multiple time scales
    • Honey CJ, Kötter R, Breakspear M, Sporns O,. 2007. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci U S A 104 (24): 10240-5.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.24 , pp. 10240-10245
    • Honey, C.J.1    Kötter, R.2    Breakspear, M.3    Sporns, O.4
  • 55
    • 38549114493 scopus 로고    scopus 로고
    • Mathematical estimates of recovery after loss of activity: II. Long-range connectivity facilitates rapid functional recovery
    • Hübler MJ, Buchman TG,. 2008. Mathematical estimates of recovery after loss of activity: II. Long-range connectivity facilitates rapid functional recovery. Crit Care Med 36 (2): 489-94.
    • (2008) Crit Care Med , vol.36 , Issue.2 , pp. 489-494
    • Hübler, M.J.1    Buchman, T.G.2
  • 56
    • 33646689571 scopus 로고    scopus 로고
    • The brainstem reticular formation is a small-world, not scale-free, network
    • Humphries MD, Gurney K, Prescott TJ,. 2006. The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci 273 (1585): 503-11.
    • (2006) Proc Biol Sci , vol.273 , Issue.1585 , pp. 503-511
    • Humphries, M.D.1    Gurney, K.2    Prescott, T.J.3
  • 58
    • 84862637851 scopus 로고    scopus 로고
    • Implementation of olfactory bulb glomerular-layer computations in a digital neurosynaptic core
    • Imam N, Cleland TA, Manohar R, Merolla PA, Arthur JV, Akopyan F, and others. 2012. Implementation of olfactory bulb glomerular-layer computations in a digital neurosynaptic core. Front Neurosci 6: 83.
    • (2012) Front Neurosci , vol.6 , pp. 83
    • Imam, N.1    Cleland, T.A.2    Manohar, R.3    Merolla, P.A.4    Arthur, J.V.5    Akopyan, F.6
  • 59
    • 0031936312 scopus 로고    scopus 로고
    • A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey
    • Jouve B, Rosenstiehl P, Imbert M,. 1998. A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. Cereb Cortex 8 (1): 28-39.
    • (1998) Cereb Cortex , vol.8 , Issue.1 , pp. 28-39
    • Jouve, B.1    Rosenstiehl, P.2    Imbert, M.3
  • 60
    • 33746636451 scopus 로고    scopus 로고
    • Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems
    • Kaiser M, Hilgetag CC,. 2006. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PloS Comput Biol 2 (7): e95.
    • (2006) PloS Comput Biol , vol.2 , Issue.7 , pp. e95
    • Kaiser, M.1    Hilgetag, C.C.2
  • 62
    • 80052158848 scopus 로고    scopus 로고
    • Searching for the most cost-effective strategy for controlling epidemics spreading on regular and small-world networks
    • Kleczkowski A, Oles K, Gudowska-Nowak E, Gilligan CA,. 2012. Searching for the most cost-effective strategy for controlling epidemics spreading on regular and small-world networks. J R Soc Interface 9 (66): 158-69.
    • (2012) J R Soc Interface , vol.9 , Issue.66 , pp. 158-169
    • Kleczkowski, A.1    Oles, K.2    Gudowska-Nowak, E.3    Gilligan, C.A.4
  • 63
    • 84897444623 scopus 로고    scopus 로고
    • Resolving structural variability in network models and the brain
    • Klimm F, Bassett DS, Carlson JM, Mucha PJ,. 2014. Resolving structural variability in network models and the brain. PLoS Comput Biol 10 (3): e1003491.
    • (2014) PLoS Comput Biol , vol.10 , Issue.3 , pp. e1003491
    • Klimm, F.1    Bassett, D.S.2    Carlson, J.M.3    Mucha, P.J.4
  • 66
    • 79953160436 scopus 로고    scopus 로고
    • Topology-free stability of a steady state in network systems with dynamic connections
    • 3 PT 2
    • Konishi K, Hara N,. 2011. Topology-free stability of a steady state in network systems with dynamic connections. Phys Rev E Stat Nonlin Soft Matter Phys 83 (3 Pt 2): 036204.
    • (2011) Phys Rev e Stat Nonlin Soft Matter Phys , vol.83 , pp. 036204
    • Konishi, K.1    Hara, N.2
  • 67
    • 77954622985 scopus 로고    scopus 로고
    • Structural analysis of metabolic networks based on flux centrality
    • Koschutzki D, Junker BH, Schwender J, Schreiber F,. 2010. Structural analysis of metabolic networks based on flux centrality. J Theor Biol 265 (3): 261-9.
    • (2010) J Theor Biol , vol.265 , Issue.3 , pp. 261-269
    • Koschutzki, D.1    Junker, B.H.2    Schwender, J.3    Schreiber, F.4
  • 68
    • 0034688893 scopus 로고    scopus 로고
    • Fast response and temporal coherent oscillations in small-world networks
    • Lago-Fernández LF, Huerta R, Corbacho F, Sigüenza JA,. 2000. Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84 (12): 2758-61.
    • (2000) Phys Rev Lett , vol.84 , Issue.12 , pp. 2758-2761
    • Lago-Fernández, L.F.1    Huerta, R.2    Corbacho, F.3    Sigüenza, J.A.4
  • 69
    • 84922591049 scopus 로고    scopus 로고
    • Efficient behavior of small-world networks
    • Latora V, Marchiori M,. 2001. Efficient behavior of small-world networks. Phys Rev Lett 87 (19): 198701.
    • (2001) Phys Rev Lett , vol.87 , Issue.19 , pp. 198701
    • Latora, V.1    Marchiori, M.2
  • 70
    • 84922221687 scopus 로고    scopus 로고
    • Tracking sinks of atmospheric methane using small world networks
    • Lee CS, Su PJ,. Tracking sinks of atmospheric methane using small world networks. Chemosphere 117: 766-73.
    • Chemosphere , vol.117 , pp. 766-773
    • Lee, C.S.1    Su, P.J.2
  • 71
    • 72449156064 scopus 로고    scopus 로고
    • Largest Laplacian eigenvalue predicts the emergence of costly punishment in the evolutionary ultimatum game on networks
    • Li X, Cao L,. 2009. Largest Laplacian eigenvalue predicts the emergence of costly punishment in the evolutionary ultimatum game on networks. Phys Rev E Stat Nonlin Soft Matter Phys 80 (6 Pt 2): 066101.
    • (2009) Phys Rev e Stat Nonlin Soft Matter Phys , vol.80 , Issue.6 , pp. 066101
    • Li, X.1    Cao, L.2
  • 72
    • 84908355019 scopus 로고    scopus 로고
    • Resolving anatomical and functional structure in human brain organization: Identifying mesoscale organization in weighted network representations
    • Lohse C, Bassett DS, Lim KO, Carlson JM,. 2014. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations. PLoS Comput Biol 10 (10): e1003712.
    • (2014) PLoS Comput Biol , vol.10 , Issue.10 , pp. e1003712
    • Lohse, C.1    Bassett, D.S.2    Lim, K.O.3    Carlson, J.M.4
  • 77
    • 57649177558 scopus 로고    scopus 로고
    • Age-related changes in modular organization of human brain functional networks
    • Meunier D, Achard S, Morcom A, Bullmore E,. 2009. Age-related changes in modular organization of human brain functional networks. Neuroimage 44 (3): 715-23.
    • (2009) Neuroimage , vol.44 , Issue.3 , pp. 715-723
    • Meunier, D.1    Achard, S.2    Morcom, A.3    Bullmore, E.4
  • 78
    • 0002687371 scopus 로고
    • The small world problem
    • Milgram S,. 1967. The small world problem. Psychol Today 2: 60-7.
    • (1967) Psychol Today , vol.2 , pp. 60-67
    • Milgram, S.1
  • 79
    • 77955834422 scopus 로고    scopus 로고
    • Network architecture of the long-distance pathways in the macaque brain
    • Modha DS, Singh R,. 2010. Network architecture of the long-distance pathways in the macaque brain. Proc Natl Acad Sci 107 (30): 13485-90.
    • (2010) Proc Natl Acad Sci , vol.107 , Issue.30 , pp. 13485-13490
    • Modha, D.S.1    Singh, R.2
  • 81
    • 84959421643 scopus 로고    scopus 로고
    • Small-world propensity and weighted brain networks
    • Muldoon SF, Bridgeford EW, Bassett DS,. 2016 a. Small-world propensity and weighted brain networks. Sci Rep 6: 22057.
    • (2016) Sci Rep , vol.6 , pp. 22057
    • Muldoon, S.F.1    Bridgeford, E.W.2    Bassett, D.S.3
  • 83
    • 0042635247 scopus 로고    scopus 로고
    • Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality
    • 1 PT 2
    • Newman MEJ,. 2001. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E Stat Nonlin Soft Matter Phys 64 (1 Pt 2): 016132.
    • (2001) Phys Rev e Stat Nonlin Soft Matter Phys , vol.64 , pp. 016132
    • Newman, M.E.J.1
  • 84
    • 0041707963 scopus 로고    scopus 로고
    • Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?
    • Nishikawa T, Motter AE, Lai YC, Hoppensteadt FC,. 2003. Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys Rev Lett 91 (1): 014101.
    • (2003) Phys Rev Lett , vol.91 , Issue.1 , pp. 014101
    • Nishikawa, T.1    Motter, A.E.2    Lai, Y.C.3    Hoppensteadt, F.C.4
  • 85
    • 84982804472 scopus 로고    scopus 로고
    • Topological small-world organization of the fibroblastic reticular cell network determines lymph node functionality
    • Novkovic M, Onder L, Cupovic J, Abe J, Bomze D, Cremasco V, and others. 2016. Topological small-world organization of the fibroblastic reticular cell network determines lymph node functionality. PLoS Biol 14 (7): e1002515.
    • (2016) PLoS Biol , vol.14 , Issue.7 , pp. e1002515
    • Novkovic, M.1    Onder, L.2    Cupovic, J.3    Abe, J.4    Bomze, D.5    Cremasco, V.6
  • 86
  • 88
    • 85029524306 scopus 로고    scopus 로고
    • Evolution of network architecture in a granular material under compression
    • Papadopoulus L, Puckett J, Daniels KE, Bassett DS,. 2016. Evolution of network architecture in a granular material under compression. Condensed Matter axXiv: 1603.08159.
    • (2016) Condensed Matter , pp. 160308159
    • Papadopoulus, L.1    Puckett, J.2    Daniels, K.E.3    Bassett, D.S.4
  • 89
    • 84914165527 scopus 로고    scopus 로고
    • Controllability metrics, limitations and algorithms for complex networks
    • Pasqualetti F, Zampieri S, Bullo F,. 2014. Controllability metrics, limitations and algorithms for complex networks. IEEE Trans Control Network Syst 1: 40-52.
    • (2014) IEEE Trans Control Network Syst , vol.1 , pp. 40-52
    • Pasqualetti, F.1    Zampieri, S.2    Bullo, F.3
  • 90
    • 84906946351 scopus 로고    scopus 로고
    • Understanding brain networks and brain organization
    • Pessoa L,. 2014. Understanding brain networks and brain organization. Phys Life Rev 11 (3): 400-35.
    • (2014) Phys Life Rev , vol.11 , Issue.3 , pp. 400-435
    • Pessoa, L.1
  • 92
    • 84858648349 scopus 로고    scopus 로고
    • A network diffusion model of disease progression in dementia
    • Raj A, Kuceyeski A, Weiner M,. 2012. A network diffusion model of disease progression in dementia. Neuron 73 (6): 1204-15.
    • (2012) Neuron , vol.73 , Issue.6 , pp. 1204-1215
    • Raj, A.1    Kuceyeski, A.2    Weiner, M.3
  • 93
    • 85029502824 scopus 로고    scopus 로고
    • Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer's disease
    • 14
    • Raj A, LoCastro E, Kuceyeski A, Tosun D, Relkin N, Weiner M,. 2015. Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer's disease. Cell Rep S2211-1247 (14): 01063-8.
    • (2015) Cell Rep , vol.2211 , Issue.1247 , pp. 01063-01068
    • Raj, A.1    LoCastro, E.2    Kuceyeski, A.3    Tosun, D.4    Relkin, N.5    Weiner, M.6
  • 94
    • 79957450857 scopus 로고    scopus 로고
    • Weight-conserving characterization of complex functional brain networks
    • Rubinov M, Sporns O,. 2011. Weight-conserving characterization of complex functional brain networks. Neuroimage 56 (4): 2068-79.
    • (2011) Neuroimage , vol.56 , Issue.4 , pp. 2068-2079
    • Rubinov, M.1    Sporns, O.2
  • 95
    • 84938929869 scopus 로고    scopus 로고
    • Wiring cost and topological participation of the mouse brain connectome
    • Rubinov M, Ypma R, Watson C, Bullmore E,. 2015. Wiring cost and topological participation of the mouse brain connectome. Proc Natl Acad Sci U S A 112 (32): 10032-7.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , Issue.32 , pp. 10032-10037
    • Rubinov, M.1    Ypma, R.2    Watson, C.3    Bullmore, E.4
  • 96
    • 18144431880 scopus 로고    scopus 로고
    • Neurophysiological architecture of functional magnetic resonance images of human brain
    • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E,. 2005. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15 (9): 1332-42.
    • (2005) Cereb Cortex , vol.15 , Issue.9 , pp. 1332-1342
    • Salvador, R.1    Suckling, J.2    Coleman, M.R.3    Pickard, J.D.4    Menon, D.5    Bullmore, E.6
  • 97
    • 84904473785 scopus 로고    scopus 로고
    • Efficiency of weak brain connections support general cognitive functioning
    • Santarnecchi E, Galli G, Polizzotto NR, Rossi A, Rossi S,. 2014. Efficiency of weak brain connections support general cognitive functioning. Hum Brain Mapp 35 (9): 4566-82.
    • (2014) Hum Brain Mapp , vol.35 , Issue.9 , pp. 4566-4582
    • Santarnecchi, E.1    Galli, G.2    Polizzotto, N.R.3    Rossi, A.4    Rossi, S.5
  • 98
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply strongly correlated network states in a neural population
    • Schneidman E, Berry MJ 2nd, Segev R, Bialek W,. 2006. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440 (7087): 1007-12.
    • (2006) Nature , vol.440 , Issue.7087 , pp. 1007-1012
    • Schneidman, E.1    Berry, M.J.2    Segev, R.3    Bialek, W.4
  • 99
    • 84899940069 scopus 로고    scopus 로고
    • Rich club organization supports a diverse set of functional network configurations
    • Senden M, Deco G, de Reus MA, Goebel R, van den Heuvel MP,. 2014. Rich club organization supports a diverse set of functional network configurations. Neuroimage 96: 174-82.
    • (2014) Neuroimage , vol.96 , pp. 174-182
    • Senden, M.1    Deco, G.2    De Reus, M.A.3    Goebel, R.4    Van Den Heuvel, M.P.5
  • 101
    • 0000790263 scopus 로고
    • The architecture of complexity
    • Simon H,. 1962. The architecture of complexity. Proc Am Philos Soc 106 (6): 467-82.
    • (1962) Proc Am Philos Soc , vol.106 , Issue.6 , pp. 467-482
    • Simon, H.1
  • 102
    • 85018981616 scopus 로고    scopus 로고
    • Classification of weighted networks through mesoscale homological features
    • Epub 4. doi: 10.1093/comnet/cnw013
    • Sizemore A, Giusti C, Bassett DS,. 2016. Classification of weighted networks through mesoscale homological features. J Complex Networks. Epub 4. doi: 10.1093/comnet/cnw013. https://arxiv.org/abs/1512.06457
    • (2016) J Complex Networks
    • Sizemore, A.1    Giusti, C.2    Bassett, D.S.3
  • 103
    • 84915748475 scopus 로고    scopus 로고
    • Spatial embedding of structural similarity in the cerebral cortex
    • Song HF, Kennedy H, Wang XJ,. 2014. Spatial embedding of structural similarity in the cerebral cortex. Proc Natl Acad Sci U S A 111 (46): 16580-5.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , Issue.46 , pp. 16580-16585
    • Song, H.F.1    Kennedy, H.2    Wang, X.J.3
  • 106
    • 13844284450 scopus 로고    scopus 로고
    • Motifs in brain networks
    • Sporns O, Kötter R,. 2004. Motifs in brain networks. PLoS Biol 2 (11): e369.
    • (2004) PLoS Biol , vol.2 , Issue.11 , pp. e369
    • Sporns, O.1    Kötter, R.2
  • 107
    • 31144436747 scopus 로고    scopus 로고
    • The human connectome: A structural description of the human brain
    • Sporns O, Tononi G, Kötter R,. 2005. The human connectome: a structural description of the human brain. PLoS Comput Biol 1 (4): e42.
    • (2005) PLoS Comput Biol , vol.1 , Issue.4 , pp. e42
    • Sporns, O.1    Tononi, G.2    Kötter, R.3
  • 108
    • 4444229670 scopus 로고    scopus 로고
    • The small world of the cerebral cortex
    • Sporns O, Zwi JD,. 2004. The small world of the cerebral cortex. Neuroinformatics 2 (2): 145-62.
    • (2004) Neuroinformatics , vol.2 , Issue.2 , pp. 145-162
    • Sporns, O.1    Zwi, J.D.2
  • 110
    • 84874878750 scopus 로고    scopus 로고
    • Beyond scale-free small-world networks: Cortical columns for quick brains
    • Stoop R, Saase V, Wagner C, Stoop B, Stoop R,. 2013. Beyond scale-free small-world networks: cortical columns for quick brains. Phys Rev Lett 110 (10): 108105.
    • (2013) Phys Rev Lett , vol.110 , Issue.10 , pp. 108105
    • Stoop, R.1    Saase, V.2    Wagner, C.3    Stoop, B.4    Stoop, R.5
  • 112
    • 84866170640 scopus 로고    scopus 로고
    • How the statistical validation of functional connectivity patterns can prevent erroneous definition of small-world properties of a brain connectivity network
    • Toppi J, De Vico Fallani F, Vecchiato G, Maglione AG, Cincotti F, Mattia D, and others. 2012. How the statistical validation of functional connectivity patterns can prevent erroneous definition of small-world properties of a brain connectivity network. Comput Math Methods Med 2012: 130985.
    • (2012) Comput Math Methods Med , vol.2012 , pp. 130985
    • Toppi, J.1    De Vico Fallani, F.2    Vecchiato, G.3    Maglione, A.G.4    Cincotti, F.5    Mattia, D.6
  • 113
    • 84891489937 scopus 로고    scopus 로고
    • Limits on ecosystem trophic complexity: Insights from ecological network analysis
    • Ulanowicz RE, Holt RD, Barfield M,. 2014. Limits on ecosystem trophic complexity: insights from ecological network analysis. Ecol Lett 17 (2): 127-36.
    • (2014) Ecol Lett , vol.17 , Issue.2 , pp. 127-136
    • Ulanowicz, R.E.1    Holt, R.D.2    Barfield, M.3
  • 114
    • 77952423190 scopus 로고    scopus 로고
    • The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures
    • Vaessen MJ, Hofman PA, Tijssen HN, Aldenkamp AP, Jansen JF, Backes WH,. 2010. The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures. Neuroimage 51 (3): 1106-16.
    • (2010) Neuroimage , vol.51 , Issue.3 , pp. 1106-1116
    • Vaessen, M.J.1    Hofman, P.A.2    Tijssen, H.N.3    Aldenkamp, A.P.4    Jansen, J.F.5    Backes, W.H.6
  • 117
    • 80155148207 scopus 로고    scopus 로고
    • Rich-club organization of the human connectome
    • van den Heuvel MP, Sporns O,. 2011. Rich-club organization of the human connectome. J Neurosci 31 (44): 15775-86.
    • (2011) J Neurosci , vol.31 , Issue.44 , pp. 15775-15786
    • Van Den Heuvel, M.P.1    Sporns, O.2
  • 118
    • 78149435102 scopus 로고    scopus 로고
    • Comparing brain networks of different size and connectivity density using graph theory
    • van Wijk BC, Stam CJ, Daffertshofer A,. 2010. Comparing brain networks of different size and connectivity density using graph theory. PLoS One 5 (10): e13701.
    • (2010) PLoS One , vol.5 , Issue.10 , pp. e13701
    • Van Wijk, B.C.1    Stam, C.J.2    Daffertshofer, A.3
  • 119
    • 84964312439 scopus 로고    scopus 로고
    • Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks
    • doi: 10.1098/rstb.2013.0531
    • Vértes PE, Alexander-Bloch A, Bullmore ET,. 2014. Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks. Philos Trans R Soc Lond B Biol Sci 369 (1653). doi: 10.1098/rstb.2013.0531.
    • (2014) Philos Trans R Soc Lond B Biol Sci , vol.369 , Issue.1653
    • Vértes, P.E.1    Alexander-Bloch, A.2    Bullmore, E.T.3
  • 121
    • 84957080079 scopus 로고    scopus 로고
    • Brain structure and dynamics across scales: In search of rules
    • Wang XJ, Kennedy H,. 2016. Brain structure and dynamics across scales: in search of rules. Curr Opin Neurobiol 37: 92-8.
    • (2016) Curr Opin Neurobiol , vol.37 , pp. 92-98
    • Wang, X.J.1    Kennedy, H.2
  • 122
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of "small-world" networks
    • Watts DJ, Strogatz SH,. 1998. Collective dynamics of "small-world" networks. Nature 393 (6684): 440-2.
    • (1998) Nature , vol.393 , Issue.6684 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 124
    • 0027273888 scopus 로고
    • The organization of neural systems in the primate cerebral cortex
    • Young MP,. 1993. The organization of neural systems in the primate cerebral cortex. Proc Biol Sci 252 (1333): 13-8.
    • (1993) Proc Biol Sci , vol.252 , Issue.1333 , pp. 13-18
    • Young, M.P.1
  • 125
    • 84989288316 scopus 로고    scopus 로고
    • Statistical analysis of tract-tracing experiments demonstrates a dense, complex cortical network in the mouse
    • Epub 12. doi
    • Ypma RJF, Bullmore ET,. 2016. Statistical analysis of tract-tracing experiments demonstrates a dense, complex cortical network in the mouse. PLoS Comput Biol. Epub 12. doi: http://dx.doi.org/10.1371/journal.pcbi.1005104
    • (2016) PLoS Comput Biol
    • Ypma, R.J.F.1    Bullmore, E.T.2
  • 127
    • 23944458138 scopus 로고    scopus 로고
    • A general framework for weighted gene co-expression network analysis
    • Article 17
    • Zhang B, Horvath S,. 2005. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article 17.
    • (2005) Stat Appl Genet Mol Biol , vol.4
    • Zhang, B.1    Horvath, S.2
  • 128
    • 84978938295 scopus 로고    scopus 로고
    • Choosing wavelet methods, filters, and lengths for functional brain network construction
    • Zhang Z, Telesford QK, Giusti C, Lim KO, Bassett DS,. 2016. Choosing wavelet methods, filters, and lengths for functional brain network construction. PLoS One 11 (6): e0157243.
    • (2016) PLoS One , vol.11 , Issue.6 , pp. e0157243
    • Zhang, Z.1    Telesford, Q.K.2    Giusti, C.3    Lim, K.O.4    Bassett, D.S.5
  • 129
    • 84879546717 scopus 로고    scopus 로고
    • Neuronal functional connection graphs among multiple areas of the rat somatosensory system during spontaneous and evoked activities
    • Zippo AG, Storchi R, Nencini S, Caramenti GC, Valente M, Biella GE,. Neuronal functional connection graphs among multiple areas of the rat somatosensory system during spontaneous and evoked activities. PLoS Comput Biol 9 (6): e1003104.
    • PLoS Comput Biol , vol.9 , Issue.6 , pp. e1003104
    • Zippo, A.G.1    Storchi, R.2    Nencini, S.3    Caramenti, G.C.4    Valente, M.5    Biella, G.E.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.