메뉴 건너뛰기




Volumn , Issue , 2004, Pages 285-293

ClusterMap: Labeling clusters in large datasets via visualization

Author keywords

Cluster Labeling; Cluster Visualization; Data Clustering; Human Factors in Clustering

Indexed keywords

CLUSTER LABELING; CLUSTER VISUALIZATION; DATA CLUSTERING; HUMAN FACTOR IN CLUSTERING;

EID: 18744394353     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (17)

References (26)
  • 2
    • 0032091595 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • Seattle, WA
    • Guha, G., Rastogi, R., and Shim, K. CURE: An efficient clustering algorithm for large databases. In Proceedings of the 1998 ACMSIGMOD, Seattle, WA. 1998
    • (1998) Proceedings of the 1998 ACMSIGMOD
    • Guha, G.1    Rastogi, R.2    Shim, K.3
  • 3
    • 0042262063 scopus 로고    scopus 로고
    • Visual exploration of large data sets
    • August
    • Keim, D. Visual Exploration of Large Data Sets. Communications of the ACM, August 2001, V. 44. No. 8
    • (2001) Communications of the ACM , vol.44 , Issue.8
    • Keim, D.1
  • 5
    • 0034593062 scopus 로고    scopus 로고
    • Interactive exploration of very large relational datasets through 3D dynamic projections
    • Boston, MA
    • Yang, L. Interactive Exploration of Very Large Relational Datasets through 3D Dynamic Projections, in Proc. of SIGKDD2000, Boston, MA, 2000
    • (2000) Proc. of SIGKDD2000
    • Yang, L.1
  • 6
    • 0035788895 scopus 로고    scopus 로고
    • Multi-dimensional clusters, trends, and outliers using star coordinates
    • San Francisco, CA
    • Kandogan, E. Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates, in Proc. of SIGKDD2001, San Francisco, CA, 2001.
    • (2001) Proc. of SIGKDD2001
    • Visualizing, K.E.1
  • 8
    • 78149308220 scopus 로고    scopus 로고
    • Visual data mining: Background, applications, and drug discovery applications
    • Edmonton, Canada
    • Grinstein, G., Ankerst, M. and Keim, D. Visual Data Mining: Background, Applications, and Drug Discovery Applications, Tutorial at ACM SIGKDD2002, Edmonton, Canada. 2002
    • (2002) Tutorial at ACM SIGKDD2002
    • Grinstein, G.1    Ankerst, M.2    Keim, D.3
  • 10
    • 0000550189 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Bombay, India
    • Ester, M., Kriegel, H., Sander, J. and Xu, X. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, in Proc. of VLDB96, Bombay, India, 1996
    • (1996) Proc. of VLDB96
    • Ester, M.1    Kriegel, H.2    Sander, J.3    Xu, X.4
  • 11
    • 85140527321 scopus 로고    scopus 로고
    • An efficient Approach to clustering in large multimedia databases with noise
    • NYC, NY
    • Hinneburg, A. and Keim, D. An Efficient Approach to Clustering in Large Multimedia Databases with Noise, in Proc. of KDD98, NYC, NY, 1998
    • (1998) Proc. of KDD98
    • Hinneburg, A.1    Keim, D.2
  • 12
    • 84998044282 scopus 로고    scopus 로고
    • Inventing discovery tools: Combinning information visualization with data mining
    • Shneiderman, B. Inventing Discovery Tools: Combinning Information Visualization With Data Mining. Information Visualization, 1, p5-12, 2002
    • (2002) Information Visualization , vol.1 , pp. 5-12
    • Shneiderman, B.1
  • 14
    • 0003052357 scopus 로고    scopus 로고
    • Wavecluster: A multi-resolution clustering approach for very large spatial databases
    • NYC, NY
    • Sheikholeslami, G., Chatterjee, S. and Zhang, A. Wavecluster: A multi-resolution clustering approach for very large spatial databases, In Proc. VLDB98, NYC, NY, 1998
    • (1998) Proc. VLDB98
    • Sheikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 15
    • 0347172110 scopus 로고    scopus 로고
    • Optics: Ordering points to identify the clustering structure
    • Philadelphia, PA
    • Ankerst, M., Breunig, M., Kriegel, H. and Sander, J. OPTICS: Ordering Points To Identify the Clustering Structure. In Proc. of SIGMOD1999, Philadelphia, PA, 1999
    • (1999) Proc. of SIGMOD1999
    • Ankerst, M.1    Breunig, M.2    Kriegel, H.3    Sander, J.4
  • 16
    • 0031701179 scopus 로고    scopus 로고
    • A distribution-based clustering algorithm for mining in large spatial databases
    • Orlando, FL
    • Xu, X., Ester, M., Kriegel, H. and Sander, J. A Distribution-based Clustering Algorithm for Mining in Large Spatial Databases. In Proc. of ICDE98, Orlando, FL, 1998
    • (1998) Proc. of ICDE98
    • Xu, X.1    Ester, M.2    Kriegel, H.3    Sander, J.4
  • 17
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: A hierarchical clustering algorithm using dynamic modelling
    • Karypis, G., Han, E. and Kumar, V. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modelling. IEEE Computer, 32(8), 68-75, 1999
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 19
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • Montreal, Canada
    • Zhang, T., Ramakrishnan, R. and Livny, M. BIRCH: An efficient data clustering method for very large databases, In Proc. of SIGMOD96, 103-114, Montreal, Canada, 1996
    • (1996) Proc. of SIGMOD96 , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.