메뉴 건너뛰기




Volumn 42, Issue 10, 2017, Pages 824-843

Biochemistry of Mitochondrial Coenzyme Q Biosynthesis

Author keywords

biosynthesis; coenzyme Q; complex Q; CoQ synthome; lipids; metabolon; mitochondria; mitochondrial disease; oxidative phosphorylation; protein complex; ubiquinone

Indexed keywords

COENZYME Q11P; COENZYME Q4; COENZYME Q5; COENZYME Q6; COENZYME Q7; COENZYME Q8; COENZYME Q9; UBIDECARENONE; UBIQUINONE; UNCLASSIFIED DRUG;

EID: 85029526365     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2017.06.008     Document Type: Review
Times cited : (235)

References (188)
  • 1
    • 0001186007 scopus 로고
    • Isolation of a quinone from beef heart mitochondria
    • Crane, F.L., et al. Isolation of a quinone from beef heart mitochondria. Biochim. Biophys. Acta 25 (1957), 220–221.
    • (1957) Biochim. Biophys. Acta , vol.25 , pp. 220-221
    • Crane, F.L.1
  • 2
    • 33845803442 scopus 로고
    • Ubiquinone
    • Morton, R.A., Ubiquinone. Nature 182 (1958), 1764–1767.
    • (1958) Nature , vol.182 , pp. 1764-1767
    • Morton, R.A.1
  • 3
    • 0003176915 scopus 로고
    • Coenzyme Q: a new group of quinones
    • Lester, R.L., et al. Coenzyme Q: a new group of quinones. J. Am. Chem. Soc. 80 (1958), 4751–4752.
    • (1958) J. Am. Chem. Soc. , vol.80 , pp. 4751-4752
    • Lester, R.L.1
  • 4
    • 33947461714 scopus 로고
    • Coenzyme Q. I. Structure Studies on the Coenzyme Q Group
    • Wolf, D.E., Coenzyme Q. I. Structure Studies on the Coenzyme Q Group. J. Am. Chem. Soc., 80, 1958, 4752.
    • (1958) J. Am. Chem. Soc. , vol.80 , pp. 4752
    • Wolf, D.E.1
  • 5
    • 0016690480 scopus 로고
    • Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle
    • Mitchell, P., Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 56 (1975), 1–6.
    • (1975) FEBS Lett. , vol.56 , pp. 1-6
    • Mitchell, P.1
  • 6
    • 0001553686 scopus 로고
    • The natural occurrence of coenzyme Q and related compounds
    • Lester, R.L., Crane, F.L., The natural occurrence of coenzyme Q and related compounds. J. Biol. Chem. 234 (1959), 2169–2175.
    • (1959) J. Biol. Chem. , vol.234 , pp. 2169-2175
    • Lester, R.L.1    Crane, F.L.2
  • 7
    • 0018823799 scopus 로고
    • Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis
    • Jones, M.E., Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu. Rev. Biochem. 49 (1980), 253–279.
    • (1980) Annu. Rev. Biochem. , vol.49 , pp. 253-279
    • Jones, M.E.1
  • 8
    • 0024021560 scopus 로고
    • Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase
    • Frerman, F.E., Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem. Soc. Trans. 16 (1988), 416–418.
    • (1988) Biochem. Soc. Trans. , vol.16 , pp. 416-418
    • Frerman, F.E.1
  • 9
    • 0034735799 scopus 로고    scopus 로고
    • Coenzyme Q is an obligatory cofactor for uncoupling protein function
    • Echtay, K.S., et al. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408 (2000), 609–613.
    • (2000) Nature , vol.408 , pp. 609-613
    • Echtay, K.S.1
  • 10
    • 0032475979 scopus 로고    scopus 로고
    • A ubiquinone-binding site regulates the mitochondrial permeability transition pore
    • Fontaine, E., et al. A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J. Biol. Chem. 273 (1998), 25734–25740.
    • (1998) J. Biol. Chem. , vol.273 , pp. 25734-25740
    • Fontaine, E.1
  • 11
    • 0343559188 scopus 로고
    • Distribution of coenzyme Q in rat liver cell fractions
    • Sastry, S.P., et al. Distribution of coenzyme Q in rat liver cell fractions. Nature, 189, 1961, 577.
    • (1961) Nature , vol.189 , pp. 577
    • Sastry, S.P.1
  • 12
    • 0029799910 scopus 로고    scopus 로고
    • Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids
    • Do, T.Q., et al. Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids. Proc. Natl. Acad. Sci. U. S. A. 93 (1996), 7534–7539.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 7534-7539
    • Do, T.Q.1
  • 13
    • 0025979077 scopus 로고
    • Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol
    • Stocker, R., et al. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc. Natl. Acad. Sci. U. S. A. 88 (1991), 1646–1650.
    • (1991) Proc. Natl. Acad. Sci. U. S. A. , vol.88 , pp. 1646-1650
    • Stocker, R.1
  • 14
    • 0025327523 scopus 로고
    • Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations
    • Frei, B., et al. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. U. S. A. 87 (1990), 4879–4883.
    • (1990) Proc. Natl. Acad. Sci. U. S. A. , vol.87 , pp. 4879-4883
    • Frei, B.1
  • 15
    • 84896597381 scopus 로고    scopus 로고
    • Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli
    • Sevin, D.C., Sauer, U., Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat. Chem. Biol. 10 (2014), 266–272.
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 266-272
    • Sevin, D.C.1    Sauer, U.2
  • 16
    • 84899657181 scopus 로고    scopus 로고
    • A chloroplast retrograde signal regulates nuclear alternative splicing
    • Petrillo, E., et al. A chloroplast retrograde signal regulates nuclear alternative splicing. Science 344 (2014), 427–430.
    • (2014) Science , vol.344 , pp. 427-430
    • Petrillo, E.1
  • 17
    • 0024401216 scopus 로고
    • Age-related changes in the lipid compositions of rat and human tissues
    • Kalen, A., et al. Age-related changes in the lipid compositions of rat and human tissues. Lipids 24 (1989), 579–584.
    • (1989) Lipids , vol.24 , pp. 579-584
    • Kalen, A.1
  • 18
    • 0029776793 scopus 로고    scopus 로고
    • Determination of life-span in Caenorhabditis elegans by four clock genes
    • Lakowski, B., Hekimi, S., Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272 (1996), 1010–1013.
    • (1996) Science , vol.272 , pp. 1010-1013
    • Lakowski, B.1    Hekimi, S.2
  • 19
    • 0031030678 scopus 로고    scopus 로고
    • Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1
    • Ewbank, J.J., et al. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 275 (1997), 980–983.
    • (1997) Science , vol.275 , pp. 980-983
    • Ewbank, J.J.1
  • 20
    • 0037016442 scopus 로고    scopus 로고
    • Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q
    • Larsen, P.L., Clarke, C.F., Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295 (2002), 120–123.
    • (2002) Science , vol.295 , pp. 120-123
    • Larsen, P.L.1    Clarke, C.F.2
  • 21
    • 85018249352 scopus 로고    scopus 로고
    • A single biochemical activity underlies the pleiotropy of the aging-related protein CLK-1
    • Liu, J.-L., et al. A single biochemical activity underlies the pleiotropy of the aging-related protein CLK-1. Sci. Rep., 7, 2017, 859.
    • (2017) Sci. Rep. , vol.7 , pp. 859
    • Liu, J.-L.1
  • 22
    • 26944501617 scopus 로고    scopus 로고
    • Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice
    • Liu, X., et al. Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev. 19 (2005), 2424–2434.
    • (2005) Genes Dev. , vol.19 , pp. 2424-2434
    • Liu, X.1
  • 23
    • 84955579916 scopus 로고    scopus 로고
    • Understanding ubiquinone
    • Wang, Y., Hekimi, S., Understanding ubiquinone. Trends Cell Biol. 26 (2016), 367–378.
    • (2016) Trends Cell Biol. , vol.26 , pp. 367-378
    • Wang, Y.1    Hekimi, S.2
  • 24
    • 34248188655 scopus 로고    scopus 로고
    • The uptake and distribution of coenzyme Q10
    • Miles, M.V., The uptake and distribution of coenzyme Q10. Mitochondrion 7 (2007), S72–S77.
    • (2007) Mitochondrion , vol.7 , pp. S72-S77
    • Miles, M.V.1
  • 25
    • 0015523207 scopus 로고
    • 3-Polyprenyl-4-hydroxybenzoate synthesis in the inner membrane of mitochondria from p-hydroxybenzoate and isopentenylpyrophosphate. A demonstration of isoprenoid synthesis in rat liver mitochondria
    • Momose, K., Rudney, H., 3-Polyprenyl-4-hydroxybenzoate synthesis in the inner membrane of mitochondria from p-hydroxybenzoate and isopentenylpyrophosphate. A demonstration of isoprenoid synthesis in rat liver mitochondria. J. Biol. Chem. 247 (1972), 3930–3940.
    • (1972) J. Biol. Chem. , vol.247 , pp. 3930-3940
    • Momose, K.1    Rudney, H.2
  • 26
    • 0025017435 scopus 로고
    • Nonaprenyl-4-hydroxybenzoate transferase, an enzyme involved in ubiquinone biosynthesis, in the endoplasmic reticulum-Golgi system of rat liver
    • Kalen, A., et al. Nonaprenyl-4-hydroxybenzoate transferase, an enzyme involved in ubiquinone biosynthesis, in the endoplasmic reticulum-Golgi system of rat liver. J. Biol. Chem. 265 (1990), 1158–1164.
    • (1990) J. Biol. Chem. , vol.265 , pp. 1158-1164
    • Kalen, A.1
  • 27
    • 0023232221 scopus 로고
    • Ubiquinone biosynthesis by the microsomal fraction from rat liver
    • Kalen, A., et al. Ubiquinone biosynthesis by the microsomal fraction from rat liver. Biochim. Biophys. Acta 926 (1987), 70–78.
    • (1987) Biochim. Biophys. Acta , vol.926 , pp. 70-78
    • Kalen, A.1
  • 28
    • 84873324400 scopus 로고    scopus 로고
    • Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis
    • Mugoni, V., et al. Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell 152 (2013), 504–518.
    • (2013) Cell , vol.152 , pp. 504-518
    • Mugoni, V.1
  • 29
    • 0033815884 scopus 로고    scopus 로고
    • New advances in coenzyme Q biosynthesis
    • Clarke, C.F., New advances in coenzyme Q biosynthesis. Protoplasma 213 (2000), 134–147.
    • (2000) Protoplasma , vol.213 , pp. 134-147
    • Clarke, C.F.1
  • 30
    • 84901842133 scopus 로고    scopus 로고
    • Biosynthesis and physiology of coenzyme Q in bacteria
    • Aussel, L., et al. Biosynthesis and physiology of coenzyme Q in bacteria. Biochim. Biophys. Acta 1837 (2014), 1004–1011.
    • (2014) Biochim. Biophys. Acta , vol.1837 , pp. 1004-1011
    • Aussel, L.1
  • 31
    • 9444247197 scopus 로고
    • The origin of the benzoquinone ring of coenzyme Q9 in the rat
    • Bentley, R.R., et al. The origin of the benzoquinone ring of coenzyme Q9 in the rat. Biochem. Biophys. Res. Commun. 5 (1961), 443–446.
    • (1961) Biochem. Biophys. Res. Commun. , vol.5 , pp. 443-446
    • Bentley, R.R.1
  • 32
    • 4244182462 scopus 로고
    • Benzoate derivatives as intermediates in the biosynthesis of coenzyme Q in the rat
    • Olson, R.E., et al. Benzoate derivatives as intermediates in the biosynthesis of coenzyme Q in the rat. J. Biol. Chem. 238 (1963), 3146–3148.
    • (1963) J. Biol. Chem. , vol.238 , pp. 3146-3148
    • Olson, R.E.1
  • 33
    • 0000977593 scopus 로고
    • Urinary phenolic acid metabolites of tyrosine
    • Booth, A.N., et al. Urinary phenolic acid metabolites of tyrosine. J. Biol. Chem. 235 (1960), 2649–2652.
    • (1960) J. Biol. Chem. , vol.235 , pp. 2649-2652
    • Booth, A.N.1
  • 34
    • 84992365080 scopus 로고    scopus 로고
    • Mechanistic details of early steps in coenzyme Q biosynthesis pathway in yeast
    • Payet, L.A., et al. Mechanistic details of early steps in coenzyme Q biosynthesis pathway in yeast. Cell Chem. Biol. 23 (2016), 1241–1250.
    • (2016) Cell Chem. Biol. , vol.23 , pp. 1241-1250
    • Payet, L.A.1
  • 35
    • 0013566349 scopus 로고
    • The branch point in the biosynthesis of the aromatic amino-acids
    • Gibson, M.I., et al. The branch point in the biosynthesis of the aromatic amino-acids. Nature 195 (1962), 1173–1175.
    • (1962) Nature , vol.195 , pp. 1173-1175
    • Gibson, M.I.1
  • 36
    • 36949072251 scopus 로고
    • Conversion of shikimic acid to aromatic compounds
    • Morgan, P.N., et al. Conversion of shikimic acid to aromatic compounds. Nature 194 (1962), 1239–1241.
    • (1962) Nature , vol.194 , pp. 1239-1241
    • Morgan, P.N.1
  • 37
    • 48449083807 scopus 로고
    • Biosynthesis of vitamin K and ubiquinone. Relation to the shikimic acid pathway in Escherichia coli
    • Cox, G.B., Gibson, F., Biosynthesis of vitamin K and ubiquinone. Relation to the shikimic acid pathway in Escherichia coli. Biochim. Biophys. Acta 93 (1964), 204–206.
    • (1964) Biochim. Biophys. Acta , vol.93 , pp. 204-206
    • Cox, G.B.1    Gibson, F.2
  • 38
    • 0015954095 scopus 로고
    • Biosynthesis of ubiquinone in Escherichia coli K-12: biochemical and genetic characterization of a mutant unable to convert chorismate into 4-hydroxybenzoate
    • Lawrence, J., et al. Biosynthesis of ubiquinone in Escherichia coli K-12: biochemical and genetic characterization of a mutant unable to convert chorismate into 4-hydroxybenzoate. J. Bacteriol. 118 (1974), 41–45.
    • (1974) J. Bacteriol. , vol.118 , pp. 41-45
    • Lawrence, J.1
  • 39
    • 77956251553 scopus 로고    scopus 로고
    • para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae
    • Marbois, B., et al. para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae. J. Biol. Chem. 285 (2010), 27827–27838.
    • (2010) J. Biol. Chem. , vol.285 , pp. 27827-27838
    • Marbois, B.1
  • 40
    • 77954182740 scopus 로고    scopus 로고
    • Involvement of mitochondrial ferredoxin and para-aminobenzoic acid in yeast coenzyme Q biosynthesis
    • Pierrel, F., et al. Involvement of mitochondrial ferredoxin and para-aminobenzoic acid in yeast coenzyme Q biosynthesis. Chem. Biol. 17 (2010), 449–459.
    • (2010) Chem. Biol. , vol.17 , pp. 449-459
    • Pierrel, F.1
  • 41
    • 84992435612 scopus 로고    scopus 로고
    • Hypothesis driven versus hypothesis-free: filling the gaps in CoQ biosynthesis
    • Enriquez, J.A., et al. Hypothesis driven versus hypothesis-free: filling the gaps in CoQ biosynthesis. Cell Metab. 24 (2016), 525–526.
    • (2016) Cell Metab. , vol.24 , pp. 525-526
    • Enriquez, J.A.1
  • 42
    • 84994896151 scopus 로고    scopus 로고
    • Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling
    • Stefely, J.A., et al. Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nat. Biotechnol. 34 (2016), 1191–1197.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 1191-1197
    • Stefely, J.A.1
  • 43
    • 33644912080 scopus 로고    scopus 로고
    • Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins
    • Zahedi, R.P., et al. Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol. Biol. Cell 17 (2006), 1436–1450.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 1436-1450
    • Zahedi, R.P.1
  • 44
    • 49749162582 scopus 로고
    • On the biosynthesis of ubiquinone (50)
    • Gloor, U., Wiss, O., On the biosynthesis of ubiquinone (50). Arch. Biochem. Biophys. 83 (1959), 216–222.
    • (1959) Arch. Biochem. Biophys. , vol.83 , pp. 216-222
    • Gloor, U.1    Wiss, O.2
  • 45
    • 78651171565 scopus 로고
    • Studies on coenzyme Q. Pattern of labeling in coenzyme Q9 after administration of isotopic acetate and aromatic amino acids to rats
    • Olson, R.E., et al. Studies on coenzyme Q. Pattern of labeling in coenzyme Q9 after administration of isotopic acetate and aromatic amino acids to rats. J. Biol. Chem. 240 (1965), 514–523.
    • (1965) J. Biol. Chem. , vol.240 , pp. 514-523
    • Olson, R.E.1
  • 46
    • 0014010953 scopus 로고
    • Studies on coenzyme Q. The biosynthesis of coenzyme Q9 in rat tissue slices
    • Gold, P.H., Olson, R.E., Studies on coenzyme Q. The biosynthesis of coenzyme Q9 in rat tissue slices. J. Biol. Chem. 241 (1966), 3507–3516.
    • (1966) J. Biol. Chem. , vol.241 , pp. 3507-3516
    • Gold, P.H.1    Olson, R.E.2
  • 47
    • 0000135204 scopus 로고
    • Phosphorylated intermediates in the synthesis of squalene
    • Chaykin, S., et al. Phosphorylated intermediates in the synthesis of squalene. Proc. Natl. Acad. Sci. U. S. A. 44 (1958), 998–1004.
    • (1958) Proc. Natl. Acad. Sci. U. S. A. , vol.44 , pp. 998-1004
    • Chaykin, S.1
  • 48
    • 0001016155 scopus 로고
    • Farnesyl-pyrophosphat und 3-Methyl-d3-butenyl-1-pyrophosphat, die biologischen vorstufen des squalens
    • Lynen, F.E., et al. Farnesyl-pyrophosphat und 3-Methyl-d3-butenyl-1-pyrophosphat, die biologischen vorstufen des squalens. Angew. Chem. 70 (1958), 738–742.
    • (1958) Angew. Chem. , vol.70 , pp. 738-742
    • Lynen, F.E.1
  • 49
    • 0001247159 scopus 로고
    • g,g-Dimethyl-allyl-pyrophosphat und geranyl-pyrophosphat, biologische vorstufen des squalens
    • Lynen, F.A., et al. g,g-Dimethyl-allyl-pyrophosphat und geranyl-pyrophosphat, biologische vorstufen des squalens. Angew. Chem. 71 (1959), 657–684.
    • (1959) Angew. Chem. , vol.71 , pp. 657-684
    • Lynen, F.A.1
  • 50
    • 0014685825 scopus 로고
    • The incorporation of p-hydroxybenzoic acid and isopentenyl pyrophosphate into ubiquinone precursors by cell-free preparations of rat tissues
    • Winrow, M.J., Rudney, H., The incorporation of p-hydroxybenzoic acid and isopentenyl pyrophosphate into ubiquinone precursors by cell-free preparations of rat tissues. Biochem. Biophys. Res. Commun. 37 (1969), 833–840.
    • (1969) Biochem. Biophys. Res. Commun. , vol.37 , pp. 833-840
    • Winrow, M.J.1    Rudney, H.2
  • 51
    • 0018175291 scopus 로고
    • Formation of 3-hexaprenyl-4-hydroxybenzoate by matrix-free mitochondrial membrane-rich preparations of yeast
    • Casey, J., Threlfall, D.R., Formation of 3-hexaprenyl-4-hydroxybenzoate by matrix-free mitochondrial membrane-rich preparations of yeast. Biochim. Biophys. Acta 530 (1978), 487–502.
    • (1978) Biochim. Biophys. Acta , vol.530 , pp. 487-502
    • Casey, J.1    Threlfall, D.R.2
  • 52
    • 0016686132 scopus 로고
    • Assembly of the mitochondrial membrane system. Characterization of nuclear mutants of Saccharomyces cerevisiae with defects in mitochondrial ATPase and respiratory enzymes
    • Tzagoloff, A., et al. Assembly of the mitochondrial membrane system. Characterization of nuclear mutants of Saccharomyces cerevisiae with defects in mitochondrial ATPase and respiratory enzymes. J. Biol. Chem. 250 (1975), 8228–8235.
    • (1975) J. Biol. Chem. , vol.250 , pp. 8228-8235
    • Tzagoloff, A.1
  • 53
    • 0025145542 scopus 로고
    • PET genes of Saccharomyces cerevisiae
    • Tzagoloff, A., Dieckmann, C.L., PET genes of Saccharomyces cerevisiae. Microbiol. Rev. 54 (1990), 211–225.
    • (1990) Microbiol. Rev. , vol.54 , pp. 211-225
    • Tzagoloff, A.1    Dieckmann, C.L.2
  • 54
    • 0025364138 scopus 로고
    • Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase
    • Ashby, M.N., Edwards, P.A., Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J. Biol. Chem. 265 (1990), 13157–13164.
    • (1990) J. Biol. Chem. , vol.265 , pp. 13157-13164
    • Ashby, M.N.1    Edwards, P.A.2
  • 55
    • 0026731820 scopus 로고
    • COQ2 is a candidate for the structural gene encoding para-hydroxybenzoate:polyprenyltransferase
    • Ashby, M.N., et al. COQ2 is a candidate for the structural gene encoding para-hydroxybenzoate:polyprenyltransferase. J. Biol. Chem. 267 (1992), 4128–4136.
    • (1992) J. Biol. Chem. , vol.267 , pp. 4128-4136
    • Ashby, M.N.1
  • 56
    • 13244264954 scopus 로고    scopus 로고
    • Genetic evidence for a multi-subunit complex in coenzyme Q biosynthesis in yeast and the role of the Coq1 hexaprenyl diphosphate synthase
    • Gin, P., Clarke, C.F., Genetic evidence for a multi-subunit complex in coenzyme Q biosynthesis in yeast and the role of the Coq1 hexaprenyl diphosphate synthase. J. Biol. Chem. 280 (2005), 2676–2681.
    • (2005) J. Biol. Chem. , vol.280 , pp. 2676-2681
    • Gin, P.1    Clarke, C.F.2
  • 57
    • 46349103594 scopus 로고    scopus 로고
    • A mitochondrial protein compendium elucidates complex I disease biology
    • Pagliarini, D.J., et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134 (2008), 112–123.
    • (2008) Cell , vol.134 , pp. 112-123
    • Pagliarini, D.J.1
  • 58
    • 84874956967 scopus 로고    scopus 로고
    • Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging
    • Rhee, H.W., et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339 (2013), 1328–1331.
    • (2013) Science , vol.339 , pp. 1328-1331
    • Rhee, H.W.1
  • 59
    • 84895725183 scopus 로고    scopus 로고
    • Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants
    • He, C.H., et al. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants. Biochim. Biophys. Acta 1841 (2014), 630–644.
    • (2014) Biochim. Biophys. Acta , vol.1841 , pp. 630-644
    • He, C.H.1
  • 60
    • 0030590211 scopus 로고    scopus 로고
    • Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone
    • Okada, K., et al. Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone. Biochim. Biophys. Acta 1302 (1996), 217–223.
    • (1996) Biochim. Biophys. Acta , vol.1302 , pp. 217-223
    • Okada, K.1
  • 61
    • 84894286780 scopus 로고    scopus 로고
    • Structural insights into ubiquinone biosynthesis in membranes
    • Cheng, W., Li, W., Structural insights into ubiquinone biosynthesis in membranes. Science 343 (2014), 878–881.
    • (2014) Science , vol.343 , pp. 878-881
    • Cheng, W.1    Li, W.2
  • 62
    • 0014201703 scopus 로고
    • Methionine as the source of methyl groups for ubiquinone and vitamin K: a study using nuclear magnetic resonance and mass spectrometry
    • Jackman, L.M., et al. Methionine as the source of methyl groups for ubiquinone and vitamin K: a study using nuclear magnetic resonance and mass spectrometry. Biochim. Biophys. Acta 141 (1967), 1–7.
    • (1967) Biochim. Biophys. Acta , vol.141 , pp. 1-7
    • Jackman, L.M.1
  • 63
    • 0018128330 scopus 로고
    • Three hydroxylations incorporating molecular oxygen in the aerobic biosynthesis of ubiquinone in Escherichia coli
    • Alexander, K., Young, I.G., Three hydroxylations incorporating molecular oxygen in the aerobic biosynthesis of ubiquinone in Escherichia coli. Biochemistry 17 (1978), 4745–4750.
    • (1978) Biochemistry , vol.17 , pp. 4745-4750
    • Alexander, K.1    Young, I.G.2
  • 64
    • 84943279587 scopus 로고    scopus 로고
    • Coq6 is responsible for the C4-deamination reaction in coenzyme Q biosynthesis in Saccharomyces cerevisiae
    • Ozeir, M., et al. Coq6 is responsible for the C4-deamination reaction in coenzyme Q biosynthesis in Saccharomyces cerevisiae. J. Biol. Chem. 290 (2015), 24140–24151.
    • (2015) J. Biol. Chem. , vol.290 , pp. 24140-24151
    • Ozeir, M.1
  • 65
    • 33947481078 scopus 로고
    • 2-Decaprenylphenol, biosynthetic precursor of ubiquinone-10
    • Olsen, R.K., et al. 2-Decaprenylphenol, biosynthetic precursor of ubiquinone-10. J. Am. Chem. Soc. 87 (1965), 2298–2300.
    • (1965) J. Am. Chem. Soc. , vol.87 , pp. 2298-2300
    • Olsen, R.K.1
  • 66
    • 0001264149 scopus 로고
    • Complete sequence of biosynthesis from p-hydroxybenzoic acid to ubiquinone
    • Friis, P., et al. Complete sequence of biosynthesis from p-hydroxybenzoic acid to ubiquinone. J. Am. Chem. Soc. 88 (1966), 4754–4756.
    • (1966) J. Am. Chem. Soc. , vol.88 , pp. 4754-4756
    • Friis, P.1
  • 67
    • 0014023644 scopus 로고
    • 2-Multiprenylphenols and 2-decaprenyl-6-methoxyphenol, biosynthetic precursors of ubiquinones
    • Olsen, R.K., et al. 2-Multiprenylphenols and 2-decaprenyl-6-methoxyphenol, biosynthetic precursors of ubiquinones. J. Am. Chem. Soc. 88 (1966), 5919–5923.
    • (1966) J. Am. Chem. Soc. , vol.88 , pp. 5919-5923
    • Olsen, R.K.1
  • 68
    • 0014284876 scopus 로고
    • Mutant strains of Escherichia coli K-12 unable to form ubiquinone
    • Cox, G.B., et al. Mutant strains of Escherichia coli K-12 unable to form ubiquinone. J. Bacteriol. 95 (1968), 1591–1598.
    • (1968) J. Bacteriol. , vol.95 , pp. 1591-1598
    • Cox, G.B.1
  • 69
    • 0015607502 scopus 로고
    • Pathway for ubiquinone biosynthesis in Escherichia coli K-12: gene-enzyme relationships and intermediates
    • Young, I.G., et al. Pathway for ubiquinone biosynthesis in Escherichia coli K-12: gene-enzyme relationships and intermediates. J. Bacteriol. 114 (1973), 42–52.
    • (1973) J. Bacteriol. , vol.114 , pp. 42-52
    • Young, I.G.1
  • 70
    • 0019874682 scopus 로고
    • Identification of 3,4-dihydroxy-5-hexaprenylbenzoic acid as an intermediate in the biosynthesis of ubiquinone-6 by Saccharomyces cerevisiae
    • Goewert, R.R., et al. Identification of 3,4-dihydroxy-5-hexaprenylbenzoic acid as an intermediate in the biosynthesis of ubiquinone-6 by Saccharomyces cerevisiae. Biochemistry 20 (1981), 4217–4223.
    • (1981) Biochemistry , vol.20 , pp. 4217-4223
    • Goewert, R.R.1
  • 71
    • 0019834852 scopus 로고
    • Identification of 3-methoxy-4-hydroxy-5-hexaprenylbenzoic acid as a new intermediate in ubiquinone biosynthesis by Saccharomyces cerevisiae
    • Goewert, R.R., et al. Identification of 3-methoxy-4-hydroxy-5-hexaprenylbenzoic acid as a new intermediate in ubiquinone biosynthesis by Saccharomyces cerevisiae. Biochemistry 20 (1981), 5611–5616.
    • (1981) Biochemistry , vol.20 , pp. 5611-5616
    • Goewert, R.R.1
  • 72
    • 34248195476 scopus 로고    scopus 로고
    • Endogenous synthesis of coenzyme Q in eukaryotes
    • Tran, U.C., Clarke, C.F., Endogenous synthesis of coenzyme Q in eukaryotes. Mitochondrion 7 (2007), S62–S71.
    • (2007) Mitochondrion , vol.7 , pp. S62-S71
    • Tran, U.C.1    Clarke, C.F.2
  • 73
    • 0029745317 scopus 로고    scopus 로고
    • Complementation of coq3 mutant yeast by mitochondrial targeting of the Escherichia coli UbiG polypeptide: evidence that UbiG catalyzes both O-methylation steps in ubiquinone biosynthesis
    • Hsu, A.Y., et al. Complementation of coq3 mutant yeast by mitochondrial targeting of the Escherichia coli UbiG polypeptide: evidence that UbiG catalyzes both O-methylation steps in ubiquinone biosynthesis. Biochemistry 35 (1996), 9797–9806.
    • (1996) Biochemistry , vol.35 , pp. 9797-9806
    • Hsu, A.Y.1
  • 74
    • 0035425211 scopus 로고    scopus 로고
    • Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis
    • Belogrudov, G.I., et al. Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis. Arch. Biochem. Biophys. 392 (2001), 48–58.
    • (2001) Arch. Biochem. Biophys. , vol.392 , pp. 48-58
    • Belogrudov, G.I.1
  • 75
    • 0030988484 scopus 로고    scopus 로고
    • Characterization of the COQ5 gene from Saccharomyces cerevisiae. Evidence for a C-methyltransferase in ubiquinone biosynthesis
    • Barkovich, R.J., et al. Characterization of the COQ5 gene from Saccharomyces cerevisiae. Evidence for a C-methyltransferase in ubiquinone biosynthesis. J. Biol. Chem. 272 (1997), 9182–9188.
    • (1997) J. Biol. Chem. , vol.272 , pp. 9182-9188
    • Barkovich, R.J.1
  • 76
    • 0030989525 scopus 로고    scopus 로고
    • The COQ5 gene encodes a yeast mitochondrial protein necessary for ubiquinone biosynthesis and the assembly of the respiratory chain
    • Dibrov, E., et al. The COQ5 gene encodes a yeast mitochondrial protein necessary for ubiquinone biosynthesis and the assembly of the respiratory chain. J. Biol. Chem. 272 (1997), 9175–9181.
    • (1997) J. Biol. Chem. , vol.272 , pp. 9175-9181
    • Dibrov, E.1
  • 77
    • 84907766718 scopus 로고    scopus 로고
    • Molecular characterization of the human COQ5 C-methyltransferase in coenzyme Q10 biosynthesis
    • Nguyen, T.P., et al. Molecular characterization of the human COQ5 C-methyltransferase in coenzyme Q10 biosynthesis. Biochim. Biophys. Acta 1841 (2014), 1628–1638.
    • (2014) Biochim. Biophys. Acta , vol.1841 , pp. 1628-1638
    • Nguyen, T.P.1
  • 78
    • 0037816166 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae COQ6 gene encodes a mitochondrial flavin-dependent monooxygenase required for coenzyme Q biosynthesis
    • Gin, P., et al. The Saccharomyces cerevisiae COQ6 gene encodes a mitochondrial flavin-dependent monooxygenase required for coenzyme Q biosynthesis. J. Biol. Chem. 278 (2003), 25308–25316.
    • (2003) J. Biol. Chem. , vol.278 , pp. 25308-25316
    • Gin, P.1
  • 79
    • 0032488838 scopus 로고    scopus 로고
    • Yeast Clk-1 homologue (Coq7/Cat5) is a mitochondrial protein in coenzyme Q synthesis
    • Jonassen, T., et al. Yeast Clk-1 homologue (Coq7/Cat5) is a mitochondrial protein in coenzyme Q synthesis. J. Biol. Chem. 273 (1998), 3351–3357.
    • (1998) J. Biol. Chem. , vol.273 , pp. 3351-3357
    • Jonassen, T.1
  • 80
    • 0035947594 scopus 로고    scopus 로고
    • A defect in coenzyme Q biosynthesis is responsible for the respiratory deficiency in Saccharomyces cerevisiae abc1 mutants
    • Do, T.Q., et al. A defect in coenzyme Q biosynthesis is responsible for the respiratory deficiency in Saccharomyces cerevisiae abc1 mutants. J. Biol. Chem. 276 (2001), 18161–18168.
    • (2001) J. Biol. Chem. , vol.276 , pp. 18161-18168
    • Do, T.Q.1
  • 81
    • 55349084786 scopus 로고    scopus 로고
    • Ubiquinone biosynthesis in Saccharomyces cerevisiae: the molecular organization of O-methylase Coq3p depends on Abc1p/Coq8p
    • Tauche, A., et al. Ubiquinone biosynthesis in Saccharomyces cerevisiae: the molecular organization of O-methylase Coq3p depends on Abc1p/Coq8p. FEMS Yeast Res. 8 (2008), 1263–1275.
    • (2008) FEMS Yeast Res. , vol.8 , pp. 1263-1275
    • Tauche, A.1
  • 82
    • 79953795039 scopus 로고    scopus 로고
    • Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants
    • Xie, L.X., et al. Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. Biochim. Biophys. Acta 1811 (2011), 348–360.
    • (2011) Biochim. Biophys. Acta , vol.1811 , pp. 348-360
    • Xie, L.X.1
  • 83
    • 24744460063 scopus 로고    scopus 로고
    • COQ9, a new gene required for the biosynthesis of coenzyme Q in Saccharomyces cerevisiae
    • Johnson, A., et al. COQ9, a new gene required for the biosynthesis of coenzyme Q in Saccharomyces cerevisiae. J. Biol. Chem. 280 (2005), 31397–31404.
    • (2005) J. Biol. Chem. , vol.280 , pp. 31397-31404
    • Johnson, A.1
  • 84
    • 34249945844 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Coq9 polypeptide is a subunit of the mitochondrial coenzyme Q biosynthetic complex
    • Hsieh, E.J., et al. Saccharomyces cerevisiae Coq9 polypeptide is a subunit of the mitochondrial coenzyme Q biosynthetic complex. Arch. Biochem. Biophys. 463 (2007), 19–26.
    • (2007) Arch. Biochem. Biophys. , vol.463 , pp. 19-26
    • Hsieh, E.J.1
  • 85
    • 84907930226 scopus 로고    scopus 로고
    • A Gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3
    • Khadria, A.S., et al. A Gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3. J. Am. Chem. Soc. 136 (2014), 14068–14077.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 14068-14077
    • Khadria, A.S.1
  • 86
    • 84920625908 scopus 로고    scopus 로고
    • Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis
    • Stefely, J.A., et al. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis. Mol. Cell 57 (2015), 83–94.
    • (2015) Mol. Cell , vol.57 , pp. 83-94
    • Stefely, J.A.1
  • 87
    • 84992702854 scopus 로고    scopus 로고
    • Cerebellar ataxia and coenzyme Q deficiency through loss of unorthodox kinase activity
    • Stefely, J.A., et al. Cerebellar ataxia and coenzyme Q deficiency through loss of unorthodox kinase activity. Mol. Cell 63 (2016), 608–620.
    • (2016) Mol. Cell , vol.63 , pp. 608-620
    • Stefely, J.A.1
  • 88
    • 84930181548 scopus 로고    scopus 로고
    • A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity
    • Monaghan, R.M., et al. A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity. Nat. Cell Biol. 17 (2015), 782–792.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 782-792
    • Monaghan, R.M.1
  • 89
    • 80053160231 scopus 로고    scopus 로고
    • Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency
    • Ozeir, M., et al. Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency. Chem. Biol. 18 (2011), 1134–1142.
    • (2011) Chem. Biol. , vol.18 , pp. 1134-1142
    • Ozeir, M.1
  • 90
    • 84880079427 scopus 로고    scopus 로고
    • ubiI, a new gene in Escherichia coli coenzyme Q biosynthesis, is involved in aerobic C5-hydroxylation
    • Hajj Chehade, M., et al. ubiI, a new gene in Escherichia coli coenzyme Q biosynthesis, is involved in aerobic C5-hydroxylation. J. Biol. Chem. 288 (2013), 20085–20092.
    • (2013) J. Biol. Chem. , vol.288 , pp. 20085-20092
    • Hajj Chehade, M.1
  • 91
    • 0026095839 scopus 로고
    • Ubiquinone biosynthesis in Saccharomyces cerevisiae. Isolation and sequence of COQ3, the 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase gene
    • Clarke, C.F., et al. Ubiquinone biosynthesis in Saccharomyces cerevisiae. Isolation and sequence of COQ3, the 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase gene. J. Biol. Chem. 266 (1991), 16636–16644.
    • (1991) J. Biol. Chem. , vol.266 , pp. 16636-16644
    • Clarke, C.F.1
  • 92
    • 0034724885 scopus 로고    scopus 로고
    • Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis
    • Jonassen, T., Clarke, C.F., Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis. J. Biol. Chem. 275 (2000), 12381–12387.
    • (2000) J. Biol. Chem. , vol.275 , pp. 12381-12387
    • Jonassen, T.1    Clarke, C.F.2
  • 93
    • 0015253065 scopus 로고
    • Mutants of Escherichia coli K-12 blocked in the final reaction of ubiquinone biosynthesis: characterization and genetic analysis
    • Stroobant, P., et al. Mutants of Escherichia coli K-12 blocked in the final reaction of ubiquinone biosynthesis: characterization and genetic analysis. J. Bacteriol. 109 (1972), 134–139.
    • (1972) J. Bacteriol. , vol.109 , pp. 134-139
    • Stroobant, P.1
  • 94
    • 0017276084 scopus 로고
    • Membrane-associated reactions in ubiquinone biosynthesis. 2-Octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone methyltransferase
    • Leppik, R.A., et al. Membrane-associated reactions in ubiquinone biosynthesis. 2-Octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone methyltransferase. Biochim. Biophys. Acta 428 (1976), 146–156.
    • (1976) Biochim. Biophys. Acta , vol.428 , pp. 146-156
    • Leppik, R.A.1
  • 95
    • 0033618376 scopus 로고    scopus 로고
    • Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis
    • Poon, W.W., et al. Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis. J. Biol. Chem. 274 (1999), 21665–21672.
    • (1999) J. Biol. Chem. , vol.274 , pp. 21665-21672
    • Poon, W.W.1
  • 96
    • 0014558891 scopus 로고
    • Biosynthesis of ubiquinone in Escherichia coli K-12: location of genes affecting the metabolism of 3-octaprenyl-4-hydroxybenzoic acid and 2-octaprenylphenol
    • Cox, G.B., et al. Biosynthesis of ubiquinone in Escherichia coli K-12: location of genes affecting the metabolism of 3-octaprenyl-4-hydroxybenzoic acid and 2-octaprenylphenol. J. Bacteriol. 99 (1969), 450–458.
    • (1969) J. Bacteriol. , vol.99 , pp. 450-458
    • Cox, G.B.1
  • 97
    • 77954185299 scopus 로고
    • The conversion of p-hydroxybenzaldehyde to the benzoquinone ring of ubiquinone in Rhodospirillum rubrum
    • Rudney, H., Parson, W.W., The conversion of p-hydroxybenzaldehyde to the benzoquinone ring of ubiquinone in Rhodospirillum rubrum. J. Biol. Chem. 238 (1963), 3137–3138.
    • (1963) J. Biol. Chem. , vol.238 , pp. 3137-3138
    • Rudney, H.1    Parson, W.W.2
  • 98
    • 35748939100 scopus 로고    scopus 로고
    • The role of UbiX in Escherichia coli coenzyme Q biosynthesis
    • Gulmezian, M., et al. The role of UbiX in Escherichia coli coenzyme Q biosynthesis. Arch. Biochem. Biophys. 467 (2007), 144–153.
    • (2007) Arch. Biochem. Biophys. , vol.467 , pp. 144-153
    • Gulmezian, M.1
  • 99
    • 84933056649 scopus 로고    scopus 로고
    • UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis
    • White, M.D., et al. UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature 522 (2015), 502–506.
    • (2015) Nature , vol.522 , pp. 502-506
    • White, M.D.1
  • 100
    • 84933073520 scopus 로고    scopus 로고
    • New cofactor supports alpha,beta-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition
    • Payne, K.A., et al. New cofactor supports alpha,beta-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522 (2015), 497–501.
    • (2015) Nature , vol.522 , pp. 497-501
    • Payne, K.A.1
  • 101
    • 84933039515 scopus 로고    scopus 로고
    • Biochemistry: unexpected role for vitamin B2
    • Clarke, C.F., Allan, C.M., Biochemistry: unexpected role for vitamin B2. Nature 522 (2015), 427–428.
    • (2015) Nature , vol.522 , pp. 427-428
    • Clarke, C.F.1    Allan, C.M.2
  • 102
    • 84973402378 scopus 로고    scopus 로고
    • Disruption of the human COQ5-containing protein complex is associated with diminished coenzyme Q10 levels under two different conditions of mitochondrial energy deficiency
    • Yen, H.C., et al. Disruption of the human COQ5-containing protein complex is associated with diminished coenzyme Q10 levels under two different conditions of mitochondrial energy deficiency. Biochim. Biophys. Acta 1860 (2016), 1864–1876.
    • (2016) Biochim. Biophys. Acta , vol.1860 , pp. 1864-1876
    • Yen, H.C.1
  • 103
    • 0015027020 scopus 로고
    • Characterization and genetic analysis of mutant strains of Escherichia coli K-12 accumulating the ubiquinone precursors 2-octaprenyl-6-methoxy-1,4-benzoquinone and 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone
    • Young, I.G.M., et al. Characterization and genetic analysis of mutant strains of Escherichia coli K-12 accumulating the ubiquinone precursors 2-octaprenyl-6-methoxy-1,4-benzoquinone and 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone. J. Bacteriol. 105 (1971), 769–778.
    • (1971) J. Bacteriol. , vol.105 , pp. 769-778
    • Young, I.G.M.1
  • 104
    • 0031038898 scopus 로고    scopus 로고
    • A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene
    • Lee, P.T., et al. A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene. J. Bacteriol. 179 (1997), 1748–1754.
    • (1997) J. Bacteriol. , vol.179 , pp. 1748-1754
    • Lee, P.T.1
  • 105
    • 84905457499 scopus 로고    scopus 로고
    • Crystal structures and catalytic mechanism of the C-methyltransferase Coq5 provide insights into a key step of the yeast coenzyme Q synthesis pathway
    • Dai, Y.N., et al. Crystal structures and catalytic mechanism of the C-methyltransferase Coq5 provide insights into a key step of the yeast coenzyme Q synthesis pathway. Acta Crystallogr. D Biol. Crystallogr. 70 (2014), 2085–2092.
    • (2014) Acta Crystallogr. D Biol. Crystallogr. , vol.70 , pp. 2085-2092
    • Dai, Y.N.1
  • 106
    • 0030063759 scopus 로고    scopus 로고
    • The COQ7 gene encodes a protein in Saccharomyces cerevisiae necessary for ubiquinone biosynthesis
    • Marbois, B.N., Clarke, C.F., The COQ7 gene encodes a protein in Saccharomyces cerevisiae necessary for ubiquinone biosynthesis. J. Biol. Chem. 271 (1996), 2995–3004.
    • (1996) J. Biol. Chem. , vol.271 , pp. 2995-3004
    • Marbois, B.N.1    Clarke, C.F.2
  • 107
    • 0035823556 scopus 로고    scopus 로고
    • A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis
    • Stenmark, P., et al. A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J. Biol. Chem. 276 (2001), 33297–33300.
    • (2001) J. Biol. Chem. , vol.276 , pp. 33297-33300
    • Stenmark, P.1
  • 108
    • 78149457379 scopus 로고    scopus 로고
    • The aging-associated enzyme CLK-1 is a member of the carboxylate-bridged diiron family of proteins
    • Behan, R.K., Lippard, S.J., The aging-associated enzyme CLK-1 is a member of the carboxylate-bridged diiron family of proteins. Biochemistry 49 (2010), 9679–9681.
    • (2010) Biochemistry , vol.49 , pp. 9679-9681
    • Behan, R.K.1    Lippard, S.J.2
  • 109
    • 84875798430 scopus 로고    scopus 로고
    • Aging-associated enzyme human clock-1: substrate-mediated reduction of the diiron center for 5-demethoxyubiquinone hydroxylation
    • Lu, T.T., et al. Aging-associated enzyme human clock-1: substrate-mediated reduction of the diiron center for 5-demethoxyubiquinone hydroxylation. Biochemistry 52 (2013), 2236–2244.
    • (2013) Biochemistry , vol.52 , pp. 2236-2244
    • Lu, T.T.1
  • 110
    • 85024395052 scopus 로고    scopus 로고
    • Evolution of ubiquinone biosynthesis: multiple proteobacterial enzymes with various regioselectivities to catalyze three contiguous aromatic hydroxylation reactions
    • e00091-16
    • Pelosi, L., et al. Evolution of ubiquinone biosynthesis: multiple proteobacterial enzymes with various regioselectivities to catalyze three contiguous aromatic hydroxylation reactions. mSystems, 1, 2016 e00091-16.
    • (2016) mSystems , vol.1
    • Pelosi, L.1
  • 111
    • 84863624059 scopus 로고    scopus 로고
    • Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway
    • Xie, L.X., et al. Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway. J. Biol. Chem. 287 (2012), 23571–23581.
    • (2012) J. Biol. Chem. , vol.287 , pp. 23571-23581
    • Xie, L.X.1
  • 112
    • 0029016724 scopus 로고
    • 3-Hexaprenyl-4-hydroxybenzoic acid forms a predominant intermediate pool in ubiquinone biosynthesis in Saccharomyces cerevisiae
    • Poon, W.W., et al. 3-Hexaprenyl-4-hydroxybenzoic acid forms a predominant intermediate pool in ubiquinone biosynthesis in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 320 (1995), 305–314.
    • (1995) Arch. Biochem. Biophys. , vol.320 , pp. 305-314
    • Poon, W.W.1
  • 113
    • 20144363128 scopus 로고    scopus 로고
    • Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q
    • Marbois, B., et al. Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q. J. Biol. Chem. 280 (2005), 20231–20238.
    • (2005) J. Biol. Chem. , vol.280 , pp. 20231-20238
    • Marbois, B.1
  • 114
    • 33745205101 scopus 로고    scopus 로고
    • Complementation of Saccharomyces cerevisiae coq7 mutants by mitochondrial targeting of the Escherichia coli UbiF polypeptide: two functions of yeast Coq7 polypeptide in coenzyme Q biosynthesis
    • Tran, U.C., et al. Complementation of Saccharomyces cerevisiae coq7 mutants by mitochondrial targeting of the Escherichia coli UbiF polypeptide: two functions of yeast Coq7 polypeptide in coenzyme Q biosynthesis. J. Biol. Chem. 281 (2006), 16401–16409.
    • (2006) J. Biol. Chem. , vol.281 , pp. 16401-16409
    • Tran, U.C.1
  • 115
    • 84925308729 scopus 로고    scopus 로고
    • Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae
    • Allan, C.M., et al. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae. J. Biol. Chem. 290 (2015), 7517–7534.
    • (2015) J. Biol. Chem. , vol.290 , pp. 7517-7534
    • Allan, C.M.1
  • 116
    • 84914689325 scopus 로고    scopus 로고
    • Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis
    • Lohman, D.C., et al. Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), E4697–E4705.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. E4697-E4705
    • Lohman, D.C.1
  • 117
    • 84992735863 scopus 로고    scopus 로고
    • Mitochondrial protein interaction mapping identifies regulators of respiratory chain function
    • Floyd, B.J., et al. Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol. Cell 63 (2016), 621–632.
    • (2016) Mol. Cell , vol.63 , pp. 621-632
    • Floyd, B.J.1
  • 118
    • 84890038202 scopus 로고    scopus 로고
    • ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption
    • Ashraf, S., et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J. Clin. Invest. 123 (2013), 5179–5189.
    • (2013) J. Clin. Invest. , vol.123 , pp. 5179-5189
    • Ashraf, S.1
  • 119
  • 120
    • 0022515187 scopus 로고
    • Organization of citric acid cycle enzymes into a multienzyme cluster
    • Barnes, S.J., Weitzman, P.D., Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett. 201 (1986), 267–270.
    • (1986) FEBS Lett. , vol.201 , pp. 267-270
    • Barnes, S.J.1    Weitzman, P.D.2
  • 121
    • 85005975973 scopus 로고    scopus 로고
    • A new view into the regulation of purine metabolism: the purinosome
    • Pedley, A.M., Benkovic, S.J., A new view into the regulation of purine metabolism: the purinosome. Trends Biochem. Sci. 42 (2017), 141–154.
    • (2017) Trends Biochem. Sci. , vol.42 , pp. 141-154
    • Pedley, A.M.1    Benkovic, S.J.2
  • 122
    • 84995900407 scopus 로고    scopus 로고
    • Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum
    • Laursen, T., et al. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science 354 (2016), 890–893.
    • (2016) Science , vol.354 , pp. 890-893
    • Laursen, T.1
  • 123
    • 84982262288 scopus 로고    scopus 로고
    • Adrenal mitochondria and steroidogenesis: from individual proteins to functional protein assemblies
    • Midzak, A., Papadopoulos, V., Adrenal mitochondria and steroidogenesis: from individual proteins to functional protein assemblies. Front. Endocrinol. (Lausanne), 7, 2016, 106.
    • (2016) Front. Endocrinol. (Lausanne) , vol.7 , pp. 106
    • Midzak, A.1    Papadopoulos, V.2
  • 124
    • 77956090193 scopus 로고    scopus 로고
    • Mitochondrial protein import: from proteomics to functional mechanisms
    • Schmidt, O., et al. Mitochondrial protein import: from proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 11 (2010), 655–667.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 655-667
    • Schmidt, O.1
  • 125
    • 84903940006 scopus 로고    scopus 로고
    • The regulation of coenzyme q biosynthesis in eukaryotic cells: all that yeast can tell us
    • Gonzalez-Mariscal, I., et al. The regulation of coenzyme q biosynthesis in eukaryotic cells: all that yeast can tell us. Mol. Syndromol. 5 (2014), 107–118.
    • (2014) Mol. Syndromol. , vol.5 , pp. 107-118
    • Gonzalez-Mariscal, I.1
  • 126
    • 85031755642 scopus 로고    scopus 로고
    • Post-transcriptional control of coenzyme Q biosynthesis revealed by transomic analysis of the RNA-binding protein Puf3p
    • Lapointe, C.P., et al. Post-transcriptional control of coenzyme Q biosynthesis revealed by transomic analysis of the RNA-binding protein Puf3p. bioRxiv, 2017, 146985.
    • (2017) bioRxiv , pp. 146985
    • Lapointe, C.P.1
  • 127
    • 0033198845 scopus 로고    scopus 로고
    • Different import pathways through the mitochondrial intermembrane space for inner membrane proteins
    • Leuenberger, D., et al. Different import pathways through the mitochondrial intermembrane space for inner membrane proteins. EMBO J. 18 (1999), 4816–4822.
    • (1999) EMBO J. , vol.18 , pp. 4816-4822
    • Leuenberger, D.1
  • 128
    • 0035800788 scopus 로고    scopus 로고
    • Mouse CLK-1 is imported into mitochondria by an unusual process that requires a leader sequence but no membrane potential
    • Jiang, N., et al. Mouse CLK-1 is imported into mitochondria by an unusual process that requires a leader sequence but no membrane potential. J. Biol. Chem. 276 (2001), 29218–29225.
    • (2001) J. Biol. Chem. , vol.276 , pp. 29218-29225
    • Jiang, N.1
  • 129
    • 0021816512 scopus 로고
    • Location and mobility of ubiquinones of different chain lengths in artificial membrane vesicles
    • Ulrich, E.L., et al. Location and mobility of ubiquinones of different chain lengths in artificial membrane vesicles. Biochemistry 24 (1985), 2501–2508.
    • (1985) Biochemistry , vol.24 , pp. 2501-2508
    • Ulrich, E.L.1
  • 130
    • 0000388160 scopus 로고
    • NMR studies of ubiquinone location in oriented model membranes: evidence for a single motionally-averaged population
    • Metz, G.H., et al. NMR studies of ubiquinone location in oriented model membranes: evidence for a single motionally-averaged population. J. Am. Chem. Soc. 117 (1995), 564–565.
    • (1995) J. Am. Chem. Soc. , vol.117 , pp. 564-565
    • Metz, G.H.1
  • 131
    • 65549119172 scopus 로고    scopus 로고
    • Genetic evidence for the requirement of the endocytic pathway in the uptake of coenzyme Q6 in Saccharomyces cerevisiae
    • Padilla-Lopez, S., et al. Genetic evidence for the requirement of the endocytic pathway in the uptake of coenzyme Q6 in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1788 (2009), 1238–1248.
    • (2009) Biochim. Biophys. Acta , vol.1788 , pp. 1238-1248
    • Padilla-Lopez, S.1
  • 132
    • 21844465110 scopus 로고    scopus 로고
    • Coenzyme Q. distribution in HL-60 human cells depends on the endomembrane system
    • Fernandez-Ayala, D.J., et al. Coenzyme Q. distribution in HL-60 human cells depends on the endomembrane system. Biochim. Biophys. Acta 1713 (2005), 129–137.
    • (2005) Biochim. Biophys. Acta , vol.1713 , pp. 129-137
    • Fernandez-Ayala, D.J.1
  • 133
    • 57649178662 scopus 로고    scopus 로고
    • The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis
    • Marbois, B., et al. The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim. Biophys. Acta 1791 (2009), 69–75.
    • (2009) Biochim. Biophys. Acta , vol.1791 , pp. 69-75
    • Marbois, B.1
  • 134
    • 0031722706 scopus 로고    scopus 로고
    • Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily
    • Leonard, C.J., et al. Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res. 8 (1998), 1038–1047.
    • (1998) Genome Res. , vol.8 , pp. 1038-1047
    • Leonard, C.J.1
  • 135
    • 0033820931 scopus 로고    scopus 로고
    • Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis
    • Poon, W.W., et al. Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis. J. Bacteriol. 182 (2000), 5139–5146.
    • (2000) J. Bacteriol. , vol.182 , pp. 5139-5146
    • Poon, W.W.1
  • 136
    • 41149121580 scopus 로고    scopus 로고
    • ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency
    • Lagier-Tourenne, C., et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am. J. Hum. Genet. 82 (2008), 661–672.
    • (2008) Am. J. Hum. Genet. , vol.82 , pp. 661-672
    • Lagier-Tourenne, C.1
  • 137
    • 33947226782 scopus 로고    scopus 로고
    • Structural and functional diversity of the microbial kinome
    • Kannan, N., et al. Structural and functional diversity of the microbial kinome. PLoS Biol., 5, 2007, e17.
    • (2007) PLoS Biol. , vol.5 , pp. e17
    • Kannan, N.1
  • 138
    • 85031744861 scopus 로고    scopus 로고
    • Conserved lipid and small molecule modulation of COQ8 reveals regulation of the ancient UbiB family
    • Reidenbach, A., et al. Conserved lipid and small molecule modulation of COQ8 reveals regulation of the ancient UbiB family. bioRxiv, 2017, 149823.
    • (2017) bioRxiv , pp. 149823
    • Reidenbach, A.1
  • 139
    • 84874507385 scopus 로고    scopus 로고
    • Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency
    • Garcia-Corzo, L., et al. Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Hum. Mol. Genet. 22 (2013), 1233–1248.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 1233-1248
    • Garcia-Corzo, L.1
  • 140
    • 84935836805 scopus 로고    scopus 로고
    • Yeast Coq9 controls deamination of coenzyme Q intermediates that derive from para-aminobenzoic acid
    • He, C.H., et al. Yeast Coq9 controls deamination of coenzyme Q intermediates that derive from para-aminobenzoic acid. Biochim. Biophys. Acta 1851 (2015), 1227–1239.
    • (2015) Biochim. Biophys. Acta , vol.1851 , pp. 1227-1239
    • He, C.H.1
  • 141
    • 30044432823 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration
    • Barros, M.H., et al. The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration. J. Biol. Chem. 280 (2005), 42627–42635.
    • (2005) J. Biol. Chem. , vol.280 , pp. 42627-42635
    • Barros, M.H.1
  • 142
    • 84873435551 scopus 로고    scopus 로고
    • A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae
    • Allan, C.M., et al. A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1831 (2013), 776–791.
    • (2013) Biochim. Biophys. Acta , vol.1831 , pp. 776-791
    • Allan, C.M.1
  • 143
    • 85024365170 scopus 로고    scopus 로고
    • The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ
    • Published online May 30, 2017
    • Loiseau, L., et al. The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ. J. Biol. Chem., 2017, 10.1074/jbc.M117.789164 Published online May 30, 2017.
    • (2017) J. Biol. Chem.
    • Loiseau, L.1
  • 144
    • 84890291473 scopus 로고    scopus 로고
    • ubiJ, a new gene required for aerobic growth and proliferation in macrophage, is involved in coenzyme Q biosynthesis in Escherichia coli and Salmonella enterica serovar Typhimurium
    • Aussel, L., et al. ubiJ, a new gene required for aerobic growth and proliferation in macrophage, is involved in coenzyme Q biosynthesis in Escherichia coli and Salmonella enterica serovar Typhimurium. J. Bacteriol. 196 (2014), 70–79.
    • (2014) J. Bacteriol. , vol.196 , pp. 70-79
    • Aussel, L.1
  • 145
    • 31544480133 scopus 로고    scopus 로고
    • A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency
    • Quinzii, C., et al. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am. J. Hum. Genet. 78 (2006), 345–349.
    • (2006) Am. J. Hum. Genet. , vol.78 , pp. 345-349
    • Quinzii, C.1
  • 146
    • 84875476544 scopus 로고    scopus 로고
    • A novel mutation in COQ2 leading to fatal infantile multisystem disease
    • Jakobs, B.S., et al. A novel mutation in COQ2 leading to fatal infantile multisystem disease. J. Neurol. Sci. 326 (2013), 24–28.
    • (2013) J. Neurol. Sci. , vol.326 , pp. 24-28
    • Jakobs, B.S.1
  • 147
    • 34250668197 scopus 로고    scopus 로고
    • COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement
    • Diomedi-Camassei, F., et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J. Am. Soc. Nephrol. 18 (2007), 2773–2780.
    • (2007) J. Am. Soc. Nephrol. , vol.18 , pp. 2773-2780
    • Diomedi-Camassei, F.1
  • 148
    • 84939266277 scopus 로고    scopus 로고
    • Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure
    • Desbats, M.A., et al. Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure. Eur. J. Hum. Genet. 23 (2015), 1254–1258.
    • (2015) Eur. J. Hum. Genet. , vol.23 , pp. 1254-1258
    • Desbats, M.A.1
  • 149
    • 84860277256 scopus 로고    scopus 로고
    • Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency
    • Salviati, L., et al. Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency. J. Med. Genet. 49 (2012), 187–191.
    • (2012) J. Med. Genet. , vol.49 , pp. 187-191
    • Salviati, L.1
  • 150
    • 84924942443 scopus 로고    scopus 로고
    • COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency
    • Brea-Calvo, G., et al. COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. Am. J. Hum. Genet. 96 (2015), 309–317.
    • (2015) Am. J. Hum. Genet. , vol.96 , pp. 309-317
    • Brea-Calvo, G.1
  • 151
    • 79955520308 scopus 로고    scopus 로고
    • COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness
    • Heeringa, S.F., et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121 (2011), 2013–2024.
    • (2011) J. Clin. Invest. , vol.121 , pp. 2013-2024
    • Heeringa, S.F.1
  • 152
    • 84887709796 scopus 로고    scopus 로고
    • Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency
    • Doimo, M., et al. Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. Biochim. Biophys. Acta 1842 (2014), 1–6.
    • (2014) Biochim. Biophys. Acta , vol.1842 , pp. 1-6
    • Doimo, M.1
  • 153
    • 84954361939 scopus 로고    scopus 로고
    • Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid
    • Freyer, C., et al. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. J. Med. Genet. 52 (2015), 779–783.
    • (2015) J. Med. Genet. , vol.52 , pp. 779-783
    • Freyer, C.1
  • 154
    • 41149134880 scopus 로고    scopus 로고
    • CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures
    • Mollet, J., et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am. J. Hum. Genet. 82 (2008), 623–630.
    • (2008) Am. J. Hum. Genet. , vol.82 , pp. 623-630
    • Mollet, J.1
  • 155
    • 84898869310 scopus 로고    scopus 로고
    • Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation
    • Liu, Y.T., et al. Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation. J. Neurol. Neurosurg. Psychiatry 85 (2014), 493–498.
    • (2014) J. Neurol. Neurosurg. Psychiatry , vol.85 , pp. 493-498
    • Liu, Y.T.1
  • 156
    • 84922101913 scopus 로고    scopus 로고
    • Heterozygous mutations in the ADCK3 gene in siblings with cerebellar atrophy and extreme phenotypic variability
    • Blumkin, L., et al. Heterozygous mutations in the ADCK3 gene in siblings with cerebellar atrophy and extreme phenotypic variability. JIMD Rep. 12 (2014), 103–107.
    • (2014) JIMD Rep. , vol.12 , pp. 103-107
    • Blumkin, L.1
  • 157
    • 77955424107 scopus 로고    scopus 로고
    • Nonsense mutations in CABC1/ADCK3 cause progressive cerebellar ataxia and atrophy
    • Gerards, M., et al. Nonsense mutations in CABC1/ADCK3 cause progressive cerebellar ataxia and atrophy. Mitochondrion 10 (2010), 510–515.
    • (2010) Mitochondrion , vol.10 , pp. 510-515
    • Gerards, M.1
  • 158
    • 84855616355 scopus 로고    scopus 로고
    • Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3
    • Horvath, R., et al. Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. J. Neurol. Neurosurg. Psychiatry 83 (2012), 174–178.
    • (2012) J. Neurol. Neurosurg. Psychiatry , vol.83 , pp. 174-178
    • Horvath, R.1
  • 159
    • 84954451992 scopus 로고    scopus 로고
    • ADCK4-associated glomerulopathy causes adolescence-onset FSGS
    • Korkmaz, E., et al. ADCK4-associated glomerulopathy causes adolescence-onset FSGS. J. Am. Soc. Nephrol. 27 (2015), 63–68.
    • (2015) J. Am. Soc. Nephrol. , vol.27 , pp. 63-68
    • Korkmaz, E.1
  • 160
    • 65549087610 scopus 로고    scopus 로고
    • A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease
    • Duncan, A.J., et al. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am. J. Hum. Genet. 84 (2009), 558–566.
    • (2009) Am. J. Hum. Genet. , vol.84 , pp. 558-566
    • Duncan, A.J.1
  • 161
    • 84958105102 scopus 로고    scopus 로고
    • Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9
    • Danhauser, K., et al. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. Eur. J. Hum. Genet. 24 (2015), 450–454.
    • (2015) Eur. J. Hum. Genet. , vol.24 , pp. 450-454
    • Danhauser, K.1
  • 162
    • 33847347629 scopus 로고    scopus 로고
    • Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders
    • Mollet, J., et al. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J. Clin. Invest. 117 (2007), 765–772.
    • (2007) J. Clin. Invest. , vol.117 , pp. 765-772
    • Mollet, J.1
  • 163
    • 33845232634 scopus 로고    scopus 로고
    • Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations
    • Lopez, L.C., et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet. 79 (2006), 1125–1129.
    • (2006) Am. J. Hum. Genet. , vol.79 , pp. 1125-1129
    • Lopez, L.C.1
  • 164
    • 84885632958 scopus 로고    scopus 로고
    • Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10
    • Gasser, D.L., et al. Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10. Am. J. Physiol. Renal Physiol. 305 (2013), F1228–F1238.
    • (2013) Am. J. Physiol. Renal Physiol. , vol.305 , pp. F1228-F1238
    • Gasser, D.L.1
  • 165
    • 34248171499 scopus 로고    scopus 로고
    • The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene
    • Gempel, K., et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130 (2007), 2037–2044.
    • (2007) Brain , vol.130 , pp. 2037-2044
    • Gempel, K.1
  • 166
    • 69449083834 scopus 로고    scopus 로고
    • Coenzyme Q(10) is decreased in fibroblasts of patients with methylmalonic aciduria but not in mevalonic aciduria
    • Haas, D., et al. Coenzyme Q(10) is decreased in fibroblasts of patients with methylmalonic aciduria but not in mevalonic aciduria. J. Inherit. Metab. Dis. 32 (2009), 570–575.
    • (2009) J. Inherit. Metab. Dis. , vol.32 , pp. 570-575
    • Haas, D.1
  • 167
    • 13244277454 scopus 로고    scopus 로고
    • Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation
    • Quinzii, C.M., et al. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 64 (2005), 539–541.
    • (2005) Neurology , vol.64 , pp. 539-541
    • Quinzii, C.M.1
  • 168
    • 35448950741 scopus 로고    scopus 로고
    • Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency
    • Aeby, A., et al. Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency. J. Inherit. Metab. Dis., 30, 2007, 827.
    • (2007) J. Inherit. Metab. Dis. , vol.30 , pp. 827
    • Aeby, A.1
  • 169
    • 34249826635 scopus 로고    scopus 로고
    • The role of coenzyme Q10 in statin-associated myopathy: a systematic review
    • Marcoff, L., Thompson, P.D., The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J. Am. Coll. Cardiol. 49 (2007), 2231–2237.
    • (2007) J. Am. Coll. Cardiol. , vol.49 , pp. 2231-2237
    • Marcoff, L.1    Thompson, P.D.2
  • 170
    • 84920199403 scopus 로고    scopus 로고
    • Myopathy during treatment with the antianginal drug ranolazine
    • Kassardjian, C.D., et al. Myopathy during treatment with the antianginal drug ranolazine. J. Neurol. Sci. 347 (2014), 380–382.
    • (2014) J. Neurol. Sci. , vol.347 , pp. 380-382
    • Kassardjian, C.D.1
  • 171
    • 84865622739 scopus 로고    scopus 로고
    • Heterogeneity of coenzyme Q10 deficiency: patient study and literature review
    • Emmanuele, V., et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch. Neurol. 69 (2012), 978–983.
    • (2012) Arch. Neurol. , vol.69 , pp. 978-983
    • Emmanuele, V.1
  • 172
    • 84869051280 scopus 로고    scopus 로고
    • Mitochondrial disorders as windows into an ancient organelle
    • Vafai, S.B., Mootha, V.K., Mitochondrial disorders as windows into an ancient organelle. Nature 491 (2012), 374–383.
    • (2012) Nature , vol.491 , pp. 374-383
    • Vafai, S.B.1    Mootha, V.K.2
  • 173
    • 45949099527 scopus 로고    scopus 로고
    • Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency
    • Montini, G., et al. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N. Engl. J. Med. 358 (2008), 2849–2850.
    • (2008) N. Engl. J. Med. , vol.358 , pp. 2849-2850
    • Montini, G.1
  • 174
    • 84887565727 scopus 로고    scopus 로고
    • Mitochondrial respiration without ubiquinone biosynthesis
    • Wang, Y., Hekimi, S., Mitochondrial respiration without ubiquinone biosynthesis. Hum. Mol. Genet. 22 (2013), 4768–4783.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 4768-4783
    • Wang, Y.1    Hekimi, S.2
  • 175
  • 176
    • 84940892038 scopus 로고    scopus 로고
    • Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging
    • Ben-Meir, A., et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14 (2015), 887–895.
    • (2015) Aging Cell , vol.14 , pp. 887-895
    • Ben-Meir, A.1
  • 177
    • 84922805752 scopus 로고    scopus 로고
    • Dependence of brown adipose tissue function on CD36-mediated coenzyme Q uptake
    • Anderson, C.M., et al. Dependence of brown adipose tissue function on CD36-mediated coenzyme Q uptake. Cell Rep. 10 (2015), 505–515.
    • (2015) Cell Rep. , vol.10 , pp. 505-515
    • Anderson, C.M.1
  • 178
    • 0037373280 scopus 로고    scopus 로고
    • Distribution and breakdown of labeled coenzyme Q10 in rat
    • Bentinger, M., et al. Distribution and breakdown of labeled coenzyme Q10 in rat. Free Radic. Biol. Med. 34 (2003), 563–575.
    • (2003) Free Radic. Biol. Med. , vol.34 , pp. 563-575
    • Bentinger, M.1
  • 179
    • 0037192846 scopus 로고    scopus 로고
    • Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants
    • Santos-Ocana, C., et al. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants. J. Biol. Chem. 277 (2002), 10973–10981.
    • (2002) J. Biol. Chem. , vol.277 , pp. 10973-10981
    • Santos-Ocana, C.1
  • 180
    • 84897371083 scopus 로고    scopus 로고
    • Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency
    • Garcia-Corzo, L., et al. Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim. Biophys. Acta 1842 (2014), 893–901.
    • (2014) Biochim. Biophys. Acta , vol.1842 , pp. 893-901
    • Garcia-Corzo, L.1
  • 181
    • 84924560078 scopus 로고    scopus 로고
    • Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis
    • Wang, Y., et al. Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis. Nat. Commun., 6, 2015, 6393.
    • (2015) Nat. Commun. , vol.6 , pp. 6393
    • Wang, Y.1
  • 182
    • 84928989367 scopus 로고    scopus 로고
    • The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene
    • Luna-Sanchez, M., et al. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol. Med. 7 (2015), 670–687.
    • (2015) EMBO Mol. Med. , vol.7 , pp. 670-687
    • Luna-Sanchez, M.1
  • 183
    • 84886408132 scopus 로고    scopus 로고
    • Practice patterns of mitochondrial disease physicians in North America Part 2: treatment, care and management
    • Parikh, S., et al. Practice patterns of mitochondrial disease physicians in North America Part 2: treatment, care and management. Mitochondrion 13 (2013), 681–687.
    • (2013) Mitochondrion , vol.13 , pp. 681-687
    • Parikh, S.1
  • 184
    • 70350136445 scopus 로고    scopus 로고
    • A modern approach to the treatment of mitochondrial disease
    • Parikh, S., et al. A modern approach to the treatment of mitochondrial disease. Curr. Treat. Options Neurol. 11 (2009), 414–430.
    • (2009) Curr. Treat. Options Neurol. , vol.11 , pp. 414-430
    • Parikh, S.1
  • 185
    • 84875679362 scopus 로고    scopus 로고
    • Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases
    • Chaturvedi, R.K., Beal, M.F., Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases. Mol. Cell. Neurosci. 55 (2013), 101–114.
    • (2013) Mol. Cell. Neurosci. , vol.55 , pp. 101-114
    • Chaturvedi, R.K.1    Beal, M.F.2
  • 186
    • 80155191237 scopus 로고    scopus 로고
    • Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer's disease
    • Dumont, M., et al. Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer's disease. J. Alzheimers Dis. 27 (2011), 211–223.
    • (2011) J. Alzheimers Dis. , vol.27 , pp. 211-223
    • Dumont, M.1
  • 187
    • 84975156981 scopus 로고    scopus 로고
    • Systems proteomics of liver mitochondria function
    • Williams, E.G., et al. Systems proteomics of liver mitochondria function. Science, 352, 2016, aad0189.
    • (2016) Science , vol.352 , pp. aad0189
    • Williams, E.G.1
  • 188
    • 0015321309 scopus 로고
    • Biochemical and genetic studies on ubiquinone biosynthesis in Escherichia coli K-12:4-hydroxybenzoate octaprenyltransferase
    • Young, I.G., et al. Biochemical and genetic studies on ubiquinone biosynthesis in Escherichia coli K-12:4-hydroxybenzoate octaprenyltransferase. J. Bacteriol. 110 (1972), 18–25.
    • (1972) J. Bacteriol. , vol.110 , pp. 18-25
    • Young, I.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.