메뉴 건너뛰기




Volumn , Issue , 2017, Pages 219-274

Dark fermentative hydrogen production: From concepts to a sustainable production

Author keywords

[No Author keywords available]

Indexed keywords

FOSSIL FUELS; HYDROGEN PRODUCTION;

EID: 85029246978     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/9781351246101     Document Type: Chapter
Times cited : (3)

References (249)
  • 1
    • 76649111376 scopus 로고    scopus 로고
    • High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?
    • Abdel-Banat, B., H. Hoshida, A. Ano, S. Nonklang, and R. Akada. 2010. High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85(4):861-7.
    • (2010) Appl Microbiol Biotechnol , vol.85 , Issue.4 , pp. 861-867
    • Abdel-Banat, B.1    Hoshida, H.2    Ano, A.3    Nonklang, S.4    Akada, R.5
  • 2
    • 59649127998 scopus 로고    scopus 로고
    • Functional consortium for hydrogen production from cellobiose: Concentration-to-extinction approach
    • Adav, S. S., D.-J. Lee, A. Wang, and N. Ren. 2009. Functional consortium for hydrogen production from cellobiose: Concentration-to-extinction approach. Bioresour Technol 100(9):2546-50.
    • (2009) Bioresour Technol , vol.100 , Issue.9 , pp. 2546-2550
    • Adav, S.S.1    Lee, D.-J.2    Wang, A.3    Ren, N.4
  • 4
    • 55149105873 scopus 로고    scopus 로고
    • Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch
    • Akutsu, Y., Y.-Y. Li, M. Tandukar, K. Kubota, and H. Harada. 2008. Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch. Int J Hydrogen Energy 33(22):6541-8.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.22 , pp. 6541-6548
    • Akutsu, Y.1    Li, Y.-Y.2    Tandukar, M.3    Kubota, K.4    Harada, H.5
  • 5
    • 62249142791 scopus 로고    scopus 로고
    • Effects of temperature and substrate concentration on biological hydrogen production from starch
    • Akutsu, Y., Y. Y. Li, H. Harada, and H. Q. Yu. (2009). Effects of temperature and substrate concentration on biological hydrogen production from starch. Int J Hydrogen Energy 34:2558-66.
    • (2009) Int J Hydrogen Energy , vol.34 , pp. 2558-2566
    • Akutsu, Y.1    Li, Y.Y.2    Harada, H.3    Yu, H.Q.4
  • 6
    • 85053534037 scopus 로고    scopus 로고
    • Hydrogen production and diversity of two microbial communities using crystalline cellulose as sole substrate. Presented at the
    • Madrid, September 6-9
    • Alamilla-Ortiz, Z. L., A. E. Escalante-Hernández, G. Hernández-Guzmán, and I. Valdez-Vazquez. 2015. Hydrogen production and diversity of two microbial communities using crystalline cellulose as sole substrate. Presented at the HYPOTHESIS Proceedings, Madrid, September 6-9.
    • (2015) HYPOTHESIS Proceedings
    • Alamilla-Ortiz, Z.L.1    Escalante-Hernández, A.E.2    Hernández-Guzmán, G.3    Valdez-Vazquez, I.4
  • 7
    • 34249894480 scopus 로고    scopus 로고
    • Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems
    • Ally, J., and T. Pryor. 2007. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems. J Power Sources 170(2):401-11.
    • (2007) J Power Sources , vol.170 , Issue.2 , pp. 401-411
    • Ally, J.1    Pryor, T.2
  • 9
    • 84912553423 scopus 로고    scopus 로고
    • Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose
    • An, D., Q. Li, X. Wang, H. Yang, and L. Guo. 2014. Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose. Int J Hydrogen Energy 39(35):19928-36.
    • (2014) Int J Hydrogen Energy , vol.39 , Issue.35 , pp. 19928-19936
    • An, D.1    Li, Q.2    Wang, X.3    Yang, H.4    Guo, L.5
  • 10
    • 79957622629 scopus 로고    scopus 로고
    • Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview
    • Argun, H., and F. Kargi. 2011. Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview. Int J Hydrogen Energy 36(13):7443-59.
    • (2011) Int J Hydrogen Energy , vol.36 , Issue.13 , pp. 7443-7459
    • Argun, H.1    Kargi, F.2
  • 12
    • 50349095003 scopus 로고    scopus 로고
    • The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures
    • Baghchehsaraee, B., G. Nakhla, D. Karamanev, A. Margaritis, and G. Reid. 2008. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int J Hydrogen Energy 33(15):4064-73.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.15 , pp. 4064-4073
    • Baghchehsaraee, B.1    Nakhla, G.2    Karamanev, D.3    Margaritis, A.4    Reid, G.5
  • 13
    • 77956176601 scopus 로고    scopus 로고
    • Plug-in hybrid fuel cell vehicles market penetration scenarios
    • Baptista, P., M. Tomás, and C. Silva. 2010. Plug-in hybrid fuel cell vehicles market penetration scenarios. Int J Hydrogen Energy 35(18):10024-30.
    • (2010) Int J Hydrogen Energy , vol.35 , Issue.18 , pp. 10024-10030
    • Baptista, P.1    Tomás, M.2    Silva, C.3
  • 14
    • 84862510714 scopus 로고    scopus 로고
    • Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties
    • Basile, M. A., C. Carfagna, P. Cerruti, G. G. d’Ayala, A. Fontana, A. Gambacorta, M. Malinconico, and L. Dipasquale. 2012. Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties. RSC Adv 2(9):3611.
    • (2012) RSC Adv , vol.2 , Issue.9 , pp. 3611
    • Basile, M.A.1    Carfagna, C.2    Cerruti, P.3    d’Ayala, G.G.4    Fontana, A.5    Gambacorta, A.6    Malinconico, M.7    Dipasquale, L.8
  • 16
    • 33846502109 scopus 로고    scopus 로고
    • Micro-algae as a source of protein
    • Becker, E. W. 2007. Micro-algae as a source of protein. Biotechnol Adv 25(2):207-10.
    • (2007) Biotechnol Adv , vol.25 , Issue.2 , pp. 207-210
    • Becker, E.W.1
  • 17
    • 84874367265 scopus 로고    scopus 로고
    • Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by
    • Beckers, L., S. Hiligsmann, S. D. Lambert, B. Heinrichs, and P. Thonart. (2013). Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol 133:109-17.
    • (2013) Clostridium butyricum. Bioresour Technol , vol.133 , pp. 109-117
    • Beckers, L.1    Hiligsmann, S.2    Lambert, S.D.3    Heinrichs, B.4    Thonart, P.5
  • 18
    • 84923313066 scopus 로고    scopus 로고
    • Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009
    • Beckers, L., J. Masset, C. Hamilton, F. Delvigne, D. Toye, M. Crine, P. Thonart, and S. Hiligsmann. (2015). Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009. Biochem Eng J 98:18-28.
    • (2015) Biochem Eng J , vol.98 , pp. 18-28
    • Beckers, L.1    Masset, J.2    Hamilton, C.3    Delvigne, F.4    Toye, D.5    Crine, M.6    Thonart, P.7    Hiligsmann, S.8
  • 19
    • 84899890200 scopus 로고    scopus 로고
    • Importance of chemical pretreatment for bioconversion of lignocellulosic biomass
    • Behera, R., N. Arora, S. Nandhagopal, and S. Kumar. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36:91-106.
    • (2014) Renew Sustain Energy Rev , vol.36 , pp. 91-106
    • Behera, R.1    Arora, N.2    Nandhagopal, S.3    Kumar, S.4
  • 20
    • 0038713359 scopus 로고    scopus 로고
    • The contribution of biomass in the future global energy supply: A review of 17 studies
    • Berndes, G., M. Hoogwijk, and R. van den Broek. 2003. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 25(1):1-28.
    • (2003) Biomass Bioenergy , vol.25 , Issue.1 , pp. 1-28
    • Berndes, G.1    Hoogwijk, M.2    van den Broek, R.3
  • 21
    • 84893510429 scopus 로고    scopus 로고
    • Microbial consortia engineering for cellular factories: In vitro to in silico systems
    • Bernstein, H. C., and R. P. Carlson. 2012. Microbial consortia engineering for cellular factories: In vitro to in silico systems. Comput Struct Biotechnol J 3(4):1-8.
    • (2012) Comput Struct Biotechnol J , vol.3 , Issue.4 , pp. 1-8
    • Bernstein, H.C.1    Carlson, R.P.2
  • 22
    • 33747093365 scopus 로고    scopus 로고
    • The effect of nutrient limitation on hydrogen production by batch cultures of
    • Bisaillon, A., J. Turcot., and P. C. Hallenbeck. 2006. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int J Hydrogen Energy 31(11):1504-8.
    • (2006) Escherichia coli. Int J Hydrogen Energy , vol.31 , Issue.11 , pp. 1504-1508
    • Bisaillon, A.1    Turcot, J.2    Hallenbeck, P.C.3
  • 23
    • 0031004630 scopus 로고    scopus 로고
    • Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery
    • Blok, K., R. H. Williams, R. E. Katofsky, and C. A. Hendriks. 1997. Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy 22(2):161-8.
    • (1997) Energy , vol.22 , Issue.2 , pp. 161-168
    • Blok, K.1    Williams, R.H.2    Katofsky, R.E.3    Hendriks, C.A.4
  • 25
    • 0019619729 scopus 로고
    • Nitrogenase reactivity: Insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions
    • Burgess, B. K., S. Wherland, W. E. Newton, and E. I. Stiefel. 1981. Nitrogenase reactivity: Insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions. Biochemistry 20(18):5140-6.
    • (1981) Biochemistry , vol.20 , Issue.18 , pp. 5140-5146
    • Burgess, B.K.1    Wherland, S.2    Newton, W.E.3    Stiefel, E.I.4
  • 26
    • 84869886828 scopus 로고    scopus 로고
    • A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production
    • Cai, G., B. Jin, P. Monis, and C. Saint. 2013. A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production. Biotechnol Bioeng 110(1):338-42.
    • (2013) Biotechnol Bioeng , vol.110 , Issue.1 , pp. 338-342
    • Cai, G.1    Jin, B.2    Monis, P.3    Saint, C.4
  • 29
    • 77953200590 scopus 로고    scopus 로고
    • The surprising diversity of clostridial hydrogenases: A comparative genomic perspective
    • Calusinska, M., T. Happe, B. Joris, and A. Wilmotte. 2010. The surprising diversity of clostridial hydrogenases: A comparative genomic perspective. Microbiology 156(6):1575-88.
    • (2010) Microbiology , vol.156 , Issue.6 , pp. 1575-1588
    • Calusinska, M.1    Happe, T.2    Joris, B.3    Wilmotte, A.4
  • 30
    • 84878368850 scopus 로고    scopus 로고
    • Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass
    • Cha, M., D. Chung, J. G. Elkins, A. M. Guss, and J. Westpheling. 2013. Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6(1):1.
    • (2013) Biotechnol Biofuels , vol.6 , Issue.1 , pp. 1
    • Cha, M.1    Chung, D.2    Elkins, J.G.3    Guss, A.M.4    Westpheling, J.5
  • 31
    • 84861100543 scopus 로고    scopus 로고
    • 16S rRNA gene based analysis of the microbial diversity and hydrogen production in three mixed anaerobic cultures
    • Chaganti, S. R., J. A. Lalman, and D. D. Heath. 2012. 16S rRNA gene based analysis of the microbial diversity and hydrogen production in three mixed anaerobic cultures. Int J Hydrogen Energy 37(11):9002-17.
    • (2012) Int J Hydrogen Energy , vol.37 , Issue.11 , pp. 9002-9017
    • Chaganti, S.R.1    Lalman, J.A.2    Heath, D.D.3
  • 32
    • 52049090565 scopus 로고    scopus 로고
    • Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production
    • Chang, J. J., C. H. Chou, C. Y. Ho, W. E. Chen, J. J. Lay, and C. C. Huang. 2008. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production. Int J Hydrogen Energy 33(19):5137-46.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.19 , pp. 5137-5146
    • Chang, J.J.1    Chou, C.H.2    Ho, C.Y.3    Chen, W.E.4    Lay, J.J.5    Huang, C.C.6
  • 33
    • 84961050583 scopus 로고    scopus 로고
    • Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production
    • Chen, C., H. Chang, and J. Chang. 2015. Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production. Int J Hydrogen Energy 41(7):4413-20.
    • (2015) Int J Hydrogen Energy , vol.41 , Issue.7 , pp. 4413-4420
    • Chen, C.1    Chang, H.2    Chang, J.3
  • 34
    • 84866451441 scopus 로고    scopus 로고
    • Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production
    • Chen, C. C., Y. S. Chuang, C. Y. Lin, C. H. Lay, and B. Sen. 2012. Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrogen Energy 37(20):15540-6.
    • (2012) Int J Hydrogen Energy , vol.37 , Issue.20 , pp. 15540-15546
    • Chen, C.C.1    Chuang, Y.S.2    Lin, C.Y.3    Lay, C.H.4    Sen, B.5
  • 35
    • 56449100394 scopus 로고    scopus 로고
    • Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fiber
    • Chen, C. Y., G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang. 2008. Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fiber. Int J Hydrogen Energy 33(23):6886-95.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.23 , pp. 6886-6895
    • Chen, C.Y.1    Saratale, G.D.2    Lee, C.M.3    Chen, P.C.4    Chang, J.S.5
  • 36
    • 0035678686 scopus 로고    scopus 로고
    • Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii
    • Chen, J. S., J. Toth, and M. Kasap. 2001. Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii. J Ind Microb Biotechnol 27(5):281-6.
    • (2001) J Ind Microb Biotechnol , vol.27 , Issue.5 , pp. 281-286
    • Chen, J.S.1    Toth, J.2    Kasap, M.3
  • 37
    • 20344383767 scopus 로고    scopus 로고
    • Fermentative hydrogen production with CGS5 isolated from anaerobic sewage sludge
    • Chen, W., Z. Tseng, K. Lee, and J. Chang. 2005. Fermentative hydrogen production with CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 30(10):1063-70.
    • (2005) Int J Hydrogen Energy , vol.30 , Issue.10 , pp. 1063-1070
    • Chen, W.1    Tseng, Z.2    Lee, K.3    Chang, J.4
  • 38
    • 77949653835 scopus 로고    scopus 로고
    • The biorefinery concept: Using biomass instead of oil for producing energy and chemicals
    • Cherubini, F. 2010. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412-21.
    • (2010) Energy Convers Manag , vol.51 , Issue.7 , pp. 1412-1421
    • Cherubini, F.1
  • 39
    • 58549096275 scopus 로고    scopus 로고
    • Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent
    • Chong, M., R. Rahim, Y. Shirai, and M. Hassan. 2009. Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent. Int J Hydrogen Energy 34(2):764-71.
    • (2009) Int J Hydrogen Energy , vol.34 , Issue.2 , pp. 764-771
    • Chong, M.1    Rahim, R.2    Shirai, Y.3    Hassan, M.4
  • 40
    • 57049181957 scopus 로고    scopus 로고
    • Hydrogenesis in hyperthermophilic microorganisms: Implications for biofuels
    • Chou, C., F. E. Jenney, M. W. W. Adams, and R. M. Kelly. 2008. Hydrogenesis in hyperthermophilic microorganisms: Implications for biofuels. Metab Eng 10(6):394-404.
    • (2008) Metab Eng , vol.10 , Issue.6 , pp. 394-404
    • Chou, C.1    Jenney, F.E.2    Adams, M.W.W.3    Kelly, R.M.4
  • 41
    • 84945240151 scopus 로고    scopus 로고
    • Recommendations for life cycle assessment of algal fuels
    • Collet, P., A. Hélias, L. Lardon, J. P. Steyer, and O. Bernard. (2015). Recommendations for life cycle assessment of algal fuels. Appl Energy 154:1089-102.
    • (2015) Appl Energy , vol.154 , pp. 1089-1102
    • Collet, P.1    Hélias, A.2    Lardon, L.3    Steyer, J.P.4    Bernard, O.5
  • 42
    • 84655162325 scopus 로고    scopus 로고
    • Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation
    • Cui, M., and J. Shen. (2012). Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrogen Energy 37:1120-24.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 1120-1124
    • Cui, M.1    Shen, J.2
  • 43
    • 0343462148 scopus 로고    scopus 로고
    • Hydrogen production by biological processes: A survey of literature
    • Das, D., and T. N. Veziroğlu. 2001. Hydrogen production by biological processes: A survey of literature. Int J Hydrogen Energy 26(1):13-28.
    • (2001) Int J Hydrogen Energy , vol.26 , Issue.1 , pp. 13-28
    • Das, D.1    Veziroğlu, T.N.2
  • 46
    • 84959572012 scopus 로고    scopus 로고
    • Impact of land-use change to Jatropha bioenergy plantations on biomass and soil carbon stocks: A field study in Mali
    • Degerickx, J., J. Almeida, P. C. J. Moonen, L. Vervoort, B. Muys, and W. M. J. Achten. 2015. Impact of land-use change to Jatropha bioenergy plantations on biomass and soil carbon stocks: A field study in Mali. GCB Bioenergy 8(2):443-55.
    • (2015) GCB Bioenergy , vol.8 , Issue.2 , pp. 443-455
    • Degerickx, J.1    Almeida, J.2    Moonen, P.C.J.3    Vervoort, L.4    Muys, B.5    Achten, W.M.J.6
  • 47
    • 74549183567 scopus 로고    scopus 로고
    • Hydrogen from mosses and algae via pyrolysis and steam gasification
    • Demirbas, A. (2010). Hydrogen from mosses and algae via pyrolysis and steam gasification. Energy Sources Part A-Recovery Util Environ Eff 32:172-79.
    • (2010) Energy Sources Part A-Recovery Util Environ Eff , vol.32 , pp. 172-179
    • Demirbas, A.1
  • 49
    • 65649100926 scopus 로고    scopus 로고
    • Hydrogen production from glucose by co-culture of Clostridium butyricum and immobilized Rhodopseudomonas faecalis RLD-53
    • Ding, J., B. F. Liu, N. Q. Ren, D. F. Xing, W. Q. Guo, J. F. Xu, and G. J. Xie. 2009. Hydrogen production from glucose by co-culture of Clostridium butyricum and immobilized Rhodopseudomonas faecalis RLD-53. Int J Hydrogen Energy 34 (9):3647-52.
    • (2009) Int J Hydrogen Energy , vol.34 , Issue.9 , pp. 3647-3652
    • Ding, J.1    Liu, B.F.2    Ren, N.Q.3    Xing, D.F.4    Guo, W.Q.5    Xu, J.F.6    Xie, G.J.7
  • 50
    • 84866505358 scopus 로고    scopus 로고
    • A comparative analysis of the carbon intensity of biofuels caused by land use changes
    • Djomo, S. N., and R. Ceulemans. 2012. A comparative analysis of the carbon intensity of biofuels caused by land use changes. GCB Bioenergy 4(4):392-407.
    • (2012) GCB Bioenergy , vol.4 , Issue.4 , pp. 392-407
    • Djomo, S.N.1    Ceulemans, R.2
  • 52
    • 0035019643 scopus 로고    scopus 로고
    • Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21 J
    • Evvyernie, D., K. Morimoto, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21 J. Biosci Bioeng 91(4):339-43.
    • (2001) Biosci Bioeng , vol.91 , Issue.4 , pp. 339-343
    • Evvyernie, D.1    Morimoto, K.2    Karita, S.3    Kimura, T.4    Sakka, K.5    Ohmiya, K.6
  • 53
    • 70249146286 scopus 로고    scopus 로고
    • Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC
    • EU (European Union). (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union 140:16-62.
    • (2009) Off J Eur Union , vol.140 , pp. 16-62
  • 54
    • 33645973272 scopus 로고    scopus 로고
    • Biohydrogen-production from beer lees biomass by cow dung compost
    • Fan, Y., G. Zhang, X. Guo, Y. Xing, and M. Fan. 2006. Biohydrogen-production from beer lees biomass by cow dung compost. Biomass Bioenergy 30(5):493-6.
    • (2006) Biomass Bioenergy , vol.30 , Issue.5 , pp. 493-496
    • Fan, Y.1    Zhang, G.2    Guo, X.3    Xing, Y.4    Fan, M.5
  • 55
    • 33645701676 scopus 로고    scopus 로고
    • Acidophilic biohydrogen production from rice slurry
    • Fang, H. H. P., C. L. Li, and T. Zhang. 2006b. Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31(6):683-92.
    • (2006) Int J Hydrogen Energy , vol.31 , Issue.6 , pp. 683-692
    • Fang, H.H.P.1    Li, C.L.2    Zhang, T.3
  • 56
    • 33750979004 scopus 로고    scopus 로고
    • Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and
    • Fang, H. H. P., H. Zhu, and T. Zhang. 2006a. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrogen Energy 31(15):2223-30.
    • (2006) Rhodobacter sphaeroides. Int J Hydrogen Energy , vol.31 , Issue.15 , pp. 2223-2230
    • Fang, H.H.P.1    Zhu, H.2    Zhang, T.3
  • 57
    • 27744451656 scopus 로고    scopus 로고
    • Influence of initial pH on hydrogen production from cheese whey
    • Ferchichi, M., V. Crabbe, G. H. Gil, W. Hintz, and A. Almadidy. 2005. Influence of initial pH on hydrogen production from cheese whey. J Biotechnol 120(4):402-9.
    • (2005) J Biotechnol , vol.120 , Issue.4 , pp. 402-409
    • Ferchichi, M.1    Crabbe, V.2    Gil, G.H.3    Hintz, W.4    Almadidy, A.5
  • 58
    • 84655162780 scopus 로고    scopus 로고
    • Biological hydrogen production by Anabaena sp.-Yield, energy and CO2 analysis including fermentative biomass recovery
    • Ferreira, A. F., A. C. Marques, A. P. Batista, P. A. S. S. Marques, L. Gouveia, and C.M Silva. 2012. Biological hydrogen production by Anabaena sp.-Yield, energy and CO2 analysis including fermentative biomass recovery. Int J Hydrogen Energy 37(1):179-90.
    • (2012) Int J Hydrogen Energy , vol.37 , Issue.1 , pp. 179-190
    • Ferreira, A.F.1    Marques, A.C.2    Batista, A.P.3    Marques, P.A.S.S.4    Gouveia, L.5    Silva, C.M.6
  • 59
    • 84880446767 scopus 로고    scopus 로고
    • Biohydrogen production from microalgal biomass: Energy requirement, CO2 emissions and scale-up scenarios
    • Ferreira, A. F., J. Ortigueira, L. Alves, L. Gouveia, P. Moura, and C. Silva. 2013a. Biohydrogen production from microalgal biomass: Energy requirement, CO2 emissions and scale-up scenarios. Bioresour Technol 144:156-64.
    • (2013) Bioresour Technol , vol.144 , pp. 156-164
    • Ferreira, A.F.1    Ortigueira, J.2    Alves, L.3    Gouveia, L.4    Moura, P.5    Silva, C.6
  • 63
    • 77953767555 scopus 로고    scopus 로고
    • The genus Thermotoga: Recent developments
    • Frock, A. D., J. S. Notey, and R. M. Kelly. 2010. The genus Thermotoga: Recent developments. Environ Technol 31(10):1169-81.
    • (2010) Environ Technol , vol.31 , Issue.10 , pp. 1169-1181
    • Frock, A.D.1    Notey, J.S.2    Kelly, R.M.3
  • 64
    • 84878809985 scopus 로고    scopus 로고
    • Cellulosic hydrogen production and microbial community characterization in hyper-thermophilic continuous bioreactor
    • Gadow, S. I., H. Jiang, T. Hojo, and Y.-Y. Li. 2013. Cellulosic hydrogen production and microbial community characterization in hyper-thermophilic continuous bioreactor. Int J Hydrogen Energy 38(18):7259-67.
    • (2013) Int J Hydrogen Energy , vol.38 , Issue.18 , pp. 7259-7267
    • Gadow, S.I.1    Jiang, H.2    Hojo, T.3    Li, Y.-Y.4
  • 65
    • 33646476756 scopus 로고    scopus 로고
    • Biological hydrogen production in suspended and attached growth anaerobic reactor systems
    • Gavala, H. N., I. V. Skiadas, and B. K. Ahring. 2006. Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy 31(9):1164-75.
    • (2006) Int J Hydrogen Energy , vol.31 , Issue.9 , pp. 1164-1175
    • Gavala, H.N.1    Skiadas, I.V.2    Ahring, B.K.3
  • 66
    • 84871415668 scopus 로고    scopus 로고
    • Life cycle optimization for sustainable design and operations of hydrocarbon biorefinery via fast pyrolysis, hydrotreating and hydrocracking
    • Gebreslassie, B. H., M. Slivinsky, B. Wang, and F. You. (2013). Life cycle optimization for sustainable design and operations of hydrocarbon biorefinery via fast pyrolysis, hydrotreating and hydrocracking. Comput Chem Eng 50:71-91.
    • (2013) Comput Chem Eng , vol.50 , pp. 71-91
    • Gebreslassie, B.H.1    Slivinsky, M.2    Wang, B.3    You, F.4
  • 67
    • 0000829325 scopus 로고
    • The genus Clostridium (nonmedical aspects)
    • ed. M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, Berlin: Springer-Verlag
    • Gottshalk, G., J. R. Andreesen, and H. Hippe. 1981. The genus Clostridium (nonmedical aspects). In The Prokaryotes, a Handbook on Habitats, Isolation and Identification of Bacteria, ed. M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, 1767-803. Vol. II. Berlin: Springer-Verlag.
    • (1981) The Prokaryotes, a Handbook on Habitats, Isolation and Identification of Bacteria , vol.2 , pp. 1767-1803
    • Gottshalk, G.1    Andreesen, J.R.2    Hippe, H.3
  • 68
    • 59449094424 scopus 로고    scopus 로고
    • Microalgae as a raw material for biofuels production
    • Gouveia, L., and A. C. Oliveira. 2009. Microalgae as a raw material for biofuels production. J Ind Microb Biotechnol 36(2):269-74.
    • (2009) J Ind Microb Biotechnol , vol.36 , Issue.2 , pp. 269-274
    • Gouveia, L.1    Oliveira, A.C.2
  • 69
    • 84874752198 scopus 로고    scopus 로고
    • Metabolic engineering for enhanced hydrogen production: A review
    • Goyal, Y., M. Kumar, and K. Gayen. 2013. Metabolic engineering for enhanced hydrogen production: A review. Can J Microbiol 59(2):59-78.
    • (2013) Can J Microbiol , vol.59 , Issue.2 , pp. 59-78
    • Goyal, Y.1    Kumar, M.2    Gayen, K.3
  • 70
    • 40249102305 scopus 로고    scopus 로고
    • Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge
    • Guo, L., X. M. Li, X. Bo, Q. Yang, G. M. Zeng, D. X. Liao, and J. J. Liu. 2008. Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour Technol 99(9):3651-8.
    • (2008) Bioresour Technol , vol.99 , Issue.9 , pp. 3651-3658
    • Guo, L.1    Li, X.M.2    Bo, X.3    Yang, Q.4    Zeng, G.M.5    Liao, D.X.6    Liu, J.J.7
  • 71
    • 69649087935 scopus 로고    scopus 로고
    • Biological hydrogen production from cornsyrup waste using a novel system
    • Hafez, H., G. Nakhla, and H. El Naggar. 2009. Biological hydrogen production from cornsyrup waste using a novel system. Energies 2(2):445-55.
    • (2009) Energies , vol.2 , Issue.2 , pp. 445-455
    • Hafez, H.1    Nakhla, G.2    El Naggar, H.3
  • 72
    • 64749085304 scopus 로고    scopus 로고
    • Advances in fermentative biohydrogen production: The way forward?
    • Hallenbeck, P. C., and D. Ghosh. 2009. Advances in fermentative biohydrogen production: The way forward? Trends Biotechnol 27(5):287-97.
    • (2009) Trends Biotechnol , vol.27 , Issue.5 , pp. 287-297
    • Hallenbeck, P.C.1    Ghosh, D.2
  • 73
    • 84901190879 scopus 로고    scopus 로고
    • Improvement of fermentative biohydrogen production by Clostridium butyricum CWBI1009 in sequencedbatch, horizontal fixed bed and biodisc-like anaerobic reactors with biomass retention
    • Hiligsmann, S., L. Beckers, J. Masset, C. Hamilton, and P. Thonart. 2014. Improvement of fermentative biohydrogen production by Clostridium butyricum CWBI1009 in sequencedbatch, horizontal fixed bed and biodisc-like anaerobic reactors with biomass retention. Int J Hydrogen Energy 39(13):6899-911.
    • (2014) Int J Hydrogen Energy , vol.39 , Issue.13 , pp. 6899-6911
    • Hiligsmann, S.1    Beckers, L.2    Masset, J.3    Hamilton, C.4    Thonart, P.5
  • 74
    • 77952245252 scopus 로고    scopus 로고
    • Succession of the bacterial community and dynamics of hydrogen producers in a hydrogen-producing bioreactor
    • Huang, Y., W. Zong, X. Yan, R. Wang, C. L. Hemme, J. Zhou, and Z. Zhou. 2010. Succession of the bacterial community and dynamics of hydrogen producers in a hydrogen-producing bioreactor. Appl Environ Microbiol 76(10):3387-90.
    • (2010) Appl Environ Microbiol , vol.76 , Issue.10 , pp. 3387-3390
    • Huang, Y.1    Zong, W.2    Yan, X.3    Wang, R.4    Hemme, C.L.5    Zhou, J.6    Zhou, Z.7
  • 76
    • 84893863973 scopus 로고    scopus 로고
    • Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions
    • Hwang, J. H., H. C. Kim, J. A. Choi, R. A. I. Abou-Shanab, B. A. Dempsey, J. M. Regan et al. 2014. Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun 5:3234.
    • (2014) Nat Commun , vol.5 , pp. 3234
    • Hwang, J.H.1    Kim, H.C.2    Choi, J.A.3    Abou-Shanab, R.A.I.4    Dempsey, B.A.5    Regan, J.M.6
  • 77
    • 84920626573 scopus 로고    scopus 로고
    • Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel
    • Ibrahim, M. F., S. Abd-Aziz, M. E. M. Yusoff, P. L. Yee, and M. A. Hassan. (2015). Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. Renew Energy 77:447-55.
    • (2015) Renew Energy , vol.77 , pp. 447-455
    • Ibrahim, M.F.1    Abd-Aziz, S.2    Yusoff, M.E.M.3    Yee, P.L.4    Hassan, M.A.5
  • 79
    • 58549116354 scopus 로고    scopus 로고
    • Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405
    • Islam, R., N. Cicek, R. Sparling, and D. Levin. (2009). Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol 82:141-8.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 141-148
    • Islam, R.1    Cicek, N.2    Sparling, R.3    Levin, D.4
  • 81
    • 28744432513 scopus 로고    scopus 로고
    • Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process
    • Ito, Y., K. Nakashimada, T. Senba, N. Matsui, and N. Nishio. 2005. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100(3):260-5.
    • (2005) J Biosci Bioeng , vol.100 , Issue.3 , pp. 260-265
    • Ito, Y.1    Nakashimada, K.2    Senba, T.3    Matsui, N.4    Nishio, N.5
  • 82
    • 84858283686 scopus 로고    scopus 로고
    • Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3n isolated from oil producing cell
    • Jayasinghearachchi, H. S., P. M. Sarma, and B. Lal. 2012. Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3n isolated from oil producing cell. Int J Hydrogen Energy 37(7):5569-78.
    • (2012) Int J Hydrogen Energy , vol.37 , Issue.7 , pp. 5569-5578
    • Jayasinghearachchi, H.S.1    Sarma, P.M.2    Lal, B.3
  • 83
    • 84886258348 scopus 로고    scopus 로고
    • Application of an electric field for pretreatment of a seeding source for dark fermentative hydrogen production
    • Jeong, D.-Y., S.-K. Cho, H.-S. Shin, and K.-W. Jung. (2013). Application of an electric field for pretreatment of a seeding source for dark fermentative hydrogen production. Bioresour Technol 139:393-6.
    • (2013) Bioresour Technol , vol.139 , pp. 393-396
    • Jeong, D.-Y.1    Cho, S.-K.2    Shin, H.-S.3    Jung, K.-W.4
  • 84
    • 1242315605 scopus 로고    scopus 로고
    • The recombinant xylanase B of Thermotoga maritima is highly xylan specific and produces exclusively xylobiose from xylans, a unique character for industrial applications
    • Jiang, Z. Q., W. Deng, Y. P. Zhu, L. T. Li, Y. J. Sheng, and K. Hayashi. 2004. The recombinant xylanase B of Thermotoga maritima is highly xylan specific and produces exclusively xylobiose from xylans, a unique character for industrial applications. J Mol Catal B Enzym 27(4-6):207-13.
    • (2004) J Mol Catal B Enzym , vol.27 , Issue.4-6 , pp. 207-213
    • Jiang, Z.Q.1    Deng, W.2    Zhu, Y.P.3    Li, L.T.4    Sheng, Y.J.5    Hayashi, K.6
  • 85
    • 34548515550 scopus 로고    scopus 로고
    • Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi
    • Jo, J. H., C. O. Jeo, D. S. Lee, and J. M. Park. 2007. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. Int J Hydrogen Energy 131(3):300-8.
    • (2007) Int J Hydrogen Energy , vol.131 , Issue.3 , pp. 300-308
    • Jo, J.H.1    Jeo, C.O.2    Lee, D.S.3    Park, J.M.4
  • 86
    • 0033998365 scopus 로고    scopus 로고
    • Bacteriophage infections in the industrial acetone butanol (ab) fermentation process
    • Jones, D. T., M. Shirley, X. Wu, and S. Keis. 2000. Bacteriophage infections in the industrial acetone butanol (ab) fermentation process. J Mol Microbiol Biotechnol 2(1):21-6.
    • (2000) J Mol Microbiol Biotechnol , vol.2 , Issue.1 , pp. 21-26
    • Jones, D.T.1    Shirley, M.2    Wu, X.3    Keis, S.4
  • 87
    • 84890286499 scopus 로고    scopus 로고
    • Pyrolysis of Jatropha curcas pressed cake for biooil production in a fixed-bed system
    • Jourabchi, S. A., S. Gan, and H. K. Ng. (2014). Pyrolysis of Jatropha curcas pressed cake for biooil production in a fixed-bed system. Energy Convers Manag 78:518-26.
    • (2014) Energy Convers Manag , vol.78 , pp. 518-526
    • Jourabchi, S.A.1    Gan, S.2    Ng, H.K.3
  • 88
    • 84856562073 scopus 로고    scopus 로고
    • Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: Optimization of process parameters
    • Junghare, M., S. Subudhi, and B. Lal. 2012. Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: Optimization of process parameters. Int J Hydrogen Energy 37(4):3160-8.
    • (2012) Int J Hydrogen Energy , vol.37 , Issue.4 , pp. 3160-3168
    • Junghare, M.1    Subudhi, S.2    Lal, B.3
  • 89
    • 42149143666 scopus 로고    scopus 로고
    • Microbial diversity and genomics in aid of bioenergy
    • Kalia, V. C., and H. J. Purohit. 2008. Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35(5):403-19.
    • (2008) J Ind Microbiol Biotechnol , vol.35 , Issue.5 , pp. 403-419
    • Kalia, V.C.1    Purohit, H.J.2
  • 90
    • 30944443553 scopus 로고    scopus 로고
    • Biohydrogen production from waste materials
    • Kapdan, I. K., and F. Kargi. 2006. Biohydrogen production from waste materials. Enzyme Microb Technol 38(5):569-82.
    • (2006) Enzyme Microb Technol , vol.38 , Issue.5 , pp. 569-582
    • Kapdan, I.K.1    Kargi, F.2
  • 92
    • 40849151867 scopus 로고    scopus 로고
    • Start-up strategy for continuous fermentative hydrogen production: Early switchover from batch to continuous operation
    • Kim, D.-H., S.-H. Kim, I.-B. Ko, C.-Y. Lee, and H.-S. Shin. 2008. Start-up strategy for continuous fermentative hydrogen production: Early switchover from batch to continuous operation. Int J Hydrogen Energy 33(5):1532-41.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.5 , pp. 1532-1541
    • Kim, D.-H.1    Kim, S.-H.2    Ko, I.-B.3    Lee, C.-Y.4    Shin, H.-S.5
  • 93
    • 67650697750 scopus 로고    scopus 로고
    • Hydrogen fermentation of food waste without inoculum addition
    • Kim, D.-H., S.-H. Kim, and H.-S. Shin. 2009. Hydrogen fermentation of food waste without inoculum addition. Enzym Microbial Technol 45(3):181-7.
    • (2009) Enzym Microbial Technol , vol.45 , Issue.3 , pp. 181-187
    • Kim, D.-H.1    Kim, S.-H.2    Shin, H.-S.3
  • 94
    • 52749098172 scopus 로고    scopus 로고
    • Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785
    • Kim, J. K., L. Nhat, Y. N. Chun, and S. W. Kim. 2008. Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785. Biotechnol Bioprocess Eng 13(4):499-504.
    • (2008) Biotechnol Bioprocess Eng , vol.13 , Issue.4 , pp. 499-504
    • Kim, J.K.1    Nhat, L.2    Chun, Y.N.3    Kim, S.W.4
  • 95
    • 33645708467 scopus 로고    scopus 로고
    • Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation
    • Kim, M. S., J. S. Baek, Y. S. Yun, S. J. Sim, S. Park, and S. C. Kim. 2006. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy 31(6):812-6.
    • (2006) Int J Hydrogen Energy , vol.31 , Issue.6 , pp. 812-816
    • Kim, M.S.1    Baek, J.S.2    Yun, Y.S.3    Sim, S.J.4    Park, S.5    Kim, S.C.6
  • 96
    • 52349116345 scopus 로고    scopus 로고
    • Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste
    • Kim, S.-H., and H.-S. Shin. 2008. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. Int J Hydrogen Energy 33(19):5266-74.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.19 , pp. 5266-5274
    • Kim, S.-H.1    Shin, H.-S.2
  • 97
    • 77955176908 scopus 로고    scopus 로고
    • Hydrogen production from glycerol using halophilic fermentative bacteria
    • Kivisto, A., V. Santala, and M. Karp. 2010. Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresour Technol 101(22):8671-7.
    • (2010) Bioresour Technol , vol.101 , Issue.22 , pp. 8671-8677
    • Kivisto, A.1    Santala, V.2    Karp, M.3
  • 98
    • 77649187508 scopus 로고    scopus 로고
    • Influence of hydrogenase overexpression on hydrogen production of Clostridium acetobutylicum DSM 792
    • Klein, M., M. B. Ansorge-Schumacher, M. Fritsch, and W. Hartmeier. 2010. Influence of hydrogenase overexpression on hydrogen production of Clostridium acetobutylicum DSM 792. Enzyme Microb Technol 46(5):384-90.
    • (2010) Enzyme Microb Technol , vol.46 , Issue.5 , pp. 384-390
    • Klein, M.1    Ansorge-Schumacher, M.B.2    Fritsch, M.3    Hartmeier, W.4
  • 99
    • 34447314488 scopus 로고    scopus 로고
    • The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor
    • Koskinen, P. E. P., A. H. Kaksonen, and J. A. Puhakka. 2007. The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor. Biotechnol Bioeng 97(4):742-58.
    • (2007) Biotechnol Bioeng , vol.97 , Issue.4 , pp. 742-758
    • Koskinen, P.E.P.1    Kaksonen, A.H.2    Puhakka, J.A.3
  • 100
    • 33744478137 scopus 로고    scopus 로고
    • Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyperthermophilic temperature (70°C)
    • Kotsopoulos, T. A., R. J. Zeng, and I. Angelidaki. 2006. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyperthermophilic temperature (70°C). Biotechnol Bioeng 94(2):296-302.
    • (2006) Biotechnol Bioeng , vol.94 , Issue.2 , pp. 296-302
    • Kotsopoulos, T.A.1    Zeng, R.J.2    Angelidaki, I.3
  • 102
    • 84883457662 scopus 로고    scopus 로고
    • Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIt-BT 08
    • Kumar, K., S. Roy, and D. Das. (2013). Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIt-BT 08. Bioresour Technol 145:116-22.
    • (2013) Bioresour Technol , vol.145 , pp. 116-122
    • Kumar, K.1    Roy, S.2    Das, D.3
  • 103
    • 84888008591 scopus 로고    scopus 로고
    • Extending the limits of Bacillus for novel biotechnological applications
    • Kumar, P., S. K. S. Patel, J. Lee, and V. C. Kalia. 2013. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31(8):1543-61.
    • (2013) Biotechnol Adv , vol.31 , Issue.8 , pp. 1543-1561
    • Kumar, P.1    Patel, S.K.S.2    Lee, J.3    Kalia, V.C.4
  • 104
    • 42149108423 scopus 로고    scopus 로고
    • Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives
    • Kumar, R., S. Singh, and O. V. Singh. 2008. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377-91.
    • (2008) J Ind Microbiol Biotechnol , vol.35 , Issue.5 , pp. 377-391
    • Kumar, R.1    Singh, S.2    Singh, O.V.3
  • 105
    • 50349085420 scopus 로고    scopus 로고
    • Direct fermentation of fodder maize, chicory fructans and perennial ryegrass to hydrogen using mixed microflora
    • Kyazze, G., R. Dinsdale, F. R. Hawkes, A. J. Guwy, G. C. Premier, and I. S. Donnison. 2008. Direct fermentation of fodder maize, chicory fructans and perennial ryegrass to hydrogen using mixed microflora. Bioresour Technol 99(18):8833-9.
    • (2008) Bioresour Technol , vol.99 , Issue.18 , pp. 8833-8839
    • Kyazze, G.1    Dinsdale, R.2    Hawkes, F.R.3    Guwy, A.J.4    Premier, G.C.5    Donnison, I.S.6
  • 106
    • 84903825884 scopus 로고    scopus 로고
    • Particle size and hydration medium effects on hydration properties and sugar release of wheat straw fibers
    • Lara-Vázquez, A. R., F. R. Quiroz-Figueroa, A. Sánchez, and I. Valdez-Vazquez I. 2014a. Particle size and hydration medium effects on hydration properties and sugar release of wheat straw fibers. Biomass Bioenergy 68:67-74.
    • (2014) Biomass Bioenergy , vol.68 , pp. 67-74
    • Lara-Vázquez, A.R.1    Quiroz-Figueroa, F.R.2    Sánchez, A.3    Valdez-Vazquez, I.I.4
  • 107
    • 84912572289 scopus 로고    scopus 로고
    • Hydration treatments increase the biodegradability of native wheat straw for hydrogen production by a microbial consortium
    • Lara-Vázquez, A. R., A. Sánchez, and I. Valdez-Vazquez. 2014b. Hydration treatments increase the biodegradability of native wheat straw for hydrogen production by a microbial consortium. Int J Hydrogen Energy 39(35):19899-904.
    • (2014) Int J Hydrogen Energy , vol.39 , Issue.35 , pp. 19899-19904
    • Lara-Vázquez, A.R.1    Sánchez, A.2    Valdez-Vazquez, I.3
  • 108
    • 84948716030 scopus 로고    scopus 로고
    • Hydrogen photoproduction by co-culture Clostridium butyricum and Rhodobacter sphaeroides
    • Laurinavichene, T., and A. Tsygankov. 2015. Hydrogen photoproduction by co-culture Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrogen Energy 40(41): 14116-23.
    • (2015) Int J Hydrogen Energy , vol.40 , Issue.41 , pp. 14116-14123
    • Laurinavichene, T.1    Tsygankov, A.2
  • 109
    • 84862776659 scopus 로고    scopus 로고
    • Simultaneous hydrogen and ethanol production from sweet potato via dark fermentation
    • Lay, C.-H., H.-C. Lin, B. Sen, C.-Y. Chu, and C.-Y. Lin. (2012). Simultaneous hydrogen and ethanol production from sweet potato via dark fermentation. J Clean Prod 27:155-64.
    • (2012) J Clean Prod , vol.27 , pp. 155-164
    • Lay, C.-H.1    Lin, H.-C.2    Sen, B.3    Chu, C.-Y.4    Lin, C.-Y.5
  • 110
    • 0035921171 scopus 로고    scopus 로고
    • Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose
    • Lay, J. J. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74(4):280-87.
    • (2001) Biotechnol Bioeng , vol.74 , Issue.4 , pp. 280-287
    • Lay, J.J.1
  • 111
    • 15844418456 scopus 로고    scopus 로고
    • Factors affecting hydrogen production from food wastes by Clostridium-rich composts
    • Lay, J. J., K. S. Fan, J. I. Hwang, J. I. Chang, and P. C. Hsu. 2005. Factors affecting hydrogen production from food wastes by Clostridium-rich composts. J Environ Eng 131(4):595-602.
    • (2005) J Environ Eng , vol.131 , Issue.4 , pp. 595-602
    • Lay, J.J.1    Fan, K.S.2    Hwang, J.I.3    Chang, J.I.4    Hsu, P.C.5
  • 112
    • 0033030375 scopus 로고    scopus 로고
    • Feasibility of biological hydrogen production from organic fraction of municipal solid waste
    • Lay, J. J., Y. J. Lee, and T. Noike. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33(11):2579-86.
    • (1999) Water Res , vol.33 , Issue.11 , pp. 2579-2586
    • Lay, J.J.1    Lee, Y.J.2    Noike, T.3
  • 113
    • 67649418480 scopus 로고    scopus 로고
    • Fermentation of rice bran and defatted rice bran for butanol 5 production using Clostridium beijerinckii NCIMB 8052
    • Lee, J., E. Seo, D. H. Kweon, K. Park, and Y. S. Jin. 2009. Fermentation of rice bran and defatted rice bran for butanol 5 production using Clostridium beijerinckii NCIMB 8052. J Microbiol Biotechnol 19(5):482-90.
    • (2009) J Microbiol Biotechnol , vol.19 , Issue.5 , pp. 482-490
    • Lee, J.1    Seo, E.2    Kweon, D.H.3    Park, K.4    Jin, Y.S.5
  • 114
    • 84942522837 scopus 로고    scopus 로고
    • Biological hydrogen production via dark fermentation
    • ed. S. A. Sherif, Boca Raton, FL: CRC Press/Taylor & Francis
    • Lee, K. S., L. M. Whang, G. D. Saratale, S. D. Chen, J. S. Chang, H. Hafez et al. 2014. Biological hydrogen production via dark fermentation. In Hydrogen Energy Handbook ed. S. A. Sherif, 181-250. Vol. 7. Boca Raton, FL: CRC Press/Taylor & Francis.
    • (2014) Hydrogen Energy Handbook , vol.7 , pp. 181-250
    • Lee, K.S.1    Whang, L.M.2    Saratale, G.D.3    Chen, S.D.4    Chang, J.S.5    Hafez, H.6
  • 115
    • 84881556167 scopus 로고    scopus 로고
    • From first-to-third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity
    • Lee, R., and J. M. Lavoie. 2013. From first-to-third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Animal Front 3(2):6-11.
    • (2013) Animal Front , vol.3 , Issue.2 , pp. 6-11
    • Lee, R.1    Lavoie, J.M.2
  • 117
    • 68349155821 scopus 로고    scopus 로고
    • Challenges for biohydrogen production via direct lignocellulose fermentation
    • Levin, D. B., C. R. Carere, N. Cicek, and R. Sparling. 2009. Challenges for biohydrogen production via direct lignocellulose fermentation. Int J Hydrogen Energy 34(17):7390-403.
    • (2009) Int J Hydrogen Energy , vol.34 , Issue.17 , pp. 7390-7403
    • Levin, D.B.1    Carere, C.R.2    Cicek, N.3    Sparling, R.4
  • 118
    • 33746874041 scopus 로고    scopus 로고
    • Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates
    • Levin, D. B., R. Islam, N. Cicek, and R. Sparling. 2006. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy 31(11):1496-503.
    • (2006) Int J Hydrogen Energy , vol.31 , Issue.11 , pp. 1496-1503
    • Levin, D.B.1    Islam, R.2    Cicek, N.3    Sparling, R.4
  • 119
    • 0344896607 scopus 로고    scopus 로고
    • Biohydrogen production: Prospects and limitations to practical application
    • Levin, D. B., L. Pitt, and M. Love. 2004. Biohydrogen production: Prospects and limitations to practical application. Int J Hydrogen Energy 29(2):173-85.
    • (2004) Int J Hydrogen Energy , vol.29 , Issue.2 , pp. 173-185
    • Levin, D.B.1    Pitt, L.2    Love, M.3
  • 120
    • 33846246288 scopus 로고    scopus 로고
    • Inhibition of heavy metals on fermentative hydrogen production by granular sludge
    • Li, C. L., and H. H. P. Fang. 2007. Inhibition of heavy metals on fermentative hydrogen production by granular sludge. Chemosphere 67(4):668-73.
    • (2007) Chemosphere , vol.67 , Issue.4 , pp. 668-673
    • Li, C.L.1    Fang, H.H.P.2
  • 121
    • 34547828736 scopus 로고    scopus 로고
    • Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation
    • Li, D. M., and H. Z. Chen. 2007. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int J Hydrogen Energy 32(12):1742-8.
    • (2007) Int J Hydrogen Energy , vol.32 , Issue.12 , pp. 1742-1748
    • Li, D.M.1    Chen, H.Z.2
  • 122
  • 123
    • 84866448036 scopus 로고    scopus 로고
    • Silage as source of bacteria and electrons for dark fermentative hydrogen production
    • Li, Y.-C., M. M. Nissilä, S.-Y. Wu, C.-Y. Lin, and J.-A. Puhakka. 2012b. Silage as source of bacteria and electrons for dark fermentative hydrogen production. Int J Hydrogen Energy 37(20):15518-24.
    • (2012) Int J Hydrogen Energy , vol.37 , Issue.20 , pp. 15518-15524
    • Li, Y.-C.1    Nissilä, M.M.2    Wu, S.-Y.3    Lin, C.-Y.4    Puhakka, J.-A.5
  • 124
    • 33646034324 scopus 로고    scopus 로고
    • Fermentative hydrogen production from xylose using anaerobic mixed microflora
    • Lin, C. Y., and C. H. Cheng. 2006. Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int J Hydrogen Energy 31(7):832-40.
    • (2006) Int J Hydrogen Energy , vol.31 , Issue.7 , pp. 832-840
    • Lin, C.Y.1    Cheng, C.H.2
  • 125
    • 48949115612 scopus 로고    scopus 로고
    • Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures
    • Lin, C.-Y., and W.-C. Hung. 2008. Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures. Int J Hydrogen Energy 33(14):3660-7.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.14 , pp. 3660-3667
    • Lin, C.-Y.1    Hung, W.-C.2
  • 126
    • 77951024991 scopus 로고    scopus 로고
    • Bio-hydrogen production by mixed culture of photo- and dark-fermentation bacteria
    • Liu, B. F., N. Q. Ren, J. Tang, J. Ding, W. Z. Liu, J. F. Xu et al. 2010. Bio-hydrogen production by mixed culture of photo- and dark-fermentation bacteria. Int J Hydrogen Energy 35(7):2858-62.
    • (2010) Int J Hydrogen Energy , vol.35 , Issue.7 , pp. 2858-2862
    • Liu, B.F.1    Ren, N.Q.2    Tang, J.3    Ding, J.4    Liu, W.Z.5    Xu, J.F.6
  • 127
    • 84866469152 scopus 로고    scopus 로고
    • Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock
    • Liu C.-H., C.-Y. Chang, C.-L. Cheng, D.-J. Lee, J.-S. Chang. (2012). Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. Int J Hydrogen Energy 37:15458-64.
    • (2012) Int J Hydrogen Energy , vol.37 , pp. 15458-15464
    • Liu, C.-H.1    Chang, C.-Y.2    Cheng, C.-L.3    Lee, D.-J.4    Chang, J.-S.5
  • 128
    • 84887122541 scopus 로고    scopus 로고
    • Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation
    • Liu, C. H., C. Y. Chang, Q. Liao, X. Zhu, C. F. Liao, and J. S. Chang. 2013. Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. Int J Hydrogen Energy 38(35):15807-14.
    • (2013) Int J Hydrogen Energy , vol.38 , Issue.35 , pp. 15807-15814
    • Liu, C.H.1    Chang, C.Y.2    Liao, Q.3    Zhu, X.4    Liao, C.F.5    Chang, J.S.6
  • 129
    • 34248333429 scopus 로고    scopus 로고
    • Optimization of bio-hydrogen production from biodiesel wastes by
    • Liu, F., and B. Fang. 2007. Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumonia. Biotechnol J 2(3):374-80.
    • (2007) Klebsiella pneumonia. Biotechnol J , vol.2 , Issue.3 , pp. 374-380
    • Liu, F.1    Fang, B.2
  • 130
    • 84655176378 scopus 로고    scopus 로고
    • Hydrogen production of a salt tolerant strain Bacillus sp. B2 from marine intertidal sludge
    • Liu, H., and G. Wang. 2012. Hydrogen production of a salt tolerant strain Bacillus sp. B2 from marine intertidal sludge. World J Microbiol Biotechnol 28(1):31-7.
    • (2012) World J Microbiol Biotechnol , vol.28 , Issue.1 , pp. 31-37
    • Liu, H.1    Wang, G.2
  • 131
    • 28844492126 scopus 로고    scopus 로고
    • Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants
    • Liu, X., Y. Zhu, and S. T. Yang. 2006. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microb Technol 38(3):521-8.
    • (2006) Enzyme Microb Technol , vol.38 , Issue.3 , pp. 521-528
    • Liu, X.1    Zhu, Y.2    Yang, S.T.3
  • 132
    • 44749092706 scopus 로고    scopus 로고
    • Hydrogen production from cellulose by coculture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17
    • Liu, Y., P. Yu, X. Song, and Y. Qu. (2008). Hydrogen production from cellulose by coculture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrogen Energy 33:2927-33.
    • (2008) Int J Hydrogen Energy , vol.33 , pp. 2927-2933
    • Liu, Y.1    Yu, P.2    Song, X.3    Qu, Y.4
  • 133
    • 77952239223 scopus 로고    scopus 로고
    • Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran
    • Liu, Z., Y. Ying, F. Li, C. Ma, and P. Xu. 2010. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37(5):495-501.
    • (2010) J Ind Microbiol Biotechnol , vol.37 , Issue.5 , pp. 495-501
    • Liu, Z.1    Ying, Y.2    Li, F.3    Ma, C.4    Xu, P.5
  • 134
    • 38949192164 scopus 로고    scopus 로고
    • Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies
    • Lo, Y., W. Chen, C. Hung, S. Chen, and J. Chang. 2008. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies. Water Res 42(4):827-42.
    • (2008) Water Res , vol.42 , Issue.4 , pp. 827-842
    • Lo, Y.1    Chen, W.2    Hung, C.3    Chen, S.4    Chang, J.5
  • 135
    • 77951090497 scopus 로고    scopus 로고
    • Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5
    • Lo, Y., W. Lu, C. Chen, and J. Chang. 2010. Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour Technol 101(15):5885-91.
    • (2010) Bioresour Technol , vol.101 , Issue.15 , pp. 5885-5891
    • Lo, Y.1    Lu, W.2    Chen, C.3    Chang, J.4
  • 136
    • 64049097449 scopus 로고    scopus 로고
    • Isolation of cellulose-utilizing bacteria for cellulosic biohydrogen production
    • Lo, Y.-C., G. D. Saratale, W. M. Chen, M. D. Bai, and J. Chang. 2009. Isolation of cellulose-utilizing bacteria for cellulosic biohydrogen production. Enzyme Microb Technol 44(6-7):417-25.
    • (2009) Enzyme Microb Technol , vol.44 , Issue.6-7 , pp. 417-425
    • Lo, Y.-C.1    Saratale, G.D.2    Chen, W.M.3    Bai, M.D.4    Chang, J.5
  • 137
    • 1642277665 scopus 로고    scopus 로고
    • Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon
    • Louis, P., S. H. Duncan, S. I. Mccrae, M. S. Jackson, H. J. Flint, and J. Millar. 2004. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186(7):2099-106.
    • (2004) J Bacteriol , vol.186 , Issue.7 , pp. 2099-2106
    • Louis, P.1    Duncan, S.H.2    McCrae, S.I.3    Jackson, M.S.4    Flint, H.J.5    Millar, J.6
  • 138
    • 25844505728 scopus 로고    scopus 로고
    • Consolidated bioprocessing of cellulosic biomass: An update
    • Lynd, L. R., W. H. Van Zyl, J. E. McBride, and M. Laser. 2005. Consolidated bioprocessing of cellulosic biomass: An update. Curr Opin Biotechnol 16(5):577-83.
    • (2005) Curr Opin Biotechnol , vol.16 , Issue.5 , pp. 577-583
    • Lynd, L.R.1    Van Zyl, W.H.2    McBride, J.E.3    Laser, M.4
  • 139
    • 84916210105 scopus 로고    scopus 로고
    • Biohydrogen production via the interaction of nitrogenase and anaerobic mixed-acid fermentation in marine bacteria
    • Ma, Y., A. Huang, D. Zhu, G. Pan, and G. Wang. 2015. Biohydrogen production via the interaction of nitrogenase and anaerobic mixed-acid fermentation in marine bacteria. Int J Hydrogen Energy 40(1):176-83.
    • (2015) Int J Hydrogen Energy , vol.40 , Issue.1 , pp. 176-183
    • Ma, Y.1    Huang, A.2    Zhu, D.3    Pan, G.4    Wang, G.5
  • 140
    • 53449084639 scopus 로고    scopus 로고
    • Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process
    • Magnusson, L., R. Islam, and R. Sparling. 2008. Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrogen Energy 33(20):5398-403.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.20 , pp. 5398-5403
    • Magnusson, L.1    Islam, R.2    Sparling, R.3
  • 141
    • 80051586966 scopus 로고    scopus 로고
    • Effect of organic loading rate and solids retention time on microbial population during bio-hydrogen production by dark fermentation in large lab-scale
    • Mariakakis, I., P. Bischoff, J. Krampe, C. Meyer, and H. Steinmetz. 2011. Effect of organic loading rate and solids retention time on microbial population during bio-hydrogen production by dark fermentation in large lab-scale. Int J Hydrogen Energy 36(17):10690-700.
    • (2011) Int J Hydrogen Energy , vol.36 , Issue.17 , pp. 10690-10700
    • Mariakakis, I.1    Bischoff, P.2    Krampe, J.3    Meyer, C.4    Steinmetz, H.5
  • 143
    • 84861218111 scopus 로고    scopus 로고
    • Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium sp
    • Masset, J., M. Calusinska, C. Hamilton, S. Hiligsmann, B. Joris, A. Wilmotte, and P. Thonart. 2012. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium sp. Biotechnol Biofuels 5(1):1-15.
    • (2012) Biotechnol Biofuels , vol.5 , Issue.1 , pp. 1-15
    • Masset, J.1    Calusinska, M.2    Hamilton, C.3    Hiligsmann, S.4    Joris, B.5    Wilmotte, A.6    Thonart, P.7
  • 144
    • 77950299947 scopus 로고    scopus 로고
    • Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009
    • Masset, J., S. Hiligsmann, C. Hamilton, L. Beckers, F. Franck, and P. Thonart. 2010. Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. Int J Hydrogen Energy 35(8):3371-8.
    • (2010) Int J Hydrogen Energy , vol.35 , Issue.8 , pp. 3371-3378
    • Masset, J.1    Hiligsmann, S.2    Hamilton, C.3    Beckers, L.4    Franck, F.5    Thonart, P.6
  • 146
    • 84903205575 scopus 로고    scopus 로고
    • Jatropha curcas leaves analysis, reveals it as mineral source for low sodium diets
    • Méndez, L., J. Rojas, C. Izaguirre, B. Contreras, and R. Gómez. (2014). Jatropha curcas leaves analysis, reveals it as mineral source for low sodium diets. Food Chem 165:575-7.
    • (2014) Food Chem , vol.165 , pp. 575-577
    • Méndez, L.1    Rojas, J.2    Izaguirre, C.3    Contreras, B.4    Gómez, R.5
  • 147
    • 3543131919 scopus 로고    scopus 로고
    • Biotechnological applications of hydrogenases
    • Mertens, R., and A. Liese. 2004. Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15(4):343-8.
    • (2004) Curr Opin Biotechnol , vol.15 , Issue.4 , pp. 343-348
    • Mertens, R.1    Liese, A.2
  • 148
    • 11444255587 scopus 로고    scopus 로고
    • Isolation and characterization of a high H2-producing strain Klebsiella oxytoca HP1 from a hot spring
    • Minnan, L., H. Jinli, W. Xiaobin, X. Huijuan, C. Jinzao, L. Chuannan et al. 2005. Isolation and characterization of a high H2-producing strain Klebsiella oxytoca HP1 from a hot spring. Res Microbiol 156(1):76-81.
    • (2005) Res Microbiol , vol.156 , Issue.1 , pp. 76-81
    • Minnan, L.1    Jinli, H.2    Xiaobin, W.3    Huijuan, X.4    Jinzao, C.5    Chuannan, L.6
  • 149
    • 84978264029 scopus 로고    scopus 로고
    • Evaluation of particle size and initial concentration of total solids on biohydrogen production from food waste
    • Moreno-Andrade, I., and B. Buitrón. 2015. Evaluation of particle size and initial concentration of total solids on biohydrogen production from food waste. Fresenius Environ Bull 24(7):2289-95.
    • (2015) Fresenius Environ Bull , vol.24 , Issue.7 , pp. 2289-2295
    • Moreno-Andrade, I.1    Buitrón, B.2
  • 151
    • 19444377761 scopus 로고    scopus 로고
    • Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production
    • Morimoto, K., T. Kimura, K. Sakka, and K. Ohmiya. 2005. Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246(2):229-34.
    • (2005) FEMS Microbiol Lett , vol.246 , Issue.2 , pp. 229-234
    • Morimoto, K.1    Kimura, T.2    Sakka, K.3    Ohmiya, K.4
  • 153
    • 39149124456 scopus 로고    scopus 로고
    • Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4
    • Nakayama, S., T. Kosaka, H. Hirakawa, K. Matsuura, S. Yoshino, and K. Furukawa. 2008. Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4. Appl Genet Mol Biotechnol 78(3):483-93.
    • (2008) Appl Genet Mol Biotechnol , vol.78 , Issue.3 , pp. 483-493
    • Nakayama, S.1    Kosaka, T.2    Hirakawa, H.3    Matsuura, K.4    Yoshino, S.5    Furukawa, K.6
  • 154
    • 80052950987 scopus 로고    scopus 로고
    • Bio-hydrogen production from thin stillage using conventional and acclimatized anaerobic digester sludge
    • Nasr, N., E. Elbeshbishy, H. Hafez, G. Nakhla, and M. H. El Naggar. 2011. Bio-hydrogen production from thin stillage using conventional and acclimatized anaerobic digester sludge. Int J Hydrogen Energy 36(20):12761-9.
    • (2011) Int J Hydrogen Energy , vol.36 , Issue.20 , pp. 12761-12769
    • Nasr, N.1    Elbeshbishy, E.2    Hafez, H.3    Nakhla, G.4    El Naggar, M.H.5
  • 155
    • 4644332947 scopus 로고    scopus 로고
    • Biohydrogen production as a potential energy resource-Present state-of-art
    • Nath, K., and D. Das. (2004). Biohydrogen production as a potential energy resource-Present state-of-art. J Sci Ind Res 63:729-38.
    • (2004) J Sci Ind Res , vol.63 , pp. 729-738
    • Nath, K.1    Das, D.2
  • 156
    • 84931261916 scopus 로고    scopus 로고
    • Biohydrogen production using immobilized cells of hyperthermophilic eubacterium Thermotoga neapolitana on porous glass beads
    • Ngo, T. A., and H. T. V. Bui. 2013. Biohydrogen production using immobilized cells of hyperthermophilic eubacterium Thermotoga neapolitana on porous glass beads. J Technol Innov Renew Energy 2(3):231-8.
    • (2013) J Technol Innov Renew Energy , vol.2 , Issue.3 , pp. 231-238
    • Ngo, T.A.1    Bui, H.T.V.2
  • 157
    • 70350068450 scopus 로고    scopus 로고
    • Hydrogen production of the hyperthermophilic eubacterium Thermotoga neapolitana under N2 sparging condition
    • Nguyen, T. A. D., S. J. Han, J. P. Kim, M. S. Kim, and S. J. Sim. 2010. Hydrogen production of the hyperthermophilic eubacterium Thermotoga neapolitana under N2 sparging condition. Bioresour Technol 101(1):S38-41.
    • (2010) Bioresour Technol , vol.101 , Issue.1 , pp. S38-S41
    • Nguyen, T.A.D.1    Han, S.J.2    Kim, J.P.3    Kim, M.S.4    Sim, S.J.5
  • 158
    • 78049468432 scopus 로고    scopus 로고
    • Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods
    • Nguyen, T. A. D., K. R. Kim, M. T. Nguyen, M. S. Kim, D. Kim, and S. J. Sim. 2010. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. Int J Hydrogen Energy 35(23):13035-40.
    • (2010) Int J Hydrogen Energy , vol.35 , Issue.23 , pp. 13035-13040
    • Nguyen, T.A.D.1    Kim, K.R.2    Nguyen, M.T.3    Kim, M.S.4    Kim, D.5    Sim, S.J.6
  • 159
    • 80052542871 scopus 로고    scopus 로고
    • Evaluation of the stability of hydrogen production and microbial diversity by anaerobic sludge with chloroform treatment
    • Ning, Y.-Y., D.-W. Jin, G.-P. Sheng, H. Harada, and X.-Y. Shi. 2012. Evaluation of the stability of hydrogen production and microbial diversity by anaerobic sludge with chloroform treatment. Renew Energy 38(1):253-7.
    • (2012) Renew Energy , vol.38 , Issue.1 , pp. 253-257
    • Ning, Y.-Y.1    Jin, D.-W.2    Sheng, G.-P.3    Harada, H.4    Shi, X.-Y.5
  • 160
    • 79551489949 scopus 로고    scopus 로고
    • Thermophilic hydrogen production from cellulose with rumen fluid enrichment cultures: Effects of different heat treatments
    • Nissilä, M. E., A. P. Tahti, J. A. Rintala, and J. A. Puhakka. 2011a. Thermophilic hydrogen production from cellulose with rumen fluid enrichment cultures: Effects of different heat treatments. Int J Hydrogen Energy 36(2):1482-90.
    • (2011) Int J Hydrogen Energy , vol.36 , Issue.2 , pp. 1482-1490
    • Nissilä, M.E.1    Tahti, A.P.2    Rintala, J.A.3    Puhakka, J.A.4
  • 161
    • 79551686522 scopus 로고    scopus 로고
    • Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures
    • Nissilä, M. E., H. P. Tähti, J. A. Rintala, and J. A. Puhakka. 2011b. Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. Bioresour Technol 102(6):4501-6.
    • (2011) Bioresour Technol , vol.102 , Issue.6 , pp. 4501-4506
    • Nissilä, M.E.1    Tähti, H.P.2    Rintala, J.A.3    Puhakka, J.A.4
  • 163
    • 80051687984 scopus 로고    scopus 로고
    • Current status of the metabolic engineering of microorganisms for biohydrogen production
    • Oh, Y., S. M. Raj, G. Y. Jung, and S. Park. 2011. Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 102(18):8357-67.
    • (2011) Bioresour Technol , vol.102 , Issue.18 , pp. 8357-8367
    • Oh, Y.1    Raj, S.M.2    Jung, G.Y.3    Park, S.4
  • 164
    • 77955579777 scopus 로고    scopus 로고
    • Development of a simple biohydrogen production system through dark fermentation by using unique microflora
    • Ohnishi, A., Y. Bando, N. Fujimoto, and M. Suzuki. 2010. Development of a simple biohydrogen production system through dark fermentation by using unique microflora. Int J Hydrogen Energy 35(16):8544-53.
    • (2010) Int J Hydrogen Energy , vol.35 , Issue.16 , pp. 8544-8553
    • Ohnishi, A.1    Bando, Y.2    Fujimoto, N.3    Suzuki, M.4
  • 165
    • 84940440089 scopus 로고    scopus 로고
    • Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum
    • Ortigueira, J., T. Pinto, L. Gouveia, and P. Moura. 2015. Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum. Energy 88:528-36.
    • (2015) Energy , vol.88 , pp. 528-536
    • Ortigueira, J.1    Pinto, T.2    Gouveia, L.3    Moura, P.4
  • 166
    • 79952242608 scopus 로고    scopus 로고
    • Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures
    • O-Thong, S., A. Hniman, P. Prasertsan, and I. Tsuyoshi. 2011. Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. Int J Hydrogen Energy 36(5):3409-16.
    • (2011) Int J Hydrogen Energy , vol.36 , Issue.5 , pp. 3409-3416
    • O-Thong, S.1    Hniman, A.2    Prasertsan, P.3    Tsuyoshi, I.4
  • 167
    • 53749091245 scopus 로고    scopus 로고
    • Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis
    • O-Thong, S., P. Prasertsan, and N.-K. Birkeland. 2009. Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresour Technol 100(2):909-18.
    • (2009) Bioresour Technol , vol.100 , Issue.2 , pp. 909-918
    • O-Thong, S.1    Prasertsan, P.2    Birkeland, N.-K.3
  • 170
    • 84883556644 scopus 로고    scopus 로고
    • Thermophilic biohydrogen production: How far are we?
    • Pawar, S. S., and E. W. J. van Niel. 2013. Thermophilic biohydrogen production: How far are we? Appl Microbiol Biotechnol 97(18):7999-8009.
    • (2013) Appl Microbiol Biotechnol , vol.97 , Issue.18 , pp. 7999-8009
    • Pawar, S.S.1    van Niel, E.W.J.2
  • 172
    • 0034009113 scopus 로고    scopus 로고
    • Soil carbon sequestration and land-use change: Processes and potential
    • Post, W. M., and K. C. Kwon. 2000. Soil carbon sequestration and land-use change: Processes and potential. Glob Chang Biol 6(3):317-27.
    • (2000) Glob Chang Biol , vol.6 , Issue.3 , pp. 317-327
    • Post, W.M.1    Kwon, K.C.2
  • 173
    • 68449086722 scopus 로고    scopus 로고
    • Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process
    • Prasertsan, P., S. O-Thong, and N.-R. Birkeland. 2009. Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process. Int J Hydrogen Energy 34(17):7448-59.
    • (2009) Int J Hydrogen Energy , vol.34 , Issue.17 , pp. 7448-7459
    • Prasertsan, P.1    O-Thong, S.2    Birkeland, N.-R.3
  • 175
    • 79957995821 scopus 로고    scopus 로고
    • Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production
    • Ren, N., W. Guo, B. Liu, G. Cao, and J. Ding. 2011. Biological hydrogen production by dark fermentation: Challenges and prospects towards scaled-up production. Curr Opin Biotechnol 22(3):365-70.
    • (2011) Curr Opin Biotechnol , vol.22 , Issue.3 , pp. 365-370
    • Ren, N.1    Guo, W.2    Liu, B.3    Cao, G.4    Ding, J.5
  • 176
    • 55049109322 scopus 로고    scopus 로고
    • Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16
    • Ren, N. Q., G. L. Cao, and A. J. Wang. 2008b. Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 33(21):6124-32.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.21 , pp. 6124-6132
    • Ren, N.Q.1    Cao, G.L.2    Wang, A.J.3
  • 177
    • 50449098705 scopus 로고    scopus 로고
    • Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production
    • Ren, N.-Q., W.-Q. Guo, X.-J. Wang, W.-S. Xiang, B.-F. Liu, X.-Z. Wang et al. 2008a. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. Int J Hydrogen Energy 33(16):4318-24.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.16 , pp. 4318-4324
    • Ren, N.-Q.1    Guo, W.-Q.2    Wang, X.-J.3    Xiang, W.-S.4    Liu, B.-F.5    Wang, X.-Z.6
  • 178
    • 36549077032 scopus 로고    scopus 로고
    • Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species
    • Ren, Z., T. E. Ward, B. E. Logan, and J. M. Regan. 2007. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J Appl Microbiol 103(6):2258-66.
    • (2007) J Appl Microbiol , vol.103 , Issue.6 , pp. 2258-2266
    • Ren, Z.1    Ward, T.E.2    Logan, B.E.3    Regan, J.M.4
  • 179
    • 79953659748 scopus 로고    scopus 로고
    • Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel
    • Rossi, D. M., J. B. da Costa, E. A. de Souza, M. C. Ruaro Peralba, D. Samios, and M. A. Záchia Ayub. 2011. Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int J Hydrogen Energy 36(8):4814-9.
    • (2011) Int J Hydrogen Energy , vol.36 , Issue.8 , pp. 4814-4819
    • Rossi, D.M.1    da Costa, J.B.2    de Souza, E.A.3    Ruaro Peralba, M.C.4    Samios, D.5    Ayub, Z.M.A.6
  • 181
    • 0035114347 scopus 로고    scopus 로고
    • Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures
    • Saint-Amans, S., L. Girbal, J. Andrade, K. Ahrens, and P. Soucaille. 2001. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J Bacteriol 183(5):1748-54.
    • (2001) J Bacteriol , vol.183 , Issue.5 , pp. 1748-1754
    • Saint-Amans, S.1    Girbal, L.2    Andrade, J.3    Ahrens, K.4    Soucaille, P.5
  • 182
    • 84879289310 scopus 로고    scopus 로고
    • Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production
    • Sánchez, A., V. Sevilla-Güitrón, G. Magaña, and L. Gutierrez. (2013). Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production. Fuel 113:165-79.
    • (2013) Fuel , vol.113 , pp. 165-179
    • Sánchez, A.1    Sevilla-Güitrón, V.2    Magaña, G.3    Gutierrez, L.4
  • 183
    • 84926228144 scopus 로고    scopus 로고
    • Allocation in LCAs of biorefinery products: Implications for results and decision-making
    • Sandin, G., F. Røyne, J. Berlin, G. M. Peters, and M. Svanström. (2015). Allocation in LCAs of biorefinery products: Implications for results and decision-making. J Clean Prod 93:213-21.
    • (2015) J Clean Prod , vol.93 , pp. 213-221
    • Sandin, G.1    Røyne, F.2    Berlin, J.3    Peters, G.M.4    Svanström, M.5
  • 184
    • 60649122011 scopus 로고    scopus 로고
    • Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation-A review
    • Saratale, G. D., S. D. Chen, Y. C. Lo, R. G. Saratale, and J. S. Chang. 2008. Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation-A review. J Sci Ind Res 67(11):962-79.
    • (2008) J Sci Ind Res , vol.67 , Issue.11 , pp. 962-979
    • Saratale, G.D.1    Chen, S.D.2    Lo, Y.C.3    Saratale, R.G.4    Chang, J.S.5
  • 185
    • 84870713250 scopus 로고    scopus 로고
    • Enzymatic pretreatment of cellulosic wastes for anaerobic treatment and bioenergy production
    • ed. H.H.-P. Fang, London: Imperial College Press
    • Saratale, G. D., I. J. Chien, and J. S. Chang. 2011. Enzymatic pretreatment of cellulosic wastes for anaerobic treatment and bioenergy production. In Environmental Anaerobic Technology Applications and New Developments ed. H.H.-P. Fang, 279-308. Vol. 13. London: Imperial College Press.
    • (2011) Environmental Anaerobic Technology Applications and New Developments , vol.13 , pp. 279-308
    • Saratale, G.D.1    Chien, I.J.2    Chang, J.S.3
  • 186
    • 84911947927 scopus 로고    scopus 로고
    • Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production
    • Saratale, G. D., S. D. Kshirsagar, V. T. Sampange, R. G. Saratale, S. E. Oh, S. P. Govindwar, and M. K. Oh. 2014. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Appl Biochem Biotechnol 174(8):2801-17.
    • (2014) Appl Biochem Biotechnol , vol.174 , Issue.8 , pp. 2801-2817
    • Saratale, G.D.1    Kshirsagar, S.D.2    Sampange, V.T.3    Saratale, R.G.4    Oh, S.E.5    Govindwar, S.P.6    Oh, M.K.7
  • 187
    • 84942512179 scopus 로고    scopus 로고
    • Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization
    • Saratale, G. D., S. D. Kshirsagar, R. G. Saratale, S. P. Govindwar, and M. K. Oh. 2015. Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization. Biotechnol Bioprocess Eng 20(4):733-43.
    • (2015) Biotechnol Bioprocess Eng , vol.20 , Issue.4 , pp. 733-743
    • Saratale, G.D.1    Kshirsagar, S.D.2    Saratale, R.G.3    Govindwar, S.P.4    Oh, M.K.5
  • 188
    • 84955305473 scopus 로고    scopus 로고
    • Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2,3-butanediol production
    • Saratale, G. D., M. Y. Jung, and M. K. Oh. (2016). Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2,3-butanediol production. Bioresour Technol 205:90-6.
    • (2016) Bioresour Technol , vol.205 , pp. 90-96
    • Saratale, G.D.1    Jung, M.Y.2    Oh, M.K.3
  • 189
    • 84947764591 scopus 로고    scopus 로고
    • Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production
    • Saratale, G. D., and M. K. Oh. 2015. Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production. RSC Adv 5(118):91171-9.
    • (2015) RSC Adv , vol.5 , Issue.118 , pp. 91171-91179
    • Saratale, G.D.1    Oh, M.K.2
  • 190
  • 191
    • 77950872481 scopus 로고    scopus 로고
    • Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production
    • Saratale, G. D., R. G. Saratale, Y. C. Lo, and J. S. Chang. 2010. Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production. Biotechnol Prog 26(2):406-16.
    • (2010) Biotechnol Prog , vol.26 , Issue.2 , pp. 406-416
    • Saratale, G.D.1    Saratale, R.G.2    Lo, Y.C.3    Chang, J.S.4
  • 192
    • 84870712720 scopus 로고    scopus 로고
    • Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS
    • Saratale, G. D., R. G. Saratale, and S. E. Oh. (2012). Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS. Biomass Bioenergy 47:302-15.
    • (2012) Biomass Bioenergy , vol.47 , pp. 302-315
    • Saratale, G.D.1    Saratale, R.G.2    Oh, S.E.3
  • 193
    • 84930666521 scopus 로고    scopus 로고
    • Hydrogen biorefinery: Potential utilization of the liquid waste from fermentative hydrogen production
    • Sarma, S. J., V. Pachapur, S. K. Brar, Y. Le Bihan, and G. Buelna. (2015). Hydrogen biorefinery: Potential utilization of the liquid waste from fermentative hydrogen production. Renew Sustain Energy Rev 50:942-51.
    • (2015) Renew Sustain Energy Rev , vol.50 , pp. 942-951
    • Sarma, S.J.1    Pachapur, V.2    Brar, S.K.3    Le Bihan, Y.4    Buelna, G.5
  • 194
    • 84909586653 scopus 로고    scopus 로고
    • U.S. Geographic analysis of the cost of hydrogen from electrolysis
    • Saur, G., and C. Ainscough. (2011). U.S. Geographic analysis of the cost of hydrogen from electrolysis. Contract 303:275-3000.
    • (2011) Contract , vol.303 , pp. 275-3000
    • Saur, G.1    Ainscough, C.2
  • 196
    • 67649413347 scopus 로고    scopus 로고
    • The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: A new perspective on anaerobic hydrogen production
    • Schut, G. J., and M. W. W. Adams. 2009. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: A new perspective on anaerobic hydrogen production. J Bacteriol 191(13):4451-7.
    • (2009) J Bacteriol , vol.191 , Issue.13 , pp. 4451-4457
    • Schut, G.J.1    Adams, M.W.W.2
  • 197
    • 40049104506 scopus 로고    scopus 로고
    • Use of U.S. croplands for biofuels increases greenhouse gases through emissions from landuse change
    • Searchinger, T., R. Heimlich, R. A. Houghton, F. Dong, A. Elobeid, J. Fabiosa et al. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from landuse change. Science 319(5867):1238-40.
    • (2008) Science , vol.319 , Issue.5867 , pp. 1238-1240
    • Searchinger, T.1    Heimlich, R.2    Houghton, R.A.3    Dong, F.4    Elobeid, A.5    Fabiosa, J.6
  • 198
    • 84948417791 scopus 로고    scopus 로고
    • Direct hydrogen production from lignocellulose by the newly isolated Thermoanaerobacterium thermosaccharolyticum strain DD32
    • Sheng, T., L. F. Gao, L. Zhao, W. Z. Liu, and A. J. Wang. 2015. Direct hydrogen production from lignocellulose by the newly isolated Thermoanaerobacterium thermosaccharolyticum strain DD32. RSC Adv 5(121):99781-8.
    • (2015) RSC Adv , vol.5 , Issue.121 , pp. 99781-99788
    • Sheng, T.1    Gao, L.F.2    Zhao, L.3    Liu, W.Z.4    Wang, A.J.5
  • 199
    • 27844507018 scopus 로고    scopus 로고
    • Unusual pathways and enzymes of central carbohydrate metabolism in Archaea
    • Siebers, B., and P. Schonheit. 2005. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 8(6):695-705.
    • (2005) Curr Opin Microbiol , vol.8 , Issue.6 , pp. 695-705
    • Siebers, B.1    Schonheit, P.2
  • 200
    • 85053522160 scopus 로고    scopus 로고
    • Roadmap to decarburization and energy consumption minimization of the road transport sector: Biohydrogen production from several microalgae species and integration in optimized bus configurations
    • Hydrogen and Other Technologies. New Delhi: Studium Press
    • Silva, C. M., R. C. Pacheco, T. M. Batista, A. F. Ferreira, and J. P. Ribau. 2015. Roadmap to decarburization and energy consumption minimization of the road transport sector: Biohydrogen production from several microalgae species and integration in optimized bus configurations. In Energy Science and Technology, vol. 11, Hydrogen and Other Technologies. New Delhi: Studium Press.
    • (2015) Energy Science and Technology , vol.11
    • Silva, C.M.1    Pacheco, R.C.2    Batista, T.M.3    Ferreira, A.F.4    Ribau, J.P.5
  • 201
    • 84875927329 scopus 로고    scopus 로고
    • Treatment of rice straw hemicellulosic hydrolysates with advanced oxidative processes: A new and promising detoxification method to improve the bioconversion process
    • Silva, J. P. A., L. M. Carneiro, and I. C. Roberto. 2013. Treatment of rice straw hemicellulosic hydrolysates with advanced oxidative processes: A new and promising detoxification method to improve the bioconversion process. Biotechnol Biofuels 6(1):1.
    • (2013) Biotechnol Biofuels , vol.6 , Issue.1 , pp. 1
    • Silva, J.P.A.1    Carneiro, L.M.2    Roberto, I.C.3
  • 202
    • 84875259299 scopus 로고    scopus 로고
    • Biohydrogen production from palm oil mill effluent using immobilized Clostridium butyricum EB6 in polyethylene glycol
    • Singh, L., Z. A. Wahid, M. F. Siddiqui, A. Ahmad, M. H. Ab Rahim, and M. Sakinah. 2013. Biohydrogen production from palm oil mill effluent using immobilized Clostridium butyricum EB6 in polyethylene glycol. Proc Biochem 48(2):294-8.
    • (2013) Proc Biochem , vol.48 , Issue.2 , pp. 294-298
    • Singh, L.1    Wahid, Z.A.2    Siddiqui, M.F.3    Ahmad, A.4    Ab Rahim, M.H.5    Sakinah, M.6
  • 203
    • 77954187234 scopus 로고    scopus 로고
    • Renewable Fuel Standard Program (RFS2) regulatory impact analysis
    • Washington, DC: Assessment and Standards Division, Office of Transportation and Air Quality
    • Sissine, F. 2010. Renewable Fuel Standard Program (RFS2) regulatory impact analysis. Technical Report EPA-420-R-10-006. Washington, DC: Assessment and Standards Division, Office of Transportation and Air Quality.
    • (2010) Technical Report EPA-420-R-10-006
    • Sissine, F.1
  • 204
    • 84892364071 scopus 로고    scopus 로고
    • Batch fermentative hydrogen production by enriched mixed culture: Combination strategy and their microbial composition
    • Sivagurunathan, P., B. Sen, and C.-Y. Lin. 2013. Batch fermentative hydrogen production by enriched mixed culture: Combination strategy and their microbial composition. J Biosci Bioeng 117(2):222-8.
    • (2013) J Biosci Bioeng , vol.117 , Issue.2 , pp. 222-228
    • Sivagurunathan, P.1    Sen, B.2    Lin, C.-Y.3
  • 205
    • 64449088579 scopus 로고    scopus 로고
    • Biohydrogen production from wastewaster by Clostridium beijerinckii: Effect of pH and substrate concentration
    • Skonieczny, M. T., and V. Yargeau. 2009. Biohydrogen production from wastewaster by Clostridium beijerinckii: Effect of pH and substrate concentration. Int J Hydrogen Energy 34(8):3288-94.
    • (2009) Int J Hydrogen Energy , vol.34 , Issue.8 , pp. 3288-3294
    • Skonieczny, M.T.1    Yargeau, V.2
  • 206
    • 84862762353 scopus 로고    scopus 로고
    • Standard and modified methods for soil organic carbon determination in agricultural soils
    • Slepetiene, A., J. Slepetys, and I. Liaudanskiene. 2008. Standard and modified methods for soil organic carbon determination in agricultural soils. Agro Res 6(2):543-54.
    • (2008) Agro Res , vol.6 , Issue.2 , pp. 543-554
    • Slepetiene, A.1    Slepetys, J.2    Liaudanskiene, I.3
  • 208
    • 83055181537 scopus 로고    scopus 로고
    • Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures
    • Sreela-or, C., T. Imai, P. Plangklang, and A. Reungsang. 2011. Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int J Hydrogen Energy 36(21):14120-33.
    • (2011) Int J Hydrogen Energy , vol.36 , Issue.21 , pp. 14120-14133
    • Sreela-Or, C.1    Imai, T.2    Plangklang, P.3    Reungsang, A.4
  • 209
    • 0029849351 scopus 로고    scopus 로고
    • Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in aqueous two phase system
    • Taguchi, F., K. Yamada, K. Hasegawa, T. Takisaito, and K. Hara. (1996). Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in aqueous two phase system. J Ferment Bioeng 82:80-3.
    • (1996) J Ferment Bioeng , vol.82 , pp. 80-83
    • Taguchi, F.1    Yamada, K.2    Hasegawa, K.3    Takisaito, T.4    Hara, K.5
  • 210
    • 84877791476 scopus 로고    scopus 로고
    • Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903
    • Talluri, S., S. M. Raj, and L. P. Christopher. (2013). Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903. Bioresour Technol 139:272-9.
    • (2013) Bioresour Technol , vol.139 , pp. 272-279
    • Talluri, S.1    Raj, S.M.2    Christopher, L.P.3
  • 211
    • 0017343370 scopus 로고
    • Energy conservation in chemotrophic anaerobic bacteria
    • Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Rev 41(1):100-80.
    • (1977) Bacteriological Rev , vol.41 , Issue.1 , pp. 100-180
    • Thauer, R.K.1    Jungermann, K.2    Decker, K.3
  • 212
    • 34547595881 scopus 로고    scopus 로고
    • Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor
    • Thong, S. O., P. Prasertsan, N. Intrasungkha, S. Dhamwichukorn, and N. K. Birkeland. (2007). Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzyme Microb Technol 41:583-90.
    • (2007) Enzyme Microb Technol , vol.41 , pp. 583-590
    • Thong, S.O.1    Prasertsan, P.2    Intrasungkha, N.3    Dhamwichukorn, S.4    Birkeland, N.K.5
  • 213
    • 84862010951 scopus 로고    scopus 로고
    • Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications
    • Tracy, B. P., S. W. Jones, A. G. Fast, D. C. Indurthi, and E. T. Papoutsakis. 2012. Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23(3):364-81.
    • (2012) Curr Opin Biotechnol , vol.23 , Issue.3 , pp. 364-381
    • Tracy, B.P.1    Jones, S.W.2    Fast, A.G.3    Indurthi, D.C.4    Papoutsakis, E.T.5
  • 214
    • 84856233112 scopus 로고    scopus 로고
    • Hydrogen production from water electrolysis: Current status and future trends
    • Ursua, A., L. M. Gandia, and P. Sanchis. (2012). Hydrogen production from water electrolysis: Current status and future trends. Proc IEEE 100:410-26.
    • (2012) Proc IEEE , vol.100 , pp. 410-426
    • Ursua, A.1    Gandia, L.M.2    Sanchis, P.3
  • 216
    • 84934754003 scopus 로고    scopus 로고
    • Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and
    • Valdez-Vazquez, I., M. Pérez-Rangel, A. Tapia, G. Buitrón, C. Molina, G. Hernández et al. 2015a. Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium. Fuel 159:214-22.
    • (2015) Clostridium. Fuel , vol.159 , pp. 214-222
    • Valdez-Vazquez, I.1    Pérez-Rangel, M.2    Tapia, A.3    Buitrón, G.4    Molina, C.5    Hernández, G.6
  • 218
    • 26444582922 scopus 로고    scopus 로고
    • Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime
    • Valdez-Vazquez, I., E. Ríos-Leal, F. Esparza-García, F. Cecchi, and H. M. Poggi-Varaldo. 2005. Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime. Int J Hydrogen Energy 30(13):1383-91.
    • (2005) Int J Hydrogen Energy , vol.30 , Issue.13 , pp. 1383-1391
    • Valdez-Vazquez, I.1    Ríos-Leal, E.2    Esparza-García, F.3    Cecchi, F.4    Poggi-Varaldo, H.M.5
  • 220
    • 84872346058 scopus 로고    scopus 로고
    • Enrichment of activated sludge for enhanced hydrogen production from crude glycerol
    • Varrone, C., S. Rosa, F. Fiocchetti, B. Giussani, G. Izzo, G. Massini, et al. 2013. Enrichment of activated sludge for enhanced hydrogen production from crude glycerol. Int J Hydrogen Energy 38(3):1319-31.
    • (2013) Int J Hydrogen Energy , vol.38 , Issue.3 , pp. 1319-1331
    • Varrone, C.1    Rosa, S.2    Fiocchetti, F.3    Giussani, B.4    Izzo, G.5    Massini, G.6
  • 221
    • 0034886919 scopus 로고    scopus 로고
    • Classification and phylogeny of hydrogenases 1
    • Vignais, P. M., B. Billoud, and J. Meyer. 2001. Classification and phylogeny of hydrogenases 1. FEMS Microbiol Rev 25(4):455-501.
    • (2001) FEMS Microbiol Rev , vol.25 , Issue.4 , pp. 455-501
    • Vignais, P.M.1    Billoud, B.2    Meyer, J.3
  • 222
    • 31944434662 scopus 로고    scopus 로고
    • Biohydrogen generation from jackfruit peel using anaerobic contact filter
    • Vijayaraghavan, K., D. Ahmad, and M. K. B. Ibrahim. 2006. Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int J Hydrogen Energy 31(5):569-79.
    • (2006) Int J Hydrogen Energy , vol.31 , Issue.5 , pp. 569-579
    • Vijayaraghavan, K.1    Ahmad, D.2    Ibrahim, M.K.B.3
  • 223
    • 84877297132 scopus 로고    scopus 로고
    • Microbial community structure of anaerobic sludge for hydrogen production under different acid pretreatment conditions
    • Wan, J., Y. Ning, X. Shi, D. Jin, S. Li, and Y. Chen. 2013. Microbial community structure of anaerobic sludge for hydrogen production under different acid pretreatment conditions. J Renew Sustain Energy 5(2):023126.
    • (2013) J Renew Sustain Energy , vol.5 , Issue.2 , pp. 023126
    • Wan, J.1    Ning, Y.2    Shi, X.3    Jin, D.4    Li, S.5    Chen, Y.6
  • 224
    • 84873036003 scopus 로고    scopus 로고
    • Sustainable design and synthesis of hydrocarbon biorefinery via gasification pathway: Integrated life cycle assessment and technoeconomic analysis with multiobjective superstructure optimization
    • Wang, B., B. H. Gebreslassie, and F. You. (2013). Sustainable design and synthesis of hydrocarbon biorefinery via gasification pathway: Integrated life cycle assessment and technoeconomic analysis with multiobjective superstructure optimization. Comput Chem Eng 52:55-76.
    • (2013) Comput Chem Eng , vol.52 , pp. 55-76
    • Wang, B.1    Gebreslassie, B.H.2    You, F.3
  • 226
    • 58549092968 scopus 로고    scopus 로고
    • Factors influencing fermentative hydrogen production: A review
    • Wang, J. L., and W. Wan. 2009. Factors influencing fermentative hydrogen production: A review. Int J Hydrogen Energy 34(2):799-811.
    • (2009) Int J Hydrogen Energy , vol.34 , Issue.2 , pp. 799-811
    • Wang, J.L.1    Wan, W.2
  • 227
    • 85053549671 scopus 로고    scopus 로고
    • energy use in transportation (GREET) model: Version 1.5. Chicago: Center for Transportation Research, Argonne National Laboratory
    • Wang, M. 2008. The greenhouse gases, regulated emissions, and energy use in transportation (GREET) model: Version 1.5. Chicago: Center for Transportation Research, Argonne National Laboratory.
    • (2008) The greenhouse gases, regulated emissions
    • Wang, M.1
  • 228
    • 39149103729 scopus 로고    scopus 로고
    • Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor
    • Wang, M., B. H. Olson, J. Chang. 2008b. Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor. Appl Microb Cell Physiol 78(3):525-32.
    • (2008) Appl Microb Cell Physiol , vol.78 , Issue.3 , pp. 525-532
    • Wang, M.1    Olson, B.H.2    Chang, J.3
  • 229
    • 51549086470 scopus 로고    scopus 로고
    • Monitoring dark hydrogen fermentation performance of indigenous Clostridium butyricum by hydrogenase gene expression using RT-PCR and qPCR
    • Wang, M. Y., Y. L. Tsai, B. H. Olson, and J. S. Chang. 2008a. Monitoring dark hydrogen fermentation performance of indigenous Clostridium butyricum by hydrogenase gene expression using RT-PCR and qPCR. Int J Hydrogen Energy 33(18):4730-8.
    • (2008) Int J Hydrogen Energy , vol.33 , Issue.18 , pp. 4730-4738
    • Wang, M.Y.1    Tsai, Y.L.2    Olson, B.H.3    Chang, J.S.4
  • 230
    • 0025292883 scopus 로고
    • A nitrogen-fixation gene (nifC) in Clostridium pasteurianum with sequence similarity to chlJ of
    • Wang, S., J. Chen, and J. L. Johnson. 1990. A nitrogen-fixation gene (nifC) in Clostridium pasteurianum with sequence similarity to chlJ of Escerichia coli. Biochem Biophys Res Commun 169(3):1122-8.
    • (1990) Escerichia coli. Biochem Biophys Res Commun , vol.169 , Issue.3 , pp. 1122-1128
    • Wang, S.1    Chen, J.2    Johnson, J.L.3
  • 231
    • 35448986626 scopus 로고    scopus 로고
    • The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge
    • Wang, X., D. Hoefel, C. P. Saint, P. T. Monis, and B. Jin. 2007. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge. J. Appl Microbiol 103(5):1415-23.
    • (2007) J. Appl Microbiol , vol.103 , Issue.5 , pp. 1415-1423
    • Wang, X.1    Hoefel, D.2    Saint, C.P.3    Monis, P.T.4    Jin, B.5
  • 232
    • 60949100790 scopus 로고    scopus 로고
    • Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5
    • Wang, X., and B. Jin. 2009. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J Biosci Bioeng 107(2):138-44.
    • (2009) J Biosci Bioeng , vol.107 , Issue.2 , pp. 138-144
    • Wang, X.1    Jin, B.2
  • 233
    • 58749112160 scopus 로고    scopus 로고
    • Biochemical kinetics of fermentative hydrogen production by Clostridium butyricum W5
    • Wang, X., P. T. Monis, C. P. Saint, and B. Jin. 2009. Biochemical kinetics of fermentative hydrogen production by Clostridium butyricum W5. Int J Hydrogen Energy 34(2):791-8.
    • (2009) Int J Hydrogen Energy , vol.34 , Issue.2 , pp. 791-798
    • Wang, X.1    Monis, P.T.2    Saint, C.P.3    Jin, B.4
  • 234
    • 77950955534 scopus 로고    scopus 로고
    • Bio-hydrogen production from acetic acid steam-exploded corn straws by simultaneous saccharification and fermentation with Ethanoligenens harbinense B49
    • Xu, J. F., N. Q. Ren, D. X. Su, and J. Qiu. 2010. Bio-hydrogen production from acetic acid steam-exploded corn straws by simultaneous saccharification and fermentation with Ethanoligenens harbinense B49. Int J Energy Res 34(5):381-6.
    • (2010) Int J Energy Res , vol.34 , Issue.5 , pp. 381-386
    • Xu, J.F.1    Ren, N.Q.2    Su, D.X.3    Qiu, J.4
  • 235
    • 77956181328 scopus 로고    scopus 로고
    • Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment
    • Yang, Z. M., R. B. Guo, X. H. Xu, X. L. Fan, and X. P. Li. 2010. Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrogen Energy 35(18):9618-23.
    • (2010) Int J Hydrogen Energy , vol.35 , Issue.18 , pp. 9618-9623
    • Yang, Z.M.1    Guo, R.B.2    Xu, X.H.3    Fan, X.L.4    Li, X.P.5
  • 238
    • 35348909612 scopus 로고    scopus 로고
    • Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates
    • Yokoyama, H., N. Moriya, H. Ohmori, M. Waki, A. Ogino, and Y. Tanaka. 2007. Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Appl Microbiol Biotechnol 77(1):213-22.
    • (2007) Appl Microbiol Biotechnol , vol.77 , Issue.1 , pp. 213-222
    • Yokoyama, H.1    Moriya, N.2    Ohmori, H.3    Waki, M.4    Ogino, A.5    Tanaka, Y.6
  • 239
    • 84865458995 scopus 로고    scopus 로고
    • Effect of initial pH, nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities
    • Yossan, S., S. O-Thong, and P. Prasertsan. 2012. Effect of initial pH, nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities. Int J Hydrogen Energy 37(18):13806-14.
    • (2012) Int J Hydrogen Energy , vol.37 , Issue.18 , pp. 13806-13814
    • Yossan, S.1    O-Thong, S.2    Prasertsan, P.3
  • 240
    • 80052387209 scopus 로고    scopus 로고
    • Anaerobic biohydrogen production from wheat stalk by mixed microflora: Kinetic model and particle size influence
    • Yuan, X., X. Shi, P. Zhang, Y. Wei, R. Guo, and L. Wang. 2011. Anaerobic biohydrogen production from wheat stalk by mixed microflora: Kinetic model and particle size influence. Bioresour Technol 102(19):9007-12.
    • (2011) Bioresour Technol , vol.102 , Issue.19 , pp. 9007-9012
    • Yuan, X.1    Shi, X.2    Zhang, P.3    Wei, Y.4    Guo, R.5    Wang, L.6
  • 241
    • 65949093076 scopus 로고    scopus 로고
    • Developing a thermophilic hydrogen-producing co- culture for efficient utilization of mixed sugars
    • Zeidan, A. A., and E. W. J. Van Niel. 2009. Developing a thermophilic hydrogen-producing co- culture for efficient utilization of mixed sugars. Int J Hydrogen Energy 34(10):4524-8.
    • (2009) Int J Hydrogen Energy , vol.34 , Issue.10 , pp. 4524-4528
    • Zeidan, A.A.1    Van Niel, E.W.J.2
  • 242
    • 80051698477 scopus 로고    scopus 로고
    • Bioengineering of the Enterobacter aerogenes strain for biohydrogen production
    • Zhang, C., F. X. Lu, and X. H. Xing. 2011. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production. Bioresour Technol 102(18):8344-9.
    • (2011) Bioresour Technol , vol.102 , Issue.18 , pp. 8344-8349
    • Zhang, C.1    Lu, F.X.2    Xing, X.H.3
  • 243
    • 71449093722 scopus 로고    scopus 로고
    • Current progress on butyric acid production by fermentation
    • Zhang, C., H. Yang, F. Yang, and Y. Ma. 2009. Current progress on butyric acid production by fermentation. Curr Microbiol 59(6):656-63.
    • (2009) Curr Microbiol , vol.59 , Issue.6 , pp. 656-663
    • Zhang, C.1    Yang, H.2    Yang, F.3    Ma, Y.4
  • 244
    • 84929626335 scopus 로고    scopus 로고
    • Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11
    • Zhang, J. N., Y. H. Zheng, H. Q. Fan, Y. T. Hou, and H. Wei, H. (2015). Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour Technol 192:60-7.
    • (2015) Bioresour Technol , vol.192 , pp. 60-67
    • Zhang, J.N.1    Zheng, Y.H.2    Fan, H.Q.3    Hou, Y.T.4    Wei, H.H.5
  • 245
    • 31444438543 scopus 로고    scopus 로고
    • Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria
    • Zhang, Y., and J. Shen. 2006. Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int J Hydrogen Energy 31(4):441-6.
    • (2006) Int J Hydrogen Energy , vol.31 , Issue.4 , pp. 441-446
    • Zhang, Y.1    Shen, J.2
  • 246
    • 84937029907 scopus 로고    scopus 로고
    • Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in
    • Zhao, H., Y. Lu, L. Wang, C. Zhang, C. Yang, and X. Xing. (2015). Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes. Bioresour Technol 194:99-107.
    • (2015) Enterobacter aerogenes. Bioresour Technol , vol.194 , pp. 99-107
    • Zhao, H.1    Lu, Y.2    Wang, L.3    Zhang, C.4    Yang, C.5    Xing, X.6
  • 247
    • 84860424538 scopus 로고    scopus 로고
    • Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production
    • Zhao, L., G. L. Cao, A. J. Wang, H. Y. Ren, D. Dong, Z. N. Liu et al. (2012). Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresour Technol 114:365-9.
    • (2012) Bioresour Technol , vol.114 , pp. 365-369
    • Zhao, L.1    Cao, G.L.2    Wang, A.J.3    Ren, H.Y.4    Dong, D.5    Liu, Z.N.6
  • 248
    • 84890332395 scopus 로고    scopus 로고
    • Enzymatic saccharification of cornstalk by onsite cellulases produced by Trichoderma viride for enhanced biohydrogen production
    • Zhao, L., G. L. Cao, A. J. Wang, H. Y. Ren, C. J. Xu, and N. Q. Ren. 2013. Enzymatic saccharification of cornstalk by onsite cellulases produced by Trichoderma viride for enhanced biohydrogen production. GCB Bioenergy 5(5):591-8.
    • (2013) GCB Bioenergy , vol.5 , Issue.5 , pp. 591-598
    • Zhao, L.1    Cao, G.L.2    Wang, A.J.3    Ren, H.Y.4    Xu, C.J.5    Ren, N.Q.6
  • 249
    • 84917691493 scopus 로고    scopus 로고
    • Hydrogen formation and its regulation in Ruminococcus albus: Involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non electron-bifurcating [FeFe]-hydrogenase and of a putative hydrogen-sensing [FeFe]-hgydrogenase
    • Zheng, Y., J. Kahnt, I. H. Kwon, R. I. Mackie, and R. K. Thauer. 2014. Hydrogen formation and its regulation in Ruminococcus albus: Involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non electron-bifurcating [FeFe]-hydrogenase and of a putative hydrogen-sensing [FeFe]-hgydrogenase. J Bacteriol 196(22):3840-52.
    • (2014) J Bacteriol , vol.196 , Issue.22 , pp. 3840-3852
    • Zheng, Y.1    Kahnt, J.2    Kwon, I.H.3    Mackie, R.I.4    Thauer, R.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.