메뉴 건너뛰기




Volumn 19, Issue 1, 2017, Pages 123-135

Nonlinear Discrete Hashing

Author keywords

Binary code; discrete optimization; hashing; multilayer neural network; nonlinear transformation

Indexed keywords

BINARY CODES; BINS; CODES (SYMBOLS); ERRORS; LINEAR TRANSFORMATIONS; MULTILAYER NEURAL NETWORKS; MULTILAYERS; OPTIMIZATION; SEMANTICS;

EID: 85007415342     PISSN: 15209210     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMM.2016.2620604     Document Type: Article
Times cited : (46)

References (44)
  • 1
    • 37549058056 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • A. Andoni and P. Indyk, "Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions, " Commun. ACM, vol. 51, no. 1, pp. 117-122, 2008.
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 117-122
    • Andoni, A.1    Indyk, P.2
  • 2
    • 73549107233 scopus 로고    scopus 로고
    • Hash kernels for structured data
    • Q. Shi et al., "Hash kernels for structured data, " J. Mach. Learn. Res., vol. 10, pp. 2615-2637, 2009.
    • (2009) J. Mach. Learn. Res , vol.10 , pp. 2615-2637
    • Shi, Q.1
  • 4
    • 0036040277 scopus 로고    scopus 로고
    • Similarity estimation techniques from rounding algorithms
    • M. Charikar, "Similarity estimation techniques from rounding algorithms, " in Proc. 34th Annu. ACM Symp. Theory Comput., 2002, pp. 380-388.
    • (2002) Proc. 34th Annu. ACM Symp. Theory Comput , pp. 380-388
    • Charikar, M.1
  • 5
    • 84933037463 scopus 로고    scopus 로고
    • Batch-orthogonal locality-sensitive hashingfor angular similarity
    • Oct
    • J. Ji et al., "Batch-orthogonal locality-sensitive hashingfor angular similarity, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 10, pp. 1963-1974, Oct. 2014.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell , vol.36 , Issue.10 , pp. 1963-1974
    • Ji, J.1
  • 6
    • 79954525255 scopus 로고    scopus 로고
    • Locality-sensitive binary codes from shift-invariant kernels
    • M. Raginsky and S. Lazebnik, "Locality-sensitive binary codes from shift-invariant kernels, " in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1509-1517.
    • (2009) Proc. Adv. Neural Inf. Process. Syst , pp. 1509-1517
    • Raginsky, M.1    Lazebnik, S.2
  • 7
    • 84959219253 scopus 로고    scopus 로고
    • Bilinear random projections for locality-sensitive binary codes
    • S. Kim and S. Choi, "Bilinear random projections for locality-sensitive binary codes, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2015, pp. 1338-1346.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun , pp. 1338-1346
    • Kim, S.1    Choi, S.2
  • 8
    • 84962449925 scopus 로고    scopus 로고
    • Supervised multi-scale locality sensitive hashing
    • L. Weng et al., "Supervised multi-scale locality sensitive hashing, " in Proc. 5th ACM Int. Conf. Multimedia Retrieval, 2015, pp. 259-266.
    • (2015) Proc. 5th ACM Int. Conf. Multimedia Retrieval , pp. 259-266
    • Weng, L.1
  • 10
    • 84887601251 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
    • Dec
    • Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, "Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, pp. 2916-2929, Dec. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.12 , pp. 2916-2929
    • Gong, Y.1    Lazebnik, S.2    Gordo, A.3    Perronnin, F.4
  • 11
    • 84887359482 scopus 로고    scopus 로고
    • K-means hashing: An affinity-preserving quantization method for learning binary compact codes
    • Jun
    • K. He, F. Wen, and J. Sun, "K-means hashing: An affinity-preserving quantization method for learning binary compact codes, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2013, pp. 2938-2945.
    • (2013) Proc. IEEE Conf. Comput. Vis. Pattern Recog , pp. 2938-2945
    • He, K.1    Wen, F.2    Sun, J.3
  • 16
    • 84906495994 scopus 로고    scopus 로고
    • Optimizing ranking measures for compact binary code learning
    • G. Lin, C. Shen, and J. Wu, "Optimizing ranking measures for compact binary code learning, " in Proc. Eur.Conf.Comput. Vis., 2014, pp. 613-627.
    • (2014) Proc. Eur.Conf.Comput. Vis , pp. 613-627
    • Lin, G.1    Shen, C.2    Wu, J.3
  • 18
    • 84865410773 scopus 로고    scopus 로고
    • Semi-supervised hashing for largescale search
    • Dec
    • J. Wang, S. Kumar, and S. Chang, "Semi-supervised hashing for largescale search, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12, pp. 2393-2406, Dec. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell , vol.34 , Issue.12 , pp. 2393-2406
    • Wang, J.1    Kumar, S.2    Chang, S.3
  • 22
    • 84858740468 scopus 로고    scopus 로고
    • Learning to hash with binary reconstructive embeddings
    • B. Kulis and T. Darrell, "Learning to hash with binary reconstructive embeddings, " in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1042-1050.
    • (2009) Proc. Adv. Neural Inf. Process. Syst , pp. 1042-1050
    • Kulis, B.1    Darrell, T.2
  • 33
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks, " in Proc. Int. Conf. Artif. Intell. Stat., 2010, pp. 249-256.
    • (2010) Proc. Int. Conf. Artif. Intell. Stat , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 36
    • 85032752689 scopus 로고    scopus 로고
    • The MNIST database of handwritten digit images for machine learning research [best of the web]
    • Nov
    • L. Deng, "The MNIST database of handwritten digit images for machine learning research [best of the web], " IEEE Signal Process. Mag., vol. 29, no. 6, pp. 141-142, Nov. 2012.
    • (2012) IEEE Signal Process. Mag , vol.29 , Issue.6 , pp. 141-142
    • Deng, L.1
  • 38
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • O. Russakovsky "ImageNet large scale visual recognition challenge, " Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015.
    • (2015) Int. J. Comput. Vis , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 39
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • Nov
    • A. Torralba, R. Fergus, and W. T. Freeman, "80 million tiny images: A large data set for nonparametric object and scene recognition, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958-1970, Nov. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 40
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation of the spatial envelope, " Int. J. Comput. Vis., vol. 42, no. 3, pp. 145-175, 2001.
    • (2001) Int. J. Comput. Vis , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 41
    • 84962815548 scopus 로고    scopus 로고
    • MatConvNet: Convolutional neural networks for MATLAB
    • A. Vedaldi and K. Lenc, "MatConvNet: Convolutional neural networks for MATLAB, " in Proc. 23rd ACM Int. Conf.Multimedia, 2015, pp. 689-692.
    • (2015) Proc. 23rd ACM Int. Conf.Multimedia , pp. 689-692
    • Vedaldi, A.1    Lenc, K.2
  • 42
    • 85198028989 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • Jun
    • J. Deng et al., "ImageNet: A large-scale hierarchical image database, " in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2009, pp. 248-255.
    • (2009) Proc. IEEE Conf. Comput. Vis. Pattern Recog , pp. 248-255
    • Deng, J.1
  • 43
    • 84904482223 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • J. Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition, " in Proc. Int. Conf. Mach. Learn., 2014, pp. 647-655.
    • (2014) Proc. Int. Conf. Mach. Learn , pp. 647-655
    • Donahue, J.1
  • 44
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • ACM Int. Conf. Multimedia
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding, " in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675-678.
    • (2014) Proc. 22nd , pp. 675-678
    • Jia, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.