메뉴 건너뛰기




Volumn 41, Issue 1, 2016, Pages

Two’s company, three (or more) is a simplex: Algebraic-topological tools for understanding higher-order structure in neural data

Author keywords

Filtration; Networks; Simplicial complex; Topology

Indexed keywords

ALGEBRA; BRAIN; COMPLEX NETWORKS; COMPUTATION THEORY; ELECTROPHYSIOLOGY;

EID: 84973617915     PISSN: 09295313     EISSN: 15736873     Source Type: Journal    
DOI: 10.1007/s10827-016-0608-6     Document Type: Review
Times cited : (425)

References (69)
  • 1
    • 30744439313 scopus 로고    scopus 로고
    • A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    • COI: 1:CAS:528:DC%2BD28XmtV2gtQ%3D%3D, PID: 16399673
    • Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72.
    • (2006) Journal of Neuroscience , vol.26 , Issue.1 , pp. 63-72
    • Achard, S.1    Salvador, R.2    Whitcher, B.3    Suckling, J.4    Bullmore, E.5
  • 2
    • 84903397364 scopus 로고    scopus 로고
    • The effects of theta precession on spatial learning and simplicial complex dynamics in a topological model of the hippocampal spatial map
    • Arai, M., Brandt, V., & Dabaghian, Y. (2014). The effects of theta precession on spatial learning and simplicial complex dynamics in a topological model of the hippocampal spatial map. PLoS Computational Biology, 10(6).
    • (2014) PLoS Computational Biology , vol.10 , Issue.6
    • Arai, M.1    Brandt, V.2    Dabaghian, Y.3
  • 3
    • 33750466904 scopus 로고    scopus 로고
    • Small-world brain networks
    • PID: 17079517
    • Bassett, D.S., & Bullmore, E.T. (2006). Small-world brain networks. The Neuroscientist, 12, 512–523.
    • (2006) The Neuroscientist , vol.12 , pp. 512-523
    • Bassett, D.S.1    Bullmore, E.T.2
  • 5
    • 84855422562 scopus 로고    scopus 로고
    • Altered resting state complexity in schizophrenia
    • PID: 22008374
    • Bassett, D.S., Nelson, B.G., Mueller, B.A., Camchong, J., & Lim, K.O. (2012). Altered resting state complexity in schizophrenia. NeuroImage, 59(3), 2196–207.
    • (2012) NeuroImage , vol.59 , Issue.3 , pp. 2196-2207
    • Bassett, D.S.1    Nelson, B.G.2    Mueller, B.A.3    Camchong, J.4    Lim, K.O.5
  • 8
    • 84928705434 scopus 로고    scopus 로고
    • Learning-induced autonomy of sensorimotor systems
    • COI: 1:CAS:528:DC%2BC2MXmtVarsbs%3D, PID: 25849989
    • Bassett, D.S., Yang, M., Wymbs, N.F., & Grafton, S.T. (2015). Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 18(5), 744–751.
    • (2015) Nature Neuroscience , vol.18 , Issue.5 , pp. 744-751
    • Bassett, D.S.1    Yang, M.2    Wymbs, N.F.3    Grafton, S.T.4
  • 12
    • 84861412710 scopus 로고    scopus 로고
    • Structure of the afferent terminals in terminal ganglion of a cricket and persistent homology
    • Brown, J., & Gedeon, T. (2012). Structure of the afferent terminals in terminal ganglion of a cricket and persistent homology. PLoS ONE, 7(5).
    • (2012) PLoS ONE , vol.7 , Issue.5
    • Brown, J.1    Gedeon, T.2
  • 13
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: Graph theoretical analysis of structural and functional systems
    • COI: 1:CAS:528:DC%2BD1MXhtlygtrg%3D, PID: 19190637
    • Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.
    • (2009) Nature Reviews Neuroscience , vol.10 , Issue.3 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 14
    • 79953664777 scopus 로고    scopus 로고
    • Brain graphs: graphical models of the human brain connectome
    • Bullmore, E.T., & Bassett, D.S. (2011). Brain graphs: graphical models of the human brain connectome. Annual Reviews Clinical Psychology, 7, 113–140.
    • (2011) Annual Reviews Clinical Psychology , vol.7 , pp. 113-140
    • Bullmore, E.T.1    Bassett, D.S.2
  • 17
    • 84890069888 scopus 로고    scopus 로고
    • Neural representation of spatial topology in the rodent hippocampus
    • PID: 24102128
    • Chen, Z., Gomperts, S.N., Yamamoto, J., & Wilson, M.A. (2014). Neural representation of spatial topology in the rodent hippocampus. Neural Computation, 26(1), 1–39.
    • (2014) Neural Computation , vol.26 , Issue.1 , pp. 1-39
    • Chen, Z.1    Gomperts, S.N.2    Yamamoto, J.3    Wilson, M.A.4
  • 18
    • 84903517653 scopus 로고    scopus 로고
    • Abnormal metabolic connectivity in the pilocarpine-induced epilepsy rat model: a multiscale network analysis based on persistent homology
    • COI: 1:CAS:528:DC%2BC2cXht1Sjtr%2FL, PID: 24857713
    • Choi, H., Kim, Y.K., Kang, H., Lee, H., Im, H.J., Kim, E.E., Chung, J.K., Lee, D.S., et al. (2014). Abnormal metabolic connectivity in the pilocarpine-induced epilepsy rat model: a multiscale network analysis based on persistent homology. NeuroImage, 99, 226– 236.
    • (2014) NeuroImage , vol.99 , pp. 226-236
    • Choi, H.1    Kim, Y.K.2    Kang, H.3    Lee, H.4    Im, H.J.5    Kim, E.E.6    Chung, J.K.7    Lee, D.S.8
  • 19
    • 70349315259 scopus 로고    scopus 로고
    • Persistence diagrams of cortical surface data
    • Chung, M.K., Bubenik, P., & Kim, P.T. (pp. 386–397): Springer
    • Chung, M.K., Bubenik, P., & Kim, P.T. (2009). Persistence diagrams of cortical surface data. In Information processing in medical imaging (pp. 386–397): Springer.
    • (2009) In Information processing in medical imaging
  • 22
    • 55449121975 scopus 로고    scopus 로고
    • Cell groups reveal structure of stimulus space
    • Curto, C., & Itskov, V. (2008). Cell groups reveal structure of stimulus space. PLoS Computational Biology, 4(10), e1000,205.
    • (2008) PLoS Computational Biology , vol.4 , Issue.10 , pp. e1000,205
    • Curto, C.1    Itskov, V.2
  • 23
    • 84866088345 scopus 로고    scopus 로고
    • A topological paradigm for hippocampal spatial map formation using persistent homology
    • COI: 1:CAS:528:DC%2BC38Xht1Srs7fF
    • Dabaghian, Y., Mémoli, F., Frank, L., & Carlsson, G. (2012). A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Computational Biology, 8(8), e1002,581.
    • (2012) PLoS Computational Biology , vol.8 , Issue.8 , pp. e1002,581
    • Dabaghian, Y.1    Mémoli, F.2    Frank, L.3    Carlsson, G.4
  • 24
    • 84930006717 scopus 로고    scopus 로고
    • Reconceiving the hippocampal map as a topological template
    • Dabaghian, Y., Brandt, V.L., & Frank, L.M. (2014). Reconceiving the hippocampal map as a topological template. Elife, 3, e03,476.
    • (2014) Elife , vol.3 , pp. e03,476
    • Dabaghian, Y.1    Brandt, V.L.2    Frank, L.M.3
  • 26
    • 0007210914 scopus 로고
    • Homology groups of relations
    • Dowker, C.H. (1952). Homology groups of relations. Annals of Mathematics, 84–95.
    • (1952) Annals of Mathematics , pp. 84-95
    • Dowker, C.H.1
  • 27
    • 84934988285 scopus 로고    scopus 로고
    • Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data
    • COI: 1:STN:280:DC%2BC2MfkvVyisA%3D%3D, PID: 25982515
    • Drakesmith, M., Caeyenberghs, K., Dutt, A., Lewis, G., David, A.S., & Jones, D.K. (2015). Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data. NeuroImage, 118, 313–333.
    • (2015) NeuroImage , vol.118 , pp. 313-333
    • Drakesmith, M.1    Caeyenberghs, K.2    Dutt, A.3    Lewis, G.4    David, A.S.5    Jones, D.K.6
  • 28
    • 12944285986 scopus 로고    scopus 로고
    • Computing simplicial homology based on efficient Smith normal form algorithms
    • Dumas, J-G, Heckenbach, F., Saunders, B.D., & Welker, V. (pp. 177–206): Springer
    • Dumas, J-G, Heckenbach, F., Saunders, B.D., & Welker, V. (2003). Computing simplicial homology based on efficient Smith normal form algorithms. In Algebra, geometry, and software systems (pp. 177–206): Springer.
    • (2003) In Algebra, geometry, and software systems
  • 29
    • 84985916835 scopus 로고    scopus 로고
    • Describing high-order statistical dependence using concurrence topology, with application to functional MRI brain data
    • Ellis, S.P., & Klein, A. (2014). Describing high-order statistical dependence using concurrence topology, with application to functional MRI brain data. Homology, Homotopy and Applications, 16(1).
    • (2014) Homology, Homotopy and Applications , vol.16 , Issue.1
    • Ellis, S.P.1    Klein, A.2
  • 30
    • 79955723992 scopus 로고    scopus 로고
    • Dissecting functional connectivity of cortical microcircuits: experimental and theoretical insights
    • COI: 1:CAS:528:DC%2BC3MXmtFagtrw%3D, PID: 21459463
    • Feldt, S., Bonifazi, P., & Cossart, R. (2011). Dissecting functional connectivity of cortical microcircuits: experimental and theoretical insights. Trends in Neurosciences, 34, 225–236.
    • (2011) Trends in Neurosciences , vol.34 , pp. 225-236
    • Feldt, S.1    Bonifazi, P.2    Cossart, R.3
  • 31
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174.
    • (2010) Physics Reports , vol.486 , Issue.3-5 , pp. 75-174
    • Fortunato, S.1
  • 33
    • 84940200497 scopus 로고    scopus 로고
    • The (in)stability of functional brain network measures across thresholds
    • Garrison, K.A., Scheinost, D., Finn, E.S., Shen, X., & Constable, R.T. (2015). The (in)stability of functional brain network measures across thresholds. NeuroImage, S1053–8119(15), 00,428–0.
    • (2015) NeuroImage , vol.S1053–8119 , Issue.15 , pp. 00,428-420
    • Garrison, K.A.1    Scheinost, D.2    Finn, E.S.3    Shen, X.4    Constable, R.T.5
  • 34
    • 84977443082 scopus 로고    scopus 로고
    • The Cognitive Neurosciences: MIT Press
    • Gazzaniga, MS (Ed.) (2009). The Cognitive Neurosciences: MIT Press.
    • (2009) MS (Ed.)
  • 36
    • 79960882474 scopus 로고    scopus 로고
    • Brain network analysis: separating cost from topology using cost-integration
    • COI: 1:CAS:528:DC%2BC3MXhtVOrt7bM
    • Ginestet, C.E., Nichols, T.E., Bullmore, E.T., & Simmons, A. (2011). Brain network analysis: separating cost from topology using cost-integration. PLoS ONE, 6(7), e21,570.
    • (2011) PLoS ONE , vol.6 , Issue.7 , pp. e21,570
    • Ginestet, C.E.1    Nichols, T.E.2    Bullmore, E.T.3    Simmons, A.4
  • 38
    • 84928957119 scopus 로고    scopus 로고
    • Closed-loop and activity-guided optogenetic control
    • COI: 1:CAS:528:DC%2BC2MXmsVCisbc%3D, PID: 25856490
    • Grosenick, L., Marshel, J.H., & Deisseroth, K. (2015). Closed-loop and activity-guided optogenetic control. Neuron, 86(1), 106–139.
    • (2015) Neuron , vol.86 , Issue.1 , pp. 106-139
    • Grosenick, L.1    Marshel, J.H.2    Deisseroth, K.3
  • 40
    • 84862015358 scopus 로고    scopus 로고
    • Quantifying loopy network architectures
    • COI: 1:CAS:528:DC%2BC38Xos1KntLc%3D, PID: 22701593
    • Katifori, E., & Magnasco, M. (2012). Quantifying loopy network architectures. PloS ONE, 7(6), e37994.
    • (2012) PloS ONE , vol.7 , Issue.6 , pp. e37994
    • Katifori, E.1    Magnasco, M.2
  • 41
    • 84905442255 scopus 로고    scopus 로고
    • Tracing the evolution of multi-scale functional networks in a mouse model of depression using persistent brain network homology
    • PID: 25064667
    • Khalid, A., Kim, B.S., Chung, M.K., Ye, J.C., & Jeon, D. (2014). Tracing the evolution of multi-scale functional networks in a mouse model of depression using persistent brain network homology. NeuroImage, 101, 351–363.
    • (2014) NeuroImage , vol.101 , pp. 351-363
    • Khalid, A.1    Kim, B.S.2    Chung, M.K.3    Ye, J.C.4    Jeon, D.5
  • 42
    • 84904862389 scopus 로고    scopus 로고
    • Morphological brain network assessed using graph theory and network filtration in deaf adults
    • PID: 25016143
    • Kim, E., Kang, H., Lee, H., Lee, H.J., Suh, M.W., Song, J.J., Oh, S.H., & Lee, D.S. (2014). Morphological brain network assessed using graph theory and network filtration in deaf adults. Hearing Research, 315, 88–98.
    • (2014) Hearing Research , vol.315 , pp. 88-98
    • Kim, E.1    Kang, H.2    Lee, H.3    Lee, H.J.4    Suh, M.W.5    Song, J.J.6    Oh, S.H.7    Lee, D.S.8
  • 45
    • 84871882776 scopus 로고    scopus 로고
    • The problem of thresholding in small-world network analysis
    • COI: 1:CAS:528:DC%2BC3sXpsFGgsQ%3D%3D
    • Langer, N., Pedroni, A., & Jäncke, L. (2013). The problem of thresholding in small-world network analysis. PLoS ONE, 8(1), e53,199.
    • (2013) PLoS ONE , vol.8 , Issue.1 , pp. e53,199
    • Langer, N.1    Pedroni, A.2    Jäncke, L.3
  • 46
    • 80055057822 scopus 로고    scopus 로고
    • Discriminative persistent homology of brain networks
    • Lee, H., Chung, M.K., Kang, H., Kim, B.N., & Lee, D.S. (Vol. 2011 pp. 841–844). IEEE
    • Lee, H., Chung, M.K., Kang, H., Kim, B.N., & Lee, D.S. (2011). Discriminative persistent homology of brain networks. In IEEE international symposium on biomedical imaging: From nano to macro, (Vol. 2011 pp. 841–844). IEEE.
    • (2011) In IEEE international symposium on biomedical imaging: From nano to macro
  • 49
    • 84929415688 scopus 로고    scopus 로고
    • Polyhedral computational geometry for averaging metric phylogenetic trees
    • Miller, E., Owen, M., & Provan, J.S. (2015). Polyhedral computational geometry for averaging metric phylogenetic trees. Advances in Applied Mathematics, 68, 51–91.
    • (2015) Advances in Applied Mathematics , vol.68 , pp. 51-91
    • Miller, E.1    Owen, M.2    Provan, J.S.3
  • 50
    • 84881611962 scopus 로고    scopus 로고
    • Morse theory for filtrations and efficient computation of persistent homology
    • Mischaikow, K., & Nanda, V. (2013). Morse theory for filtrations and efficient computation of persistent homology. Discrete Computational Geometry, 50(2), 330–353.
    • (2013) Discrete Computational Geometry , vol.50 , Issue.2 , pp. 330-353
    • Mischaikow, K.1    Nanda, V.2
  • 51
    • 85018214577 scopus 로고    scopus 로고
    • Simplicial models and topological inference in biological systems
    • Nanda, V., & Sazdanović, R. (pp. 109–141): Springer
    • Nanda, V., & Sazdanović, R. (2014). Simplicial models and topological inference in biological systems. In Discrete and topological models in molecular biology (pp. 109–141): Springer.
    • (2014) In Discrete and topological models in molecular biology
  • 52
    • 79955561607 scopus 로고    scopus 로고
    • Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival
    • COI: 1:CAS:528:DC%2BC3MXlslOrt7k%3D, PID: 21482760
    • Nicolau, M., Levine, A.J., & Carlsson, G. (2011). Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 7265–7270.
    • (2011) Proceedings of the National Academy of Sciences of the United States of America , vol.108 , Issue.17 , pp. 7265-7270
    • Nicolau, M.1    Levine, A.J.2    Carlsson, G.3
  • 55
    • 84923367911 scopus 로고    scopus 로고
    • A topological study of repetitive co-activation networks in in vitro cortical assemblies
    • Pirino, V., Riccomagno, E., Martinoia, S., & Massobrio, P. (2014). A topological study of repetitive co-activation networks in in vitro cortical assemblies. Physical Biology, 12(1), 016,007.
    • (2014) Physical Biology , vol.12 , Issue.1 , pp. 016,007
    • Pirino, V.1    Riccomagno, E.2    Martinoia, S.3    Massobrio, P.4
  • 57
    • 84858648349 scopus 로고    scopus 로고
    • A network diffusion model of disease progression in dementia
    • COI: 1:CAS:528:DC%2BC38XktlKqt78%3D, PID: 22445347
    • Raj, A., Kuceyeski, A., & Weiner, M. (2012). A network diffusion model of disease progression in dementia. Neuron, 73(6), 1204–1215.
    • (2012) Neuron , vol.73 , Issue.6 , pp. 1204-1215
    • Raj, A.1    Kuceyeski, A.2    Weiner, M.3
  • 58
    • 79955854199 scopus 로고    scopus 로고
    • Emerging evidence of connectomic abnormalities in schizophrenia
    • COI: 1:CAS:528:DC%2BC3MXls1Ols7Y%3D, PID: 21525265
    • Rubinov, M., & Bassett, D.S. (2011). Emerging evidence of connectomic abnormalities in schizophrenia. Journal of Neuroscience, 31(17), 6263–5.
    • (2011) Journal of Neuroscience , vol.31 , Issue.17 , pp. 6263-6265
    • Rubinov, M.1    Bassett, D.S.2
  • 59
    • 84889679125 scopus 로고    scopus 로고
    • pFDR and pFNR estimation for brain networks construction
    • PID: 23900789
    • Sala, S., Quatto, P., Valsasina, P., Agosta, F., & Filippi, M. (2014). pFDR and pFNR estimation for brain networks construction. Statistics in Medicine, 33(1), 158–169.
    • (2014) Statistics in Medicine , vol.33 , Issue.1 , pp. 158-169
    • Sala, S.1    Quatto, P.2    Valsasina, P.3    Agosta, F.4    Filippi, M.5
  • 60
    • 84879324191 scopus 로고    scopus 로고
    • Linear-size approximations to the Vietoris-Rips filtration
    • Sheehy, D. (2013). Linear-size approximations to the Vietoris-Rips filtration. Discrete Computational Geometry, 49, 778–796.
    • (2013) Discrete Computational Geometry , vol.49 , pp. 778-796
    • Sheehy, D.1
  • 62
    • 84899657213 scopus 로고    scopus 로고
    • Contributions and challenges for network models in cognitive neuroscience
    • COI: 1:CAS:528:DC%2BC2cXltFKktb0%3D, PID: 24686784
    • Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17(5), 652– 660.
    • (2014) Nature Neuroscience , vol.17 , Issue.5 , pp. 652-660
    • Sporns, O.1
  • 63
    • 84908609848 scopus 로고    scopus 로고
    • Modern network science of neurological disorders
    • COI: 1:CAS:528:DC%2BC2cXhsVyhurzM, PID: 25186238
    • Stam, C.J. (2014). Modern network science of neurological disorders. Nature Reviews Neuroscience, 15(10), 683–695.
    • (2014) Nature Reviews Neuroscience , vol.15 , Issue.10 , pp. 683-695
    • Stam, C.J.1
  • 64
    • 84977454154 scopus 로고    scopus 로고
    • Computational topology in neuroscience: Master’s thesis
    • Stolz, B. (2014). Computational topology in neuroscience: Master’s thesis, University of Oxford.
    • (2014) University of Oxford
    • Stolz, B.1
  • 68
    • 84922825315 scopus 로고    scopus 로고
    • Persistent homology for the quantitative prediction of fullerene stability
    • COI: 1:CAS:528:DC%2BC2cXitFWjs7fM, PID: 25523342
    • Xia, K., Feng, X., Tong, Y., & Wei, G.W. (2015). Persistent homology for the quantitative prediction of fullerene stability. Journal of Computational Chemistry, 36(6), 408–422.
    • (2015) Journal of Computational Chemistry , vol.36 , Issue.6 , pp. 408-422
    • Xia, K.1    Feng, X.2    Tong, Y.3    Wei, G.W.4
  • 69
    • 84863337784 scopus 로고    scopus 로고
    • Predicting regional neurodegeneration from the healthy brain functional connectome
    • COI: 1:CAS:528:DC%2BC38XktlKqsro%3D, PID: 22445348
    • Zhou, J., Gennatas, E.D., Kramer, J.H., Miller, B.L., & Seeley, W.W. (2012). Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron, 73(6), 1216– 1227.
    • (2012) Neuron , vol.73 , Issue.6 , pp. 1216-1227
    • Zhou, J.1    Gennatas, E.D.2    Kramer, J.H.3    Miller, B.L.4    Seeley, W.W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.