메뉴 건너뛰기




Volumn 20, Issue 5, 2016, Pages 345-361

Comparative Connectomics

Author keywords

[No Author keywords available]

Indexed keywords

GRAPH THEORY;

EID: 84961813432     PISSN: 13646613     EISSN: 1879307X     Source Type: Journal    
DOI: 10.1016/j.tics.2016.03.001     Document Type: Review
Times cited : (289)

References (174)
  • 1
    • 0004030413 scopus 로고
    • Cytoarchitectonic Maps of the Human Brain. Histological Studies on the Localisation of Cerebral Function
    • University Press
    • Campbell, A.W., Cytoarchitectonic Maps of the Human Brain. Histological Studies on the Localisation of Cerebral Function. 1905, University Press.
    • (1905)
    • Campbell, A.W.1
  • 2
    • 0003724754 scopus 로고
    • Vergleichende Lokalisationslehre der Grosshirnrinde
    • Johann Ambrosius Barth
    • Brodmann, K., Vergleichende Lokalisationslehre der Grosshirnrinde. 1909, Johann Ambrosius Barth.
    • (1909)
    • Brodmann, K.1
  • 3
    • 0004225447 scopus 로고
    • The Neocortex of Macaca mulatta
    • University of Illinois Press
    • von Bonin, G., Bailey, P., The Neocortex of Macaca mulatta. 1947, University of Illinois Press.
    • (1947)
    • von Bonin, G.1    Bailey, P.2
  • 4
    • 0029100444 scopus 로고
    • The emergence and evolution of mammalian neocortex
    • Northcutt, R.G., Kaas, J.H., The emergence and evolution of mammalian neocortex. Trends Neurosci. 18 (1995), 373–379.
    • (1995) Trends Neurosci. , vol.18 , pp. 373-379
    • Northcutt, R.G.1    Kaas, J.H.2
  • 5
    • 45049088576 scopus 로고    scopus 로고
    • The magnificent compromise: cortical field evolution in mammals
    • Krubitzer, L., The magnificent compromise: cortical field evolution in mammals. Neuron 56 (2007), 201–208.
    • (2007) Neuron , vol.56 , pp. 201-208
    • Krubitzer, L.1
  • 6
    • 0003453641 scopus 로고
    • Evolution of the Brain and Intelligence
    • Academic Press
    • Jerison, H.J., Evolution of the Brain and Intelligence. 1973, Academic Press.
    • (1973)
    • Jerison, H.J.1
  • 7
    • 33847677187 scopus 로고    scopus 로고
    • Cellular scaling rules for primate brains
    • Herculano-Houzel, S., et al. Cellular scaling rules for primate brains. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 3562–3567.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 3562-3567
    • Herculano-Houzel, S.1
  • 8
    • 34547780460 scopus 로고    scopus 로고
    • Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates
    • Deaner, R.O., et al. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70 (2007), 115–124.
    • (2007) Brain Behav. Evol. , vol.70 , pp. 115-124
    • Deaner, R.O.1
  • 9
    • 84887065750 scopus 로고    scopus 로고
    • Hominid Brain Evolution
    • D.R. Begun Blackwell Publishing
    • Schoenemann, P.T., Hominid Brain Evolution. Begun, D.R., (eds.) A Companion to Paleoanthropology, 2013, Blackwell Publishing, 136–164.
    • (2013) A Companion to Paleoanthropology , pp. 136-164
    • Schoenemann, P.T.1
  • 10
    • 33751063769 scopus 로고    scopus 로고
    • Evolution of the size and functional areas of the human brain
    • Schoenemann, P.T., Evolution of the size and functional areas of the human brain. Annu. Rev. Anthropol. 35 (2006), 379–406.
    • (2006) Annu. Rev. Anthropol. , vol.35 , pp. 379-406
    • Schoenemann, P.T.1
  • 11
    • 0035998889 scopus 로고    scopus 로고
    • A quantitative morphometric comparative analysis of the primate temporal lobe
    • Rilling, J.K., Seligman, R.A., A quantitative morphometric comparative analysis of the primate temporal lobe. J. Hum. Evol. 42 (2002), 505–533.
    • (2002) J. Hum. Evol. , vol.42 , pp. 505-533
    • Rilling, J.K.1    Seligman, R.A.2
  • 12
    • 13244281707 scopus 로고    scopus 로고
    • Prefrontal white matter volume is disproportionately larger in humans than in other primates
    • Schoenemann, P.T., et al. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci. 8 (2005), 242–252.
    • (2005) Nat. Neurosci. , vol.8 , pp. 242-252
    • Schoenemann, P.T.1
  • 13
    • 0034625150 scopus 로고    scopus 로고
    • A universal scaling law between gray matter and white matter of cerebral cortex
    • Zhang, K., Sejnowski, T.J., A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 97 (2000), 5621–5626.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 5621-5626
    • Zhang, K.1    Sejnowski, T.J.2
  • 14
    • 0023689370 scopus 로고
    • Size and shape of the cerebral cortex in mammals. II. The cortical volume
    • Hofman, M.A., Size and shape of the cerebral cortex in mammals. II. The cortical volume. Brain Behav. Evol. 32 (1988), 17–26.
    • (1988) Brain Behav. Evol. , vol.32 , pp. 17-26
    • Hofman, M.A.1
  • 15
    • 84897080492 scopus 로고    scopus 로고
    • Evolution of the human brain: when bigger is better
    • Hoffman, M.A., Evolution of the human brain: when bigger is better. Front. Neuroanat., 8, 2014, 15.
    • (2014) Front. Neuroanat. , vol.8 , pp. 15
    • Hoffman, M.A.1
  • 16
    • 43049164376 scopus 로고    scopus 로고
    • Functional trade-offs in white matter axonal scaling
    • Wang, S.S., et al. Functional trade-offs in white matter axonal scaling. J. Neurosci. 28 (2008), 4047–4056.
    • (2008) J. Neurosci. , vol.28 , pp. 4047-4056
    • Wang, S.S.1
  • 17
    • 0026049138 scopus 로고
    • Neuronal interconnection as a function of brain size
    • Ringo, J.L., Neuronal interconnection as a function of brain size. Brain Behav. Evol. 38 (1991), 1–6.
    • (1991) Brain Behav. Evol. , vol.38 , pp. 1-6
    • Ringo, J.L.1
  • 18
    • 78650505566 scopus 로고    scopus 로고
    • Connectivity-driven white matter scaling and folding in primate cerebral cortex
    • Herculano-Houzel, S., et al. Connectivity-driven white matter scaling and folding in primate cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 19008–19013.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 19008-19013
    • Herculano-Houzel, S.1
  • 19
    • 84859948255 scopus 로고    scopus 로고
    • The economy of brain network organization
    • Bullmore, E., Sporns, O., The economy of brain network organization. Nat. Rev. Neurosci. 13 (2012), 336–349.
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 336-349
    • Bullmore, E.1    Sporns, O.2
  • 20
    • 31144436747 scopus 로고    scopus 로고
    • The human connectome: a structural description of the human brain
    • Sporns, O., et al. The human connectome: a structural description of the human brain. PLoS Comput. Biol., 1, 2005, e42.
    • (2005) PLoS Comput. Biol. , vol.1 , pp. e42
    • Sporns, O.1
  • 21
    • 79952069440 scopus 로고    scopus 로고
    • Networks of the Brain
    • MIT Press
    • Sporns, O., Networks of the Brain. 2011, MIT Press.
    • (2011)
    • Sporns, O.1
  • 22
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: graph theoretical analysis of structural and functional systems
    • Bullmore, E., Sporns, O., Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10 (2009), 186–198.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 23
    • 77953961776 scopus 로고    scopus 로고
    • Exploring the brain network: a review on resting-state fMRI functional connectivity
    • van den Heuvel, M.P., Hulshoff Pol, H.E., Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20 (2010), 519–534.
    • (2010) Eur. Neuropsychopharmacol. , vol.20 , pp. 519-534
    • van den Heuvel, M.P.1    Hulshoff Pol, H.E.2
  • 24
    • 84978621819 scopus 로고    scopus 로고
    • Fundamentals of Brain Network Analysis
    • Academic Press
    • Fornito, A., et al. Fundamentals of Brain Network Analysis. 2016, Academic Press.
    • (2016)
    • Fornito, A.1
  • 25
    • 0002221492 scopus 로고
    • The structure of the nervous system of the nematode Caenorhabditis elegans
    • White, J.G., et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314 (1986), 1–340.
    • (1986) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.314 , pp. 1-340
    • White, J.G.1
  • 26
    • 79952483532 scopus 로고    scopus 로고
    • Structural properties of the Caenorhabditis elegans neuronal network
    • Varshney, L.R., et al. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol., 7, 2010, e1001066.
    • (2010) PLoS Comput. Biol. , vol.7 , pp. e1001066
    • Varshney, L.R.1
  • 27
    • 84864352338 scopus 로고    scopus 로고
    • The connectome of a decision-making neural network
    • Jarrell, T.A., et al. The connectome of a decision-making neural network. Science 337 (2012), 437–444.
    • (2012) Science , vol.337 , pp. 437-444
    • Jarrell, T.A.1
  • 28
    • 84872569594 scopus 로고    scopus 로고
    • System-wide rewiring underlies behavioral differences in predatory and bacterial-feeding nematodes
    • Bumbarger, D.J., et al. System-wide rewiring underlies behavioral differences in predatory and bacterial-feeding nematodes. Cell 152 (2013), 109–119.
    • (2013) Cell , vol.152 , pp. 109-119
    • Bumbarger, D.J.1
  • 29
    • 84902649221 scopus 로고    scopus 로고
    • Neuronal connectome of a sensory-motor circuit for visual navigation
    • Randel, N., et al. Neuronal connectome of a sensory-motor circuit for visual navigation. Elife, 3, 2014, 2730.
    • (2014) Elife , vol.3 , pp. 2730
    • Randel, N.1
  • 30
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of ‘small-world’ networks
    • Watts, D.J., Strogatz, S.H., Collective dynamics of ‘small-world’ networks. Nature 393 (1998), 440–442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 31
    • 84922591049 scopus 로고    scopus 로고
    • Efficient behavior of small-world networks
    • Latora, V., Marchiori, M., Efficient behavior of small-world networks. Phys. Rev. Lett., 87, 2001, 198701.
    • (2001) Phys. Rev. Lett. , vol.87 , pp. 198701
    • Latora, V.1    Marchiori, M.2
  • 32
    • 84876008722 scopus 로고    scopus 로고
    • The rich club of the C. elegans neuronal connectome
    • Towlson, E.K., et al. The rich club of the C. elegans neuronal connectome. J. Neurosci. 33 (2013), 6380–6387.
    • (2013) J. Neurosci. , vol.33 , pp. 6380-6387
    • Towlson, E.K.1
  • 33
    • 33645297713 scopus 로고    scopus 로고
    • Wiring optimization can relate neuronal structure and function
    • Chen, B.L., et al. Wiring optimization can relate neuronal structure and function. Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 4723–4728.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 4723-4728
    • Chen, B.L.1
  • 34
    • 0028230439 scopus 로고
    • Component placement optimization in the brain
    • Cherniak, C., Component placement optimization in the brain. J. Neurosci. 14 (1994), 2418–2427.
    • (1994) J. Neurosci. , vol.14 , pp. 2418-2427
    • Cherniak, C.1
  • 35
    • 33746636451 scopus 로고    scopus 로고
    • Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems
    • Kaiser, M., Hilgetag, C.C., Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol., 2, 2006, e95.
    • (2006) PLoS Comput. Biol. , vol.2 , pp. e95
    • Kaiser, M.1    Hilgetag, C.C.2
  • 36
    • 33746622299 scopus 로고    scopus 로고
    • Wiring cost in the organization of a biological neuronal network
    • Ahn, Y.Y., et al. Wiring cost in the organization of a biological neuronal network. Physica A 367 (2006), 531–537.
    • (2006) Physica A , vol.367 , pp. 531-537
    • Ahn, Y.Y.1
  • 37
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi, A.L., Albert, R., Emergence of scaling in random networks. Science 286 (1999), 509–512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.L.1    Albert, R.2
  • 38
    • 79551562611 scopus 로고    scopus 로고
    • Neural development features: spatio-temporal development of the Caenorhabditis elegans neuronal network
    • Varier, S., Kaiser, M., Neural development features: spatio-temporal development of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol., 7, 2011, e1001044.
    • (2011) PLoS Comput. Biol. , vol.7 , pp. e1001044
    • Varier, S.1    Kaiser, M.2
  • 39
    • 84983287719 scopus 로고    scopus 로고
    • The neonatal connectome during preterm brain development
    • van den Heuvel, M.P., et al. The neonatal connectome during preterm brain development. Cereb. Cortex 25 (2015), 3000–3013.
    • (2015) Cereb. Cortex , vol.25 , pp. 3000-3013
    • van den Heuvel, M.P.1
  • 40
    • 79151480913 scopus 로고    scopus 로고
    • Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution
    • Chiang, A.S., et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21 (2011), 1–11.
    • (2011) Curr. Biol. , vol.21 , pp. 1-11
    • Chiang, A.S.1
  • 41
    • 84929578728 scopus 로고    scopus 로고
    • Connectomics-based analysis of information flow in the Drosophila brain
    • Shih, C.T., et al. Connectomics-based analysis of information flow in the Drosophila brain. Curr. Biol. 25 (2015), 1249–1258.
    • (2015) Curr. Biol. , vol.25 , pp. 1249-1258
    • Shih, C.T.1
  • 42
    • 82955237289 scopus 로고    scopus 로고
    • Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain
    • Rivera-Alba, M., et al. Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. Curr. Biol. 21 (2011), 2000–2005.
    • (2011) Curr. Biol. , vol.21 , pp. 2000-2005
    • Rivera-Alba, M.1
  • 43
    • 84928798062 scopus 로고    scopus 로고
    • A multilevel multimodal circuit enhances action selection in Drosophila
    • Ohyama, T., et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520 (2015), 633–639.
    • (2015) Nature , vol.520 , pp. 633-639
    • Ohyama, T.1
  • 44
    • 84879147080 scopus 로고    scopus 로고
    • Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis
    • Shanahan, M., et al. Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci., 7, 2013, 89.
    • (2013) Front. Comput. Neurosci. , vol.7 , pp. 89
    • Shanahan, M.1
  • 45
    • 84898684536 scopus 로고    scopus 로고
    • A mesoscale connectome of the mouse brain
    • Oh, S.W., et al. A mesoscale connectome of the mouse brain. Nature 508 (2014), 207–214.
    • (2014) Nature , vol.508 , pp. 207-214
    • Oh, S.W.1
  • 46
    • 84896900121 scopus 로고    scopus 로고
    • Neural networks of the mouse neocortex
    • Zingg, B., et al. Neural networks of the mouse neocortex. Cell 156 (2014), 1096–1111.
    • (2014) Cell , vol.156 , pp. 1096-1111
    • Zingg, B.1
  • 47
    • 84938929869 scopus 로고    scopus 로고
    • Wiring cost and topological participation of the mouse brain connectome
    • Rubinov, M., et al. Wiring cost and topological participation of the mouse brain connectome. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 10032–10037.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 10032-10037
    • Rubinov, M.1
  • 49
    • 84928391843 scopus 로고    scopus 로고
    • Architecture of the cerebral cortical association connectome underlying cognition
    • Bota, M., et al. Architecture of the cerebral cortical association connectome underlying cognition. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E2093–E2101.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E2093-E2101
    • Bota, M.1
  • 50
    • 84923261410 scopus 로고    scopus 로고
    • Topological organization of connectivity strength in the rat connectome
    • Published online February 20, 2016
    • van den Heuvel, M.P., et al. Topological organization of connectivity strength in the rat connectome. Brain Struct. Funct., 2015, 10.1007/s00429-015-0999-6 Published online February 20, 2016.
    • (2015) Brain Struct. Funct.
    • van den Heuvel, M.P.1
  • 51
    • 0028909231 scopus 로고
    • Analysis of connectivity in the cat cerebral cortex
    • Scannell, J.W., et al. Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15 (1995), 1463–1483.
    • (1995) J. Neurosci. , vol.15 , pp. 1463-1483
    • Scannell, J.W.1
  • 52
    • 85044262593 scopus 로고    scopus 로고
    • Building the ferretome
    • Published online January 22, 2016
    • Sukhinin, D.I., et al. Building the ferretome. Bioxiv, 2015, 10.1101/014134 Published online January 22, 2016.
    • (2015) Bioxiv
    • Sukhinin, D.I.1
  • 53
    • 0035968438 scopus 로고    scopus 로고
    • Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac)
    • Stephan, K.E., et al. Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356 (2001), 1159–1186.
    • (2001) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.356 , pp. 1159-1186
    • Stephan, K.E.1
  • 54
    • 0034728118 scopus 로고    scopus 로고
    • Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor
    • Hilgetag, C.C., et al. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355 (2000), 71–89.
    • (2000) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.355 , pp. 71-89
    • Hilgetag, C.C.1
  • 55
    • 38349140387 scopus 로고    scopus 로고
    • Identification and classification of hubs in brain networks
    • Sporns, O., et al. Identification and classification of hubs in brain networks. PLoS ONE, 2, 2007, e1049.
    • (2007) PLoS ONE , vol.2 , pp. e1049
    • Sporns, O.1
  • 56
    • 63849280988 scopus 로고    scopus 로고
    • Graph analysis of cortical networks reveals complex anatomical communication substrate
    • Zamora-Lopez, G., et al. Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos, 19, 2009, 015117.
    • (2009) Chaos , vol.19 , pp. 015117
    • Zamora-Lopez, G.1
  • 57
    • 80055002278 scopus 로고    scopus 로고
    • Exploring brain function from anatomical connectivity
    • Zamora-Lopez, G., et al. Exploring brain function from anatomical connectivity. Front. Neurosci., 5, 2011, 83.
    • (2011) Front. Neurosci. , vol.5 , pp. 83
    • Zamora-Lopez, G.1
  • 58
    • 84881140572 scopus 로고    scopus 로고
    • Rich club organization and intermodule communication in the cat connectome
    • de Reus, M.A., van den Heuvel, M.P., Rich club organization and intermodule communication in the cat connectome. J. Neurosci. 33 (2013), 12929–12939.
    • (2013) J. Neurosci. , vol.33 , pp. 12929-12939
    • de Reus, M.A.1    van den Heuvel, M.P.2
  • 59
    • 84886749851 scopus 로고    scopus 로고
    • CoCoMac 2.0 and the future of tract–tracing databases
    • Bakker, R., et al. CoCoMac 2.0 and the future of tract–tracing databases. Front. Neuroinformatics, 6, 2012, 30.
    • (2012) Front. Neuroinformatics , vol.6 , pp. 30
    • Bakker, R.1
  • 60
    • 0025718412 scopus 로고
    • Distributed hierarchical processing in the primate cerebral cortex
    • Felleman, D.J., Van Essen, D.C., Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1 (1991), 1–47.
    • (1991) Cereb. Cortex , vol.1 , pp. 1-47
    • Felleman, D.J.1    Van Essen, D.C.2
  • 61
    • 0033953083 scopus 로고    scopus 로고
    • Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices
    • Sporns, O., et al. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10 (2000), 127–141.
    • (2000) Cereb. Cortex , vol.10 , pp. 127-141
    • Sporns, O.1
  • 62
    • 77955834422 scopus 로고    scopus 로고
    • Network architecture of the long-distance pathways in the macaque brain
    • Modha, D.S., Singh, R., Network architecture of the long-distance pathways in the macaque brain. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 13485–13490.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 13485-13490
    • Modha, D.S.1    Singh, R.2
  • 63
    • 84870159038 scopus 로고    scopus 로고
    • Information processing architecture of functionally defined clusters in the macaque cortex
    • Shen, K., et al. Information processing architecture of functionally defined clusters in the macaque cortex. J. Neurosci. 32 (2012), 17465–17476.
    • (2012) J. Neurosci. , vol.32 , pp. 17465-17476
    • Shen, K.1
  • 64
    • 0026684846 scopus 로고
    • Objective analysis of the topological organization of the primate cortical visual-system
    • Young, M.P., Objective analysis of the topological organization of the primate cortical visual-system. Nature 358 (1992), 152–155.
    • (1992) Nature , vol.358 , pp. 152-155
    • Young, M.P.1
  • 65
    • 84884811455 scopus 로고    scopus 로고
    • A predictive network model of cerebral cortical connectivity based on a distance rule
    • Ercsey-Ravasz, M., et al. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80 (2013), 184–197.
    • (2013) Neuron , vol.80 , pp. 184-197
    • Ercsey-Ravasz, M.1
  • 66
    • 84867025663 scopus 로고    scopus 로고
    • Rich club organization of macaque cerebral cortex and its role in network communication
    • Harriger, L., et al. Rich club organization of macaque cerebral cortex and its role in network communication. PLoS ONE, 7, 2012, e46497.
    • (2012) PLoS ONE , vol.7 , pp. e46497
    • Harriger, L.1
  • 67
    • 84897408746 scopus 로고    scopus 로고
    • Comparative analysis of the macroscale structural connectivity in the macaque and human brain
    • Goulas, A., et al. Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput. Biol., 10, 2014, e1003529.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003529
    • Goulas, A.1
  • 68
    • 48349097292 scopus 로고    scopus 로고
    • Mapping the structural core of human cerebral cortex
    • Hagmann, P., et al. Mapping the structural core of human cerebral cortex. PLoS Biol., 6, 2008, e159.
    • (2008) PLoS Biol. , vol.6 , pp. e159
    • Hagmann, P.1
  • 69
    • 40849085402 scopus 로고    scopus 로고
    • Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory
    • Iturria-Medina, Y., et al. Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. NeuroImage 40 (2008), 1064–1076.
    • (2008) NeuroImage , vol.40 , pp. 1064-1076
    • Iturria-Medina, Y.1
  • 70
    • 77349095673 scopus 로고    scopus 로고
    • Whole-brain anatomical networks: does the choice of nodes matter?
    • Zalesky, A., et al. Whole-brain anatomical networks: does the choice of nodes matter?. NeuroImage 50 (2010), 970–983.
    • (2010) NeuroImage , vol.50 , pp. 970-983
    • Zalesky, A.1
  • 71
    • 59749085044 scopus 로고    scopus 로고
    • Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
    • Gong, G., et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. Cortex 19 (2009), 524–536.
    • (2009) Cereb. Cortex , vol.19 , pp. 524-536
    • Gong, G.1
  • 72
    • 78649423768 scopus 로고    scopus 로고
    • Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis
    • van den Heuvel, M.P., et al. Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J. Neurosci. 30 (2010), 15915–15926.
    • (2010) J. Neurosci. , vol.30 , pp. 15915-15926
    • van den Heuvel, M.P.1
  • 73
    • 77954090251 scopus 로고    scopus 로고
    • Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI
    • Jones, D.K., Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med., 2, 2010, 14.
    • (2010) Imaging Med. , vol.2 , pp. 14
    • Jones, D.K.1
  • 74
    • 84902362907 scopus 로고    scopus 로고
    • Tractography: where do we go from here?
    • Jbabdi, S., Johansen-Berg, H., Tractography: where do we go from here?. Brain Connect. 1 (2011), 169–183.
    • (2011) Brain Connect. , vol.1 , pp. 169-183
    • Jbabdi, S.1    Johansen-Berg, H.2
  • 75
    • 84915758306 scopus 로고    scopus 로고
    • Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
    • Thomas, C., et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 16574–16579.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 16574-16579
    • Thomas, C.1
  • 76
    • 84930696342 scopus 로고    scopus 로고
    • Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome
    • van den Heuvel, M.P., et al. Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome. Hum. Brain Mapping 36 (2015), 3064–3075.
    • (2015) Hum. Brain Mapping , vol.36 , pp. 3064-3075
    • van den Heuvel, M.P.1
  • 77
    • 84880332133 scopus 로고    scopus 로고
    • Graph analysis of the human connectome: promise, progress, and pitfalls
    • Fornito, A., et al. Graph analysis of the human connectome: promise, progress, and pitfalls. NeuroImage 80 (2013), 426–444.
    • (2013) NeuroImage , vol.80 , pp. 426-444
    • Fornito, A.1
  • 78
    • 84880330701 scopus 로고    scopus 로고
    • The parcellation-based connectome: limitations and extensions
    • de Reus, M.A., van den Heuvel, M.P., The parcellation-based connectome: limitations and extensions. NeuroImage 80 (2013), 397–404.
    • (2013) NeuroImage , vol.80 , pp. 397-404
    • de Reus, M.A.1    van den Heuvel, M.P.2
  • 79
    • 84865290754 scopus 로고    scopus 로고
    • The Human Connectome Project: a data acquisition perspective
    • Van Essen, D.C., et al. The Human Connectome Project: a data acquisition perspective. NeuroImage 62 (2012), 2222–2231.
    • (2012) NeuroImage , vol.62 , pp. 2222-2231
    • Van Essen, D.C.1
  • 81
    • 69149106062 scopus 로고    scopus 로고
    • Correspondence of the brain's functional architecture during activation and rest
    • Smith, S.M., et al. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 13040–13045.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 13040-13045
    • Smith, S.M.1
  • 82
    • 57749172272 scopus 로고    scopus 로고
    • Resting-state functional connectivity reflects structural connectivity in the default mode network
    • Greicius, M.D., et al. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19 (2009), 72–78.
    • (2009) Cereb. Cortex , vol.19 , pp. 72-78
    • Greicius, M.D.1
  • 83
    • 60549089357 scopus 로고    scopus 로고
    • Predicting human resting-state functional connectivity from structural connectivity
    • Honey, C.J., et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 2035–2040.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 2035-2040
    • Honey, C.J.1
  • 84
    • 58149143185 scopus 로고    scopus 로고
    • Microstructural organization of the cingulum tract and the level of default mode functional connectivity
    • van den Heuvel, M., et al. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J. Neurosci. 28 (2008), 10844–10851.
    • (2008) J. Neurosci. , vol.28 , pp. 10844-10851
    • van den Heuvel, M.1
  • 85
    • 67049122306 scopus 로고    scopus 로고
    • Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
    • van den Heuvel, M.P., et al. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapping 30 (2009), 3127–3141.
    • (2009) Hum. Brain Mapping , vol.30 , pp. 3127-3141
    • van den Heuvel, M.P.1
  • 86
    • 84878844684 scopus 로고    scopus 로고
    • Topographic hub maps of the human structural neocortical network
    • Nijhuis, E.H., et al. Topographic hub maps of the human structural neocortical network. PLoS ONE, 8, 2013, e65511.
    • (2013) PLoS ONE , vol.8 , pp. e65511
    • Nijhuis, E.H.1
  • 88
    • 84922387120 scopus 로고    scopus 로고
    • Probabilistic clustering of the human connectome identifies communities and hubs
    • Hinne, M., et al. Probabilistic clustering of the human connectome identifies communities and hubs. PLoS ONE, 10, 2015, e0117179.
    • (2015) PLoS ONE , vol.10 , pp. e0117179
    • Hinne, M.1
  • 89
    • 84863952016 scopus 로고    scopus 로고
    • High-cost, high-capacity backbone for global brain communication
    • van den Heuvel, M.P., et al. High-cost, high-capacity backbone for global brain communication. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 11372–11377.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11372-11377
    • van den Heuvel, M.P.1
  • 90
    • 84906976790 scopus 로고    scopus 로고
    • Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex
    • Collin, G., et al. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb. Cortex 24 (2014), 2258–2267.
    • (2014) Cereb. Cortex , vol.24 , pp. 2258-2267
    • Collin, G.1
  • 91
    • 84895530439 scopus 로고    scopus 로고
    • Structural and functional rich club organization of the brain in children and adults
    • Grayson, D.S., et al. Structural and functional rich club organization of the brain in children and adults. PLoS ONE, 9, 2014, e88297.
    • (2014) PLoS ONE , vol.9 , pp. e88297
    • Grayson, D.S.1
  • 92
    • 84905015581 scopus 로고    scopus 로고
    • The hubs of the human connectome are generally implicated in the anatomy of brain disorders
    • Crossley, N.A., et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137 (2014), 2382–2395.
    • (2014) Brain , vol.137 , pp. 2382-2395
    • Crossley, N.A.1
  • 93
    • 0036674417 scopus 로고    scopus 로고
    • The anatomical basis of functional localization in the cortex
    • Passingham, R.E., et al. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3 (2002), 606–616.
    • (2002) Nat. Rev. Neurosci. , vol.3 , pp. 606-616
    • Passingham, R.E.1
  • 94
    • 0041883509 scopus 로고    scopus 로고
    • Cortical Areas: Unity and Diversity
    • Taylor & Francis
    • Schuz, A., Cortical Areas: Unity and Diversity. 2002, Taylor & Francis.
    • (2002)
    • Schuz, A.1
  • 95
    • 0004213512 scopus 로고
    • Modularity of Mind: An Essay on Faculty Pscyhology
    • MIT Press
    • Fodor, J.A., Modularity of Mind: An Essay on Faculty Pscyhology. 1983, MIT Press.
    • (1983)
    • Fodor, J.A.1
  • 96
    • 84960808638 scopus 로고    scopus 로고
    • Large-scale functional connectivity networks in the rodent brain
    • Gozzi, A., Schwarz, A.J., Large-scale functional connectivity networks in the rodent brain. NeuroImage 127 (2016), 496–509.
    • (2016) NeuroImage , vol.127 , pp. 496-509
    • Gozzi, A.1    Schwarz, A.J.2
  • 97
    • 84924565982 scopus 로고    scopus 로고
    • Large-scale topology and the default mode network in the mouse connectome
    • Stafford, J.M., et al. Large-scale topology and the default mode network in the mouse connectome. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 18745–18750.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 18745-18750
    • Stafford, J.M.1
  • 98
    • 84865065420 scopus 로고    scopus 로고
    • Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations
    • Hutchison, R.M., Everling, S., Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations. Front. Neuroanat., 6, 2012, 29.
    • (2012) Front. Neuroanat. , vol.6 , pp. 29
    • Hutchison, R.M.1    Everling, S.2
  • 99
    • 84863251089 scopus 로고    scopus 로고
    • Rat brains also have a default mode network
    • Lu, H.B., et al. Rat brains also have a default mode network. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 3979–3984.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 3979-3984
    • Lu, H.B.1
  • 100
    • 84890545141 scopus 로고    scopus 로고
    • A weighted and directed interareal connectivity matrix for macaque cerebral cortex
    • Markov, N.T., et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24 (2014), 17–36.
    • (2014) Cereb. Cortex , vol.24 , pp. 17-36
    • Markov, N.T.1
  • 101
    • 84945162700 scopus 로고    scopus 로고
    • Generative models of the human connectome
    • Betzel, R.F., et al. Generative models of the human connectome. NeuroImage 124 (2016), 1054–1064.
    • (2016) NeuroImage , vol.124 , pp. 1054-1064
    • Betzel, R.F.1
  • 102
    • 84859569776 scopus 로고    scopus 로고
    • Simple models of human brain functional networks
    • Vertes, P.E., et al. Simple models of human brain functional networks. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 5868–5873.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 5868-5873
    • Vertes, P.E.1
  • 103
    • 79956225758 scopus 로고    scopus 로고
    • The human brain: rewired and running hot
    • Preuss, T.M., The human brain: rewired and running hot. Ann. N. Y. Acad. Sci. 1225 (2011), E182–E191.
    • (2011) Ann. N. Y. Acad. Sci. , vol.1225 , pp. E182-E191
    • Preuss, T.M.1
  • 104
    • 84890427340 scopus 로고    scopus 로고
    • Comparative primate neuroimaging: insights into human brain evolution
    • Rilling, J.K., Comparative primate neuroimaging: insights into human brain evolution. Trends Cogn. Sci. 18 (2014), 46–55.
    • (2014) Trends Cogn. Sci. , vol.18 , pp. 46-55
    • Rilling, J.K.1
  • 105
    • 0033553331 scopus 로고    scopus 로고
    • Differential expansion of neural projection systems in primate brain evolution
    • Rilling, J.K., Insel, T.R., Differential expansion of neural projection systems in primate brain evolution. Neuroreport 10 (1999), 1453–1459.
    • (1999) Neuroreport , vol.10 , pp. 1453-1459
    • Rilling, J.K.1    Insel, T.R.2
  • 106
    • 0033839171 scopus 로고    scopus 로고
    • A comparative MRI study of the relationship between neuroanatomical asymmetry and interhemispheric connectivity in primates: implication for the evolution of functional asymmetries
    • Hopkins, W.D., Rilling, J.K., A comparative MRI study of the relationship between neuroanatomical asymmetry and interhemispheric connectivity in primates: implication for the evolution of functional asymmetries. Behav. Neurosci. 114 (2000), 739–748.
    • (2000) Behav. Neurosci. , vol.114 , pp. 739-748
    • Hopkins, W.D.1    Rilling, J.K.2
  • 107
    • 84866167935 scopus 로고    scopus 로고
    • Cortical evolution in mammals: the bane and beauty of phenotypic variability
    • Krubitzer, L.A., Seelke, A.M.H., Cortical evolution in mammals: the bane and beauty of phenotypic variability. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 10647–10654.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 10647-10654
    • Krubitzer, L.A.1    Seelke, A.M.H.2
  • 108
    • 84866156927 scopus 로고    scopus 로고
    • A hierarchical model of the evolution of human brain specializations
    • Barrett, H.C., A hierarchical model of the evolution of human brain specializations. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 10733–10740.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 10733-10740
    • Barrett, H.C.1
  • 109
    • 41149171771 scopus 로고    scopus 로고
    • The evolution of the arcuate fasciculus revealed with comparative DTI
    • Rilling, J.K., et al. The evolution of the arcuate fasciculus revealed with comparative DTI. Nat. Neurosci. 11 (2008), 426–428.
    • (2008) Nat. Neurosci. , vol.11 , pp. 426-428
    • Rilling, J.K.1
  • 110
    • 84883412265 scopus 로고    scopus 로고
    • Two distinct forms of functional lateralization in the human brain
    • Gotts, S.J., et al. Two distinct forms of functional lateralization in the human brain. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), E3435–E3444.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E3435-E3444
    • Gotts, S.J.1
  • 111
    • 34247255712 scopus 로고    scopus 로고
    • The association between handedness, brain asymmetries, and corpus callosum size in chimpanzees (Pan troglodytes)
    • Hopkins, W.D., et al. The association between handedness, brain asymmetries, and corpus callosum size in chimpanzees (Pan troglodytes). Cereb. Cortex 17 (2007), 1757–1765.
    • (2007) Cereb. Cortex , vol.17 , pp. 1757-1765
    • Hopkins, W.D.1
  • 112
    • 84877330801 scopus 로고    scopus 로고
    • Phase transition in the economically modeled growth of a cellular nervous system
    • Nicosia, V., et al. Phase transition in the economically modeled growth of a cellular nervous system. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 7880–7885.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7880-7885
    • Nicosia, V.1
  • 113
    • 80155148207 scopus 로고    scopus 로고
    • Rich-club organization of the human connectome
    • van den Heuvel, M.P., Sporns, O., Rich-club organization of the human connectome. J. Neurosci. 31 (2011), 15775–15786.
    • (2011) J. Neurosci. , vol.31 , pp. 15775-15786
    • van den Heuvel, M.P.1    Sporns, O.2
  • 114
    • 84955071899 scopus 로고    scopus 로고
    • Rich-club organization in effective connectivity among cortical neurons
    • Nigam, S., et al. Rich-club organization in effective connectivity among cortical neurons. J. Neurosci. 36 (2016), 670–684.
    • (2016) J. Neurosci. , vol.36 , pp. 670-684
    • Nigam, S.1
  • 115
    • 84929378155 scopus 로고    scopus 로고
    • Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro
    • Schroeter, M.S., et al. Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. J. Neurosci. 35 (2015), 5459–5470.
    • (2015) J. Neurosci. , vol.35 , pp. 5459-5470
    • Schroeter, M.S.1
  • 116
    • 84922341625 scopus 로고    scopus 로고
    • Graph analysis of the anatomical network organization of the hippocampal formation and parahippocampal region in the rat
    • Published online January 25, 2016
    • Binicewicz, F.Z., et al. Graph analysis of the anatomical network organization of the hippocampal formation and parahippocampal region in the rat. Brain Struct. Funct., 2015, 10.1007/s00429-015-0992-0 Published online January 25, 2016.
    • (2015) Brain Struct. Funct.
    • Binicewicz, F.Z.1
  • 117
    • 84899940069 scopus 로고    scopus 로고
    • Rich club organization supports a diverse set of functional network configurations
    • Senden, M., et al. Rich club organization supports a diverse set of functional network configurations. NeuroImage 96 (2014), 174–182.
    • (2014) NeuroImage , vol.96 , pp. 174-182
    • Senden, M.1
  • 118
    • 84923049967 scopus 로고    scopus 로고
    • Simulated rich club lesioning in brain networks: a scaffold for communication and integration?
    • de Reus, M.A., van den Heuvel, M.P., Simulated rich club lesioning in brain networks: a scaffold for communication and integration?. Front. Hum. Neurosci., 8, 2014, 647.
    • (2014) Front. Hum. Neurosci. , vol.8 , pp. 647
    • de Reus, M.A.1    van den Heuvel, M.P.2
  • 119
    • 84944452467 scopus 로고    scopus 로고
    • Rich club organization and cognitive performance in healthy older participants
    • Baggio, H.C., et al. Rich club organization and cognitive performance in healthy older participants. J. Cogn. Neurosci. 27 (2015), 1801–1810.
    • (2015) J. Cogn. Neurosci. , vol.27 , pp. 1801-1810
    • Baggio, H.C.1
  • 120
    • 0032564362 scopus 로고    scopus 로고
    • A neuronal model of a global workspace in effortful cognitive tasks
    • Dehaene, S., et al. A neuronal model of a global workspace in effortful cognitive tasks. Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 14529–14534.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 14529-14534
    • Dehaene, S.1
  • 121
    • 0035172287 scopus 로고    scopus 로고
    • Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework
    • Dehaene, S., Naccache, L., Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79 (2001), 1–37.
    • (2001) Cognition , vol.79 , pp. 1-37
    • Dehaene, S.1    Naccache, L.2
  • 122
    • 79958041279 scopus 로고    scopus 로고
    • Cognitive effort drives workspace configuration of human brain functional networks
    • Kitzbichler, M.G., et al. Cognitive effort drives workspace configuration of human brain functional networks. J. Neurosci. 31 (2011), 8259–8270.
    • (2011) J. Neurosci. , vol.31 , pp. 8259-8270
    • Kitzbichler, M.G.1
  • 123
    • 84865403478 scopus 로고    scopus 로고
    • The brain's connective core and its role in animal cognition
    • Shanahan, M., The brain's connective core and its role in animal cognition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367 (2012), 2704–2714.
    • (2012) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.367 , pp. 2704-2714
    • Shanahan, M.1
  • 124
    • 55249083831 scopus 로고    scopus 로고
    • Hierarchical organization of human cortical networks in health and schizophrenia
    • Bassett, D.S., et al. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28 (2008), 9239–9248.
    • (2008) J. Neurosci. , vol.28 , pp. 9239-9248
    • Bassett, D.S.1
  • 125
    • 0031835226 scopus 로고    scopus 로고
    • From sensation to cognition
    • Mesulam, M.M., From sensation to cognition. Brain 121 (1998), 1013–1052.
    • (1998) Brain , vol.121 , pp. 1013-1052
    • Mesulam, M.M.1
  • 126
    • 84929603255 scopus 로고    scopus 로고
    • Between-network connectivity occurs in brain regions lacking layer IV input
    • Wylie, K.P., et al. Between-network connectivity occurs in brain regions lacking layer IV input. NeuroImage 116 (2015), 50–58.
    • (2015) NeuroImage , vol.116 , pp. 50-58
    • Wylie, K.P.1
  • 127
    • 84949527356 scopus 로고    scopus 로고
    • Associated microscale spine density and macroscale connectivity disruptions in schizophrenia
    • Published online October 13, 2016
    • van den Heuvel, M.P., et al. Associated microscale spine density and macroscale connectivity disruptions in schizophrenia. Biol. Psychiatry, 2015, 10.1016/j.biopsych.2015.10.005 Published online October 13, 2016.
    • (2015) Biol. Psychiatry
    • van den Heuvel, M.P.1
  • 128
    • 84944589555 scopus 로고    scopus 로고
    • Bridging cytoarchitectonics and connectomics in human cerebral cortex
    • van den Heuvel, M.P., et al. Bridging cytoarchitectonics and connectomics in human cerebral cortex. J. Neurosci. 35 (2015), 13943–13948.
    • (2015) J. Neurosci. , vol.35 , pp. 13943-13948
    • van den Heuvel, M.P.1
  • 129
    • 84942372334 scopus 로고    scopus 로고
    • A predictive model of the cat cortical connectome based on cytoarchitecture and distance
    • Beul, S.F., et al. A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct. Funct. 220 (2015), 3167–3184.
    • (2015) Brain Struct. Funct. , vol.220 , pp. 3167-3184
    • Beul, S.F.1
  • 130
    • 0037806376 scopus 로고    scopus 로고
    • Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function
    • Elston, G.N., Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex 13 (2003), 1124–1138.
    • (2003) Cereb. Cortex , vol.13 , pp. 1124-1138
    • Elston, G.N.1
  • 131
    • 84882406647 scopus 로고    scopus 로고
    • Energetic cost of brain functional connectivity
    • Tomasi, D., et al. Energetic cost of brain functional connectivity. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 13642–13647.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 13642-13647
    • Tomasi, D.1
  • 132
    • 81355153871 scopus 로고    scopus 로고
    • Functional network organization of the human brain
    • Power, J.D., et al. Functional network organization of the human brain. Neuron 72 (2011), 665–678.
    • (2011) Neuron , vol.72 , pp. 665-678
    • Power, J.D.1
  • 133
    • 84887476759 scopus 로고    scopus 로고
    • An anatomical infrastructure for integration between functional networks in human cerebral cortex
    • van den Heuvel, M.P., Sporns, O., An anatomical infrastructure for integration between functional networks in human cerebral cortex. J. Neurosci., 33, 2013, 11.
    • (2013) J. Neurosci. , vol.33 , pp. 11
    • van den Heuvel, M.P.1    Sporns, O.2
  • 134
    • 84879891020 scopus 로고    scopus 로고
    • Cognitive relevance of the community structure of the human brain functional coactivation network
    • Crossley, N.A., et al. Cognitive relevance of the community structure of the human brain functional coactivation network. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 11583–11588.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 11583-11588
    • Crossley, N.A.1
  • 135
    • 84901357586 scopus 로고    scopus 로고
    • Influence of wiring cost on the large-scale architecture of human cortical connectivity
    • Samu, D., et al. Influence of wiring cost on the large-scale architecture of human cortical connectivity. PLoS Comput. Biol., 10, 2014, e1003557.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003557
    • Samu, D.1
  • 136
    • 84941978968 scopus 로고    scopus 로고
    • The contribution of geometry to the human connectome
    • Roberts, J.A., et al. The contribution of geometry to the human connectome. NeuroImage 124 (2016), 379–393.
    • (2016) NeuroImage , vol.124 , pp. 379-393
    • Roberts, J.A.1
  • 137
    • 85052272572 scopus 로고    scopus 로고
    • Communication and wiring in the cortical connectome
    • Budd, J.M., Kisvarday, Z.F., Communication and wiring in the cortical connectome. Front. Neuroanat., 6, 2012, 42.
    • (2012) Front. Neuroanat. , vol.6 , pp. 42
    • Budd, J.M.1    Kisvarday, Z.F.2
  • 138
    • 84944348548 scopus 로고    scopus 로고
    • Glia-derived neurons are required for sex-specific learning in C. elegans
    • Sammut, M., et al. Glia-derived neurons are required for sex-specific learning in C. elegans. Nature 526 (2015), 385–390.
    • (2015) Nature , vol.526 , pp. 385-390
    • Sammut, M.1
  • 139
    • 84859879065 scopus 로고    scopus 로고
    • Differences between chimpanzees and bonobos in neural systems supporting social cognition
    • Rilling, J.K., et al. Differences between chimpanzees and bonobos in neural systems supporting social cognition. Soc. Cogn. Affective Neurosci. 7 (2012), 369–379.
    • (2012) Soc. Cogn. Affective Neurosci. , vol.7 , pp. 369-379
    • Rilling, J.K.1
  • 140
    • 0034023929 scopus 로고    scopus 로고
    • The other ‘closest living relative’. How bonobos (Pan paniscus) challenge traditional assumptions about females, dominance, intra- and intersexual interactions, and hominid evolution
    • Parish, A.R., De Waal, F.B., The other ‘closest living relative’. How bonobos (Pan paniscus) challenge traditional assumptions about females, dominance, intra- and intersexual interactions, and hominid evolution. Ann. N. Y. Acad. Sci. 907 (2000), 97–113.
    • (2000) Ann. N. Y. Acad. Sci. , vol.907 , pp. 97-113
    • Parish, A.R.1    De Waal, F.B.2
  • 141
    • 79251599994 scopus 로고    scopus 로고
    • Amygdala volume and social network size in humans
    • Bickart, K.C., et al. Amygdala volume and social network size in humans. Nat. Neurosci. 14 (2011), 163–164.
    • (2011) Nat. Neurosci. , vol.14 , pp. 163-164
    • Bickart, K.C.1
  • 142
    • 77950283434 scopus 로고    scopus 로고
    • What does the amygdala contribute to social cognition?
    • Adolphs, R., What does the amygdala contribute to social cognition?. Year Cogn. Neurosci. 2010 1191 (2010), 42–61.
    • (2010) Year Cogn. Neurosci. 2010 , vol.1191 , pp. 42-61
    • Adolphs, R.1
  • 143
    • 62949130626 scopus 로고    scopus 로고
    • Pathways to language: fiber tracts in the human brain
    • Friederici, A.D., Pathways to language: fiber tracts in the human brain. Trends Cogn. Sci. 13 (2009), 175–181.
    • (2009) Trends Cogn. Sci. , vol.13 , pp. 175-181
    • Friederici, A.D.1
  • 144
    • 84880331553 scopus 로고    scopus 로고
    • Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography
    • Li, L., et al. Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography. NeuroImage 80 (2013), 462–474.
    • (2013) NeuroImage , vol.80 , pp. 462-474
    • Li, L.1
  • 145
    • 84899486517 scopus 로고    scopus 로고
    • Bridging the gap between the human and macaque connectome: a quantitative comparison of global interspecies structure-function relationships and network topology
    • Miranda-Dominguez, O., et al. Bridging the gap between the human and macaque connectome: a quantitative comparison of global interspecies structure-function relationships and network topology. J. Neurosci. 34 (2014), 5552–5563.
    • (2014) J. Neurosci. , vol.34 , pp. 5552-5563
    • Miranda-Dominguez, O.1
  • 146
    • 84952662171 scopus 로고    scopus 로고
    • Evidence for expansion of the precuneus in human evolution
    • Published online January 2, 2016
    • Bruner, E., et al. Evidence for expansion of the precuneus in human evolution. Brain Struct. Funct., 2016, 10.1007/s00429-015-1172-y Published online January 2, 2016.
    • (2016) Brain Struct. Funct.
    • Bruner, E.1
  • 147
    • 78650031397 scopus 로고    scopus 로고
    • Disrupted axonal fiber connectivity in schizophrenia
    • Zalesky, A., et al. Disrupted axonal fiber connectivity in schizophrenia. Biol. Psychiatry 69 (2011), 80–89.
    • (2011) Biol. Psychiatry , vol.69 , pp. 80-89
    • Zalesky, A.1
  • 148
    • 84905495926 scopus 로고    scopus 로고
    • Sex differences in the relationship between white matter connectivity and creativity
    • Ryman, S.G., et al. Sex differences in the relationship between white matter connectivity and creativity. NeuroImage 101 (2014), 380–389.
    • (2014) NeuroImage , vol.101 , pp. 380-389
    • Ryman, S.G.1
  • 149
    • 67049115651 scopus 로고    scopus 로고
    • Brain anatomical network and intelligence
    • Li, Y., et al. Brain anatomical network and intelligence. PLoS Comput. Biol., 5, 2009, e1000395.
    • (2009) PLoS Comput. Biol. , vol.5 , pp. e1000395
    • Li, Y.1
  • 150
    • 67049097328 scopus 로고    scopus 로고
    • Efficiency of functional brain networks and intellectual performance
    • van den Heuvel, M.P., et al. Efficiency of functional brain networks and intellectual performance. J. Neurosci. 29 (2009), 7619–7624.
    • (2009) J. Neurosci. , vol.29 , pp. 7619-7624
    • van den Heuvel, M.P.1
  • 151
    • 84876072488 scopus 로고    scopus 로고
    • Human brain functional network changes associated with enhanced and impaired attentional task performance
    • Giessing, C., et al. Human brain functional network changes associated with enhanced and impaired attentional task performance. J. Neurosci. 33 (2013), 5903–5914.
    • (2013) J. Neurosci. , vol.33 , pp. 5903-5914
    • Giessing, C.1
  • 152
    • 84932197976 scopus 로고    scopus 로고
    • Rethinking segregation and integration: contributions of whole-brain modelling
    • Deco, G., et al. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16 (2015), 430–439.
    • (2015) Nat. Rev. Neurosci. , vol.16 , pp. 430-439
    • Deco, G.1
  • 153
    • 77953367591 scopus 로고    scopus 로고
    • Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks
    • Zamora-Lopez, G., et al. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front. Neuroinformatics, 4, 2010, 1.
    • (2010) Front. Neuroinformatics , vol.4 , pp. 1
    • Zamora-Lopez, G.1
  • 154
    • 84940493426 scopus 로고    scopus 로고
    • Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome
    • Schmidt, R., et al. Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome. BMC Neurosci., 16, 2015, 54.
    • (2015) BMC Neurosci. , vol.16 , pp. 54
    • Schmidt, R.1
  • 155
    • 0013301662 scopus 로고    scopus 로고
    • Brain Architecture
    • Oxford University Press
    • Swanson, L.W., Brain Architecture. 2011, Oxford University Press.
    • (2011)
    • Swanson, L.W.1
  • 157
    • 18144382265 scopus 로고    scopus 로고
    • Evolution of the brain and intelligence
    • Roth, G., Dicke, U., Evolution of the brain and intelligence. Trends Cogn. Sci. 9 (2005), 250–257.
    • (2005) Trends Cogn. Sci. , vol.9 , pp. 250-257
    • Roth, G.1    Dicke, U.2
  • 158
    • 79959719878 scopus 로고    scopus 로고
    • The limits of intelligence
    • Fox, D., The limits of intelligence. Sci. Am. 305 (2011), 36–43.
    • (2011) Sci. Am. , vol.305 , pp. 36-43
    • Fox, D.1
  • 159
    • 84891127486 scopus 로고    scopus 로고
    • The evolutionary masquerade: genetic and epigenetic contributions to the neocortex
    • Krubitzer, L., Stolzenberg, D.S., The evolutionary masquerade: genetic and epigenetic contributions to the neocortex. Curr. Opin. Neurobiol. 24 (2014), 157–165.
    • (2014) Curr. Opin. Neurobiol. , vol.24 , pp. 157-165
    • Krubitzer, L.1    Stolzenberg, D.S.2
  • 160
    • 84906911046 scopus 로고    scopus 로고
    • Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome
    • Scholtens, L.H., et al. Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J. Neurosci. 34 (2014), 12192–12205.
    • (2014) J. Neurosci. , vol.34 , pp. 12192-12205
    • Scholtens, L.H.1
  • 161
    • 84879753759 scopus 로고    scopus 로고
    • CLARITY for mapping the nervous system
    • Chung, K., Deisseroth, K., CLARITY for mapping the nervous system. Nat. Methods 10 (2013), 508–513.
    • (2013) Nat. Methods , vol.10 , pp. 508-513
    • Chung, K.1    Deisseroth, K.2
  • 162
    • 84945545942 scopus 로고    scopus 로고
    • A cross-modal, cross-species comparison of connectivity measures in the primate brain
    • Reid, A.T., et al. A cross-modal, cross-species comparison of connectivity measures in the primate brain. NeuroImage 125 (2016), 311–331.
    • (2016) NeuroImage , vol.125 , pp. 311-331
    • Reid, A.T.1
  • 163
    • 84954290665 scopus 로고    scopus 로고
    • Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex
    • Azadbakht, H., et al. Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex. Cereb. Cortex 25 (2015), 4299–4309.
    • (2015) Cereb. Cortex , vol.25 , pp. 4299-4309
    • Azadbakht, H.1
  • 164
    • 84880657901 scopus 로고    scopus 로고
    • Jellyfish nervous systems
    • Katsuki, T., Greenspan, R.J., Jellyfish nervous systems. Curr. Biol. 23 (2013), R592–R594.
    • (2013) Curr. Biol. , vol.23 , pp. R592-R594
    • Katsuki, T.1    Greenspan, R.J.2
  • 165
    • 79955011700 scopus 로고    scopus 로고
    • Do jellyfish have central nervous systems?
    • Satterlie, R.A., Do jellyfish have central nervous systems?. J. Exp. Biol. 214 (2011), 1215–1223.
    • (2011) J. Exp. Biol. , vol.214 , pp. 1215-1223
    • Satterlie, R.A.1
  • 166
    • 34247634606 scopus 로고    scopus 로고
    • The ring nerve of the box jellyfish Tripedalia cystophora
    • Garm, A., et al. The ring nerve of the box jellyfish Tripedalia cystophora. Cell Tissue Res. 329 (2007), 147–157.
    • (2007) Cell Tissue Res. , vol.329 , pp. 147-157
    • Garm, A.1
  • 167
    • 0021837355 scopus 로고
    • A subset of cells in the nerve net of Hydra oligactis defined by a monoclonal antibody: its arrangement and development
    • Dunne, J.F., et al. A subset of cells in the nerve net of Hydra oligactis defined by a monoclonal antibody: its arrangement and development. Dev. Biol. 109 (1985), 41–53.
    • (1985) Dev. Biol. , vol.109 , pp. 41-53
    • Dunne, J.F.1
  • 168
    • 33745909937 scopus 로고    scopus 로고
    • Rhopalia are integrated parts of the central nervous system in box jellyfish
    • Garm, A., et al. Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res. 325 (2006), 333–343.
    • (2006) Cell Tissue Res. , vol.325 , pp. 333-343
    • Garm, A.1
  • 169
    • 84930705876 scopus 로고    scopus 로고
    • The nerve ring in cnidarians: its presence and structure in hydrozoan medusae
    • Koizumi, O., et al. The nerve ring in cnidarians: its presence and structure in hydrozoan medusae. Zoology 118 (2015), 79–88.
    • (2015) Zoology , vol.118 , pp. 79-88
    • Koizumi, O.1
  • 170
    • 33646680105 scopus 로고    scopus 로고
    • Detecting rich-club ordering in complex networks
    • Colizza, V., et al. Detecting rich-club ordering in complex networks. Nat. Physics. 2 (2006), 110–115.
    • (2006) Nat. Physics. , vol.2 , pp. 110-115
    • Colizza, V.1
  • 171
    • 84874754277 scopus 로고    scopus 로고
    • Exploring the morphospace of communication efficiency in complex networks
    • Goni, J., et al. Exploring the morphospace of communication efficiency in complex networks. PLoS ONE, 8, 2013, e58070.
    • (2013) PLoS ONE , vol.8 , pp. e58070
    • Goni, J.1
  • 172
    • 67349157147 scopus 로고    scopus 로고
    • Graph spectra as a systematic tool in computational biology
    • Banerjee, A., Jost, J., Graph spectra as a systematic tool in computational biology. Discrete Appl. Math. 157 (2009), 2425–2431.
    • (2009) Discrete Appl. Math. , vol.157 , pp. 2425-2431
    • Banerjee, A.1    Jost, J.2
  • 173
    • 84892590963 scopus 로고    scopus 로고
    • The Laplacian spectrum of neural networks
    • de Lange, S.C., et al. The Laplacian spectrum of neural networks. Front. Comput. Neurosci., 7, 2014, 189.
    • (2014) Front. Comput. Neurosci. , vol.7 , pp. 189
    • de Lange, S.C.1
  • 174
    • 33644851967 scopus 로고    scopus 로고
    • Information theory of complex networks: on evolution and architectural constraints
    • Sole, R., Valverde, S., Information theory of complex networks: on evolution and architectural constraints. Lect. Notes Phys., 650, 2004, 18.
    • (2004) Lect. Notes Phys. , vol.650 , pp. 18
    • Sole, R.1    Valverde, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.