메뉴 건너뛰기




Volumn 60, Issue , 2017, Pages 83-98

Class imbalance in unsupervised change detection – A diagnostic analysis from urban remote sensing

Author keywords

Change detection; Class imbalance; Clustering; Object based image analysis (OBIA); Urban environment; Very high resolution (VHR) remote sensing

Indexed keywords

ACCURACY ASSESSMENT; ALGORITHM; CLASSIFICATION; DETECTION METHOD; IMAGE ANALYSIS; IMAGE RESOLUTION; REMOTE SENSING; SENSITIVITY ANALYSIS; URBAN AREA;

EID: 85028409107     PISSN: 15698432     EISSN: 1872826X     Source Type: Journal    
DOI: 10.1016/j.jag.2017.04.002     Document Type: Article
Times cited : (36)

References (51)
  • 2
    • 33750525529 scopus 로고    scopus 로고
    • Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
    • Allouche, O., Tsoar, A., Kadmon, R., Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43 (2006), 1223–1232.
    • (2006) J. Appl. Ecol. , vol.43 , pp. 1223-1232
    • Allouche, O.1    Tsoar, A.2    Kadmon, R.3
  • 4
    • 34249812110 scopus 로고    scopus 로고
    • A split-based approach to unsupervised change detection in large-size multitemporal images: application to tsunami-damage assessment
    • Bovolo, F., Bruzzone, L., A split-based approach to unsupervised change detection in large-size multitemporal images: application to tsunami-damage assessment. IEEE Trans. Geosci. Remote Sens. 45 (2007), 1658–1670.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 1658-1670
    • Bovolo, F.1    Bruzzone, L.2
  • 5
    • 84874545870 scopus 로고    scopus 로고
    • A novel framework for the design of change-detection-systems for very-high-resolution remote sensing images
    • Bruzzone, L., Bovolo, F., A novel framework for the design of change-detection-systems for very-high-resolution remote sensing images. Proc. IEEE 101 (2013), 609–630.
    • (2013) Proc. IEEE , vol.101 , pp. 609-630
    • Bruzzone, L.1    Bovolo, F.2
  • 6
    • 0031277930 scopus 로고    scopus 로고
    • Classification of imbalanced remote-sensing data by neural networks
    • Bruzzone, L., Serpico, S.B., Classification of imbalanced remote-sensing data by neural networks. Pattern Recognit. Lett. 18 (1997), 1323–1328.
    • (1997) Pattern Recognit. Lett. , vol.18 , pp. 1323-1328
    • Bruzzone, L.1    Serpico, S.B.2
  • 8
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla, N.V., Japkowicz, N., Kotcz, A., Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6 (2004), 1–6.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 9
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37 (1991), 35–46.
    • (1991) Remote Sens. Environ. , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 11
    • 84866547570 scopus 로고    scopus 로고
    • Remote sensing and earthquake damage assessment: experiences, limits, and perspectives
    • Dell'Acqua, F., Gamba, P., Remote sensing and earthquake damage assessment: experiences, limits, and perspectives. Proc. IEEE 100 (2012), 2876–2890.
    • (2012) Proc. IEEE , vol.100 , pp. 2876-2890
    • Dell'Acqua, F.1    Gamba, P.2
  • 14
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody, G.M., Status of land cover classification accuracy assessment. Remote Sens. Environ. 80 (2002), 185–201.
    • (2002) Remote Sens. Environ. , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 18
    • 84891742167 scopus 로고    scopus 로고
    • Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index
    • Huang, X., Zhang, L., Zhu, T., Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7 (2014), 105–115.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.7 , pp. 105-115
    • Huang, X.1    Zhang, L.2    Zhu, T.3
  • 19
    • 84876726723 scopus 로고    scopus 로고
    • Change detection from remotely sensed images: from pixel-based to object-based approaches
    • Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D., Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 80 (2013), 91–106.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.80 , pp. 91-106
    • Hussain, M.1    Chen, D.2    Cheng, A.3    Wei, H.4    Stanley, D.5
  • 20
    • 0027332773 scopus 로고
    • Stopping rules in principal component analysis: a comparison of heuristical and statistical approaches
    • Jackson, D.A., Stopping rules in principal component analysis: a comparison of heuristical and statistical approaches. Ecology 74 (1993), 2204–2214.
    • (1993) Ecology , vol.74 , pp. 2204-2214
    • Jackson, D.A.1
  • 21
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • Jain, A.K., Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31 (2010), 651–666.
    • (2010) Pattern Recognit. Lett. , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 22
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: a systematic study
    • Japkowicz, N., Stephen, S., The class imbalance problem: a systematic study. Intell. Data Anal. 6 (2002), 429–449.
    • (2002) Intell. Data Anal. , vol.6 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 23
    • 0034825091 scopus 로고    scopus 로고
    • Supervised versus unsupervised binary-Learning by feedforward neural networks
    • Japkowicz, N., Supervised versus unsupervised binary-Learning by feedforward neural networks. Mach. Learn. 42 (2001), 97–122.
    • (2001) Mach. Learn. , vol.42 , pp. 97-122
    • Japkowicz, N.1
  • 25
    • 84961644758 scopus 로고    scopus 로고
    • How good is the map? A multi-scale cross-comparison framework for global settlement layers: evidence from Central Europe
    • Klotz, M., Kemper, T., Geiß C., Esch, T., Taubenböck, H., How good is the map? A multi-scale cross-comparison framework for global settlement layers: evidence from Central Europe. Remote Sens. Environ. 178 (2016), 191–212.
    • (2016) Remote Sens. Environ. , vol.178 , pp. 191-212
    • Klotz, M.1    Kemper, T.2    Geiß, C.3    Esch, T.4    Taubenböck, H.5
  • 26
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., Holte, R.C., Matwin, S., Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30 (1998), 195–215.
    • (1998) Mach. Learn. , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 28
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics
    • López, V., Fernández, A., García, S., Palade, V., Herrera, F., An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250 (2013), 113–141.
    • (2013) Inf. Sci. , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 30
    • 85018196280 scopus 로고    scopus 로고
    • Unsupervised change detection in VHR remote sensing imagery − an object-based clustering approach in a dynamic urban environment
    • Leichtle, T., Geiß C., Wurm, M., Lakes, T., Taubenböck, H., Unsupervised change detection in VHR remote sensing imagery − an object-based clustering approach in a dynamic urban environment. Int. J. Appl. Earth Obs. Geoinf. 54 (2017), 15–27.
    • (2017) Int. J. Appl. Earth Obs. Geoinf. , vol.54 , pp. 15-27
    • Leichtle, T.1    Geiß, C.2    Wurm, M.3    Lakes, T.4    Taubenböck, H.5
  • 32
    • 84896262410 scopus 로고    scopus 로고
    • Current situation and needs of change detection techniques
    • Lu, D., Li, G., Moran, E., Current situation and needs of change detection techniques. Int. J. Image Data Fusion 5 (2014), 13–38.
    • (2014) Int. J. Image Data Fusion , vol.5 , pp. 13-38
    • Lu, D.1    Li, G.2    Moran, E.3
  • 33
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • Maulik, U., Bandyopadhyay, S., Genetic algorithm-based clustering technique. Pattern Recogn. 33 (2000), 1455–1465.
    • (2000) Pattern Recogn. , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 35
    • 19044395321 scopus 로고    scopus 로고
    • How many principal components? Stopping rules for determining the number of non-trivial axes revisited
    • Peres-Neto, P.R., Jackson, D.A., Somers, K.M., How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Statist. Data Anal. 49 (2005), 974–997.
    • (2005) Comput. Statist. Data Anal. , vol.49 , pp. 974-997
    • Peres-Neto, P.R.1    Jackson, D.A.2    Somers, K.M.3
  • 37
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment
    • Pontius, R.G., Millones, M., Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 32 (2011), 4407–4429.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 4407-4429
    • Pontius, R.G.1    Millones, M.2
  • 38
    • 84911440821 scopus 로고    scopus 로고
    • Cyclone damage detection on building structures from pre- and post-satellite images using wavelet based pattern recognition
    • Radhika, S., Tamura, Y., Matsui, M., Cyclone damage detection on building structures from pre- and post-satellite images using wavelet based pattern recognition. J. Wind Eng. Ind. Aerodyn. 136 (2015), 23–33.
    • (2015) J. Wind Eng. Ind. Aerodyn. , vol.136 , pp. 23-33
    • Radhika, S.1    Tamura, Y.2    Matsui, M.3
  • 39
    • 0029667637 scopus 로고    scopus 로고
    • A spatially adaptive fast atmospheric correction algorithm
    • Richter, R., A spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sens. 17 (1996), 1201–1214.
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 1201-1214
    • Richter, R.1
  • 40
    • 0031988679 scopus 로고    scopus 로고
    • A comparison of four algorithms for change detection in an urban environment
    • Ridd, M.K., Liu, J., A comparison of four algorithms for change detection in an urban environment. Remote Sens. Environ. 63 (1998), 95–100.
    • (1998) Remote Sens. Environ. , vol.63 , pp. 95-100
    • Ridd, M.K.1    Liu, J.2
  • 41
    • 0024855524 scopus 로고
    • Review article − digital change detection techniques using remotely-sensed data
    • Singh, A., Review article − digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10 (1989), 989–1003.
    • (1989) Int. J. Remote Sens. , vol.10 , pp. 989-1003
    • Singh, A.1
  • 42
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y., Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 40 (2007), 3358–3378.
    • (2007) Pattern Recogn. , vol.40 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 45
    • 84890425349 scopus 로고    scopus 로고
    • Building change detection based on satellite stereo imagery and digital surface models
    • Tian, J., Cui, S., Reinartz, P., Building change detection based on satellite stereo imagery and digital surface models. IEEE Trans. Geosci. Remote Sens. 52 (2014), 406–417.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 406-417
    • Tian, J.1    Cui, S.2    Reinartz, P.3
  • 46
  • 47
    • 85027926184 scopus 로고    scopus 로고
    • Object-based change detection of very high resolution satellite imagery using the cross-sharpening of multitemporal data
    • Wang, B., Choi, S., Byun, Y., Lee, S., Choi, J., Object-based change detection of very high resolution satellite imagery using the cross-sharpening of multitemporal data. IEEE Geosci. Remote Sens. Lett. 12 (2015), 1151–1155.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , pp. 1151-1155
    • Wang, B.1    Choi, S.2    Byun, Y.3    Lee, S.4    Choi, J.5
  • 49
    • 20844441675 scopus 로고    scopus 로고
    • KBA: kernel boundary alignment considering imbalanced data distribution
    • Wu, G., Chang, E.Y., KBA: kernel boundary alignment considering imbalanced data distribution. IEEE Trans. Knowl. Data Eng. 17 (2005), 786–795.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 50
    • 79957835934 scopus 로고    scopus 로고
    • Object-based image information fusion using multisensor earth observation data over urban areas
    • Wurm, M., Taubenböck, H., Schardt, M., Esch, T., Dech, S., Object-based image information fusion using multisensor earth observation data over urban areas. Int. J. Image Data Fusion 2 (2011), 121–147.
    • (2011) Int. J. Image Data Fusion , vol.2 , pp. 121-147
    • Wurm, M.1    Taubenböck, H.2    Schardt, M.3    Esch, T.4    Dech, S.5
  • 51
    • 78650121315 scopus 로고    scopus 로고
    • Clustering algorithms in biomedical research: a review
    • Xu, R., Wunsch, D.C., Clustering algorithms in biomedical research: a review. IEEE Rev. Biomed. Eng. 3 (2010), 120–154.
    • (2010) IEEE Rev. Biomed. Eng. , vol.3 , pp. 120-154
    • Xu, R.1    Wunsch, D.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.