메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2123-2130

Locally linear hashing for extracting non-linear manifolds

Author keywords

hashing; local linearity; manifold; retrieval

Indexed keywords

IMAGE ENHANCEMENT;

EID: 84911410304     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.272     Document Type: Conference Paper
Times cited : (88)

References (27)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 55349134896 scopus 로고    scopus 로고
    • 1-norm minimization problems when the solution may be sparse
    • D. Donoho and Y. Tsaig. Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. IT, 54(11):4789-4812, 2008.
    • (2008) IEEE Trans. IT , vol.54 , Issue.11 , pp. 4789-4812
    • Donoho, D.1    Tsaig, Y.2
  • 3
    • 85162319688 scopus 로고    scopus 로고
    • Sparse manifold clustering and embedding
    • E. Elhamifar and R. Vidal. Sparse manifold clustering and embedding. In NIPS, 2011.
    • (2011) NIPS
    • Elhamifar, E.1    Vidal, R.2
  • 5
    • 84887601251 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
    • Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. PAMI, 35(12):2916-2929, 2013.
    • (2013) IEEE Trans. PAMI , vol.35 , Issue.12 , pp. 2916-2929
    • Gong, Y.1    Lazebnik, S.2    Gordo, A.3    Perronnin, F.4
  • 6
    • 84887359482 scopus 로고    scopus 로고
    • K-means hashing: An affinity-preserving quantization method for learning binary compact codes
    • K. He, F. Wen, and J. Sun. K-means hashing: an affinity-preserving quantization method for learning binary compact codes. In CVPR, 2013.
    • (2013) CVPR
    • He, K.1    Wen, F.2    Sun, J.3
  • 8
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In STOC, 1998.
    • (1998) STOC
    • Indyk, P.1    Motwani, R.2
  • 9
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Trans. PAMI, 33(1):117-128, 2011.
    • (2011) IEEE Trans. PAMI , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 10
    • 84858740468 scopus 로고    scopus 로고
    • Learning to hash with binary reconstructive embeddings
    • B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings. In NIPS, 2009.
    • (2009) NIPS
    • Kulis, B.1    Darrell, T.2
  • 11
    • 84860241633 scopus 로고    scopus 로고
    • Kernelized locality-sensitive hashing
    • B. Kulis, P. Jain, and K. Grauman. Kernelized locality-sensitive hashing. IEEE Trans. PAMI, 34(6):1092-1104, 2012.
    • (2012) IEEE Trans. PAMI , vol.34 , Issue.6 , pp. 1092-1104
    • Kulis, B.1    Jain, P.2    Grauman, K.3
  • 14
    • 85167402693 scopus 로고    scopus 로고
    • Non-metric locality-sensitive hashing
    • Y. Mu and S. Yan. Non-metric locality-sensitive hashing. In AAAI, 2010.
    • (2010) AAAI
    • Mu, Y.1    Yan, S.2
  • 15
    • 80053457714 scopus 로고    scopus 로고
    • Minimal loss hashing for compact binary codes
    • M. Norouzi and D. J. Fleet. Minimal loss hashing for compact binary codes. In ICML, 2011.
    • (2011) ICML
    • Norouzi, M.1    Fleet, D.J.2
  • 16
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 17
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsuper-vised learning of low dimensional manifolds
    • L. Saul and S. Roweis. Think globally, fit locally: Unsuper-vised learning of low dimensional manifolds. JMLR, 4:119-155, 2003.
    • (2003) JMLR , vol.4 , pp. 119-155
    • Saul, L.1    Roweis, S.2
  • 20
    • 84865410773 scopus 로고    scopus 로고
    • Semi-supervised hashing for large-scale search
    • J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for large-scale search. IEEE Trans. PAMI, 34:2393-2406, 2012.
    • (2012) IEEE Trans. PAMI , vol.34 , pp. 2393-2406
    • Wang, J.1    Kumar, S.2    Chang, S.-F.3
  • 21
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 22
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite programming. IJCV, 70(1):77-90, 2006.
    • (2006) IJCV , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.Q.1    Saul, L.K.2
  • 23
    • 84890392701 scopus 로고    scopus 로고
    • Multidimensional spectral hashing
    • Y. Weiss, R. Fergus, and A. Torralba. Multidimensional spectral hashing. In ECCV, 2012.
    • (2012) ECCV
    • Weiss, Y.1    Fergus, R.2    Torralba, A.3
  • 25
    • 0344551898 scopus 로고    scopus 로고
    • Multiclass spectral clustering
    • S. Yu and J. Shi. Multiclass spectral clustering. In ICCV, 2003.
    • (2003) ICCV
    • Yu, S.1    Shi, J.2
  • 26
    • 77956027394 scopus 로고    scopus 로고
    • Self-taught hashing for fast similarity search
    • D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing for fast similarity search. In SIGIR, 2010.
    • (2010) SIGIR
    • Zhang, D.1    Wang, J.2    Cai, D.3    Lu, J.4
  • 27
    • 84055176547 scopus 로고    scopus 로고
    • Adaptive manifold learning
    • Z. Zhang, J. Wang, and H. Zha. Adaptive manifold learning. IEEE Trans. PAMI, 34(2):253-265, 2012.
    • (2012) IEEE Trans. PAMI , vol.34 , Issue.2 , pp. 253-265
    • Zhang, Z.1    Wang, J.2    Zha, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.