메뉴 건너뛰기




Volumn 34, Issue 8, 2017, Pages 1947-1959

Mitochondrial recombination and introgression during speciation by hybridization

Author keywords

Mitochondrial recombination; Saccharomyces; Speciation by hybridization

Indexed keywords

ARTIFICIAL HYBRIDIZATION; DIPLOIDY; HUMAN; INTROGRESSION; MITOCHONDRIAL GENOME; NONHUMAN; PHENOTYPIC VARIATION; SACCHAROMYCES PARADOXUS; SPECIES DIFFERENTIATION; CHROMOSOMAL MAPPING; CROSS BREEDING; GENETIC RECOMBINATION; GENETICS; GENOTYPE; HYBRIDIZATION; MITOCHONDRION; PHENOTYPE; SACCHAROMYCES;

EID: 85028404682     PISSN: 07374038     EISSN: 15371719     Source Type: Journal    
DOI: 10.1093/molbev/msx139     Document Type: Article
Times cited : (42)

References (66)
  • 5
    • 32944456059 scopus 로고    scopus 로고
    • Inheritance and recombination of mitochondrial genomes in plants, fungi and animals
    • Barr CM, NeimanM, Taylor DR. 2005. Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol 168:39-50.
    • (2005) New Phytol , vol.168 , pp. 39-50
    • Barr, C.M.1    Neiman, M.2    Taylor, D.R.3
  • 6
    • 84965094276 scopus 로고    scopus 로고
    • Hybrid dysfunction and physiological compensation in gene expression
    • Barreto FS, Pereira RJ, Burton RS. 2015. Hybrid dysfunction and physiological compensation in gene expression. Mol Biol Evol. 32(3): 613-622.
    • (2015) Mol Biol Evol. , vol.32 , Issue.3 , pp. 613-622
    • Barreto, F.S.1    Pereira, R.J.2    Burton, R.S.3
  • 7
    • 84892537638 scopus 로고    scopus 로고
    • Mitochondrial genome rearrangements in Glomus species triggered by homologous recombination between distinct mtDNA haplotypes
    • Beaudet D, Terrat Y, Halary S, de la Providencia IE, Hijri M. 2013. Mitochondrial genome rearrangements in Glomus species triggered by homologous recombination between distinct mtDNA haplotypes. Genome Biol Evol 5:1628-1643.
    • (2013) Genome Biol Evol , vol.5 , pp. 1628-1643
    • Beaudet, D.1    Terrat, Y.2    Halary, S.3    De La Providencia, I.E.4    Hijri, M.5
  • 8
    • 0035671887 scopus 로고    scopus 로고
    • The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models
    • Birky CW Jr. 2001. The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125-148.
    • (2001) Annu Rev Genet , vol.35 , pp. 125-148
    • Birky, C.W.1
  • 10
    • 84946556916 scopus 로고    scopus 로고
    • Atypical mitochondrial inheritance patterns in eukaryotes
    • Breton S, Stewart DT. 2015. Atypical mitochondrial inheritance patterns in eukaryotes. Genome 58:423-431.
    • (2015) Genome , vol.58 , pp. 423-431
    • Breton, S.1    Stewart, D.T.2
  • 11
    • 84867580162 scopus 로고    scopus 로고
    • A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities?
    • Burton RS, Barreto FS. 2012. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities? Mol Ecol 21:4942-4957.
    • (2012) Mol Ecol , vol.21 , pp. 4942-4957
    • Burton, R.S.1    Barreto, F.S.2
  • 13
    • 84906718090 scopus 로고    scopus 로고
    • Chromosomal variation segregates within incipient species and correlates with reproductive isolation
    • Charron G, Leducq JB, Landry CR. 2014. Chromosomal variation segregates within incipient species and correlates with reproductive isolation. Mol Ecol 23:4362-4372.
    • (2014) Mol Ecol , vol.23 , pp. 4362-4372
    • Charron, G.1    Leducq, J.B.2    Landry, C.R.3
  • 14
    • 77955041686 scopus 로고    scopus 로고
    • Multiple molecular mechanisms cause reproductive isolation between three yeast species
    • Chou JY, Hung YS, Lin KH, Lee HY, Leu JY. 2010. Multiple molecular mechanisms cause reproductive isolation between three yeast species. PLoS Biol 8:e1000432.
    • (2010) PLoS Biol , vol.8 , pp. e1000432
    • Chou, J.Y.1    Hung, Y.S.2    Lin, K.H.3    Lee, H.Y.4    Leu, J.Y.5
  • 16
    • 3543051830 scopus 로고    scopus 로고
    • Mauve: Multiple alignment of conserved genomic sequence with rearrangements
    • Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394-1403.
    • (2004) Genome Res , vol.14 , pp. 1394-1403
    • Darling, A.C.1    Mau, B.2    Blattner, F.R.3    Perna, N.T.4
  • 17
    • 0025973498 scopus 로고
    • A rapid miniprep method for the preparation of yeast mitochondrial DNA
    • Defontaine A, Lecocq FM, Hallet JN. 1991. A rapid miniprep method for the preparation of yeast mitochondrial DNA. Nucleic Acids Res 19:185.
    • (1991) Nucleic Acids Res , vol.19 , pp. 185
    • Defontaine, A.1    Lecocq, F.M.2    Hallet, J.N.3
  • 18
    • 84879798118 scopus 로고    scopus 로고
    • A systematic approach for the genetic dissection of protein complexes in living cells
    • Diss G, Dube AK, Boutin J, Gagnon-Arsenault I, Landry CR. 2013. A systematic approach for the genetic dissection of protein complexes in living cells. Cell Rep 3:2155-2167.
    • (2013) Cell Rep , vol.3 , pp. 2155-2167
    • Diss, G.1    Dube, A.K.2    Boutin, J.3    Gagnon-Arsenault, I.4    Landry, C.R.5
  • 19
    • 21244479740 scopus 로고    scopus 로고
    • Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study
    • Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol 14:2611-2620.
    • (2005) Mol Ecol , vol.14 , pp. 2611-2620
    • Evanno, G.1    Regnaut, S.2    Goudet, J.3
  • 20
    • 0041817568 scopus 로고    scopus 로고
    • Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies
    • Falush D, Stephens M, Pritchard JK. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567-1587.
    • (2003) Genetics , vol.164 , pp. 1567-1587
    • Falush, D.1    Stephens, M.2    Pritchard, J.K.3
  • 21
    • 0032426882 scopus 로고    scopus 로고
    • The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae
    • Foury F, Roganti T, Lecrenier N, Purnelle B. 1998. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325-331.
    • (1998) FEBS Lett , vol.440 , pp. 325-331
    • Foury, F.1    Roganti, T.2    Lecrenier, N.3    Purnelle, B.4
  • 22
    • 84949212613 scopus 로고    scopus 로고
    • Mitochondrial genome evolution in yeasts: An all-encompassing view
    • Freel KC, Friedrich A, Schacherer J. 2015. Mitochondrial genome evolution in yeasts: an all-encompassing view. FEMS Yeast Res 15:fov023.
    • (2015) FEMS Yeast Res , vol.15 , pp. fov023
    • Freel, K.C.1    Friedrich, A.2    Schacherer, J.3
  • 23
    • 84908037385 scopus 로고    scopus 로고
    • A genome-wide map of mitochondrial DNA recombination in yeast
    • Fritsch ES, Chabbert CD, Klaus B, Steinmetz LM. 2014. A genome-wide map of mitochondrial DNA recombination in yeast. Genetics 198:755-771.
    • (2014) Genetics , vol.198 , pp. 755-771
    • Fritsch, E.S.1    Chabbert, C.D.2    Klaus, B.3    Steinmetz, L.M.4
  • 25
    • 84876783002 scopus 로고    scopus 로고
    • Saccharomyces diversity and evolution: A budding model genus
    • Hittinger CT. 2013. Saccharomyces diversity and evolution: A budding model genus. Trends Genet: TIG 29:309-317.
    • (2013) Trends Genet: TIG , vol.29 , pp. 309-317
    • Hittinger, C.T.1
  • 26
    • 84930227166 scopus 로고    scopus 로고
    • Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast
    • Hou J, Friedrich A, Gounot JS, Schacherer J. 2015. Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast. Nat Commun 6:7214.
    • (2015) Nat Commun , vol.6 , pp. 7214
    • Hou, J.1    Friedrich, A.2    Gounot, J.S.3    Schacherer, J.4
  • 27
    • 30744470609 scopus 로고    scopus 로고
    • Application of phylogenetic networks in evolutionary studies
    • Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies.Mol Biol Evol 23:254-267.
    • (2006) Mol Biol Evol , vol.23 , pp. 254-267
    • Huson, D.H.1    Bryant, D.2
  • 28
    • 33645129727 scopus 로고    scopus 로고
    • Mitochondrial genome recombination in the zone of contact between two hybridizing conifers
    • Jaramillo-Correa JP, Bousquet J. 2005. Mitochondrial genome recombination in the zone of contact between two hybridizing conifers. Genetics 171:1951-1962.
    • (2005) Genetics , vol.171 , pp. 1951-1962
    • Jaramillo-Correa, J.P.1    Bousquet, J.2
  • 29
    • 85008178627 scopus 로고    scopus 로고
    • Mitochondrial-nuclear co-evolution leads to hybrid incompatibility through pentatricopeptide repeat proteins
    • Jhuang HY, Lee HY, Leu JY. 2017. Mitochondrial-nuclear co-evolution leads to hybrid incompatibility through pentatricopeptide repeat proteins. EMBO Rep 18:87-101.
    • (2017) EMBO Rep , vol.18 , pp. 87-101
    • Jhuang, H.Y.1    Lee, H.Y.2    Leu, J.Y.3
  • 33
    • 0037328959 scopus 로고    scopus 로고
    • Paternal leakage of mitochondrial DNA in the great tit (Parus major)
    • Kvist L, Martens J, Nazarenko AA, Orell M. 2003. Paternal leakage of mitochondrial DNA in the great tit (Parus major). Mol Biol Evol 20:243-247.
    • (2003) Mol Biol Evol , vol.20 , pp. 243-247
    • Kvist, L.1    Martens, J.2    Nazarenko, A.A.3    Orell, M.4
  • 34
    • 33644745112 scopus 로고    scopus 로고
    • Ecological and evolutionary genomics of Saccharomyces cerevisiae
    • Landry CR, Townsend JP, Hartl DL, Cavalieri D. 2006. Ecological and evolutionary genomics of Saccharomyces cerevisiae. Mol Ecol 15:575-591.
    • (2006) Mol Ecol , vol.15 , pp. 575-591
    • Landry, C.R.1    Townsend, J.P.2    Hartl, D.L.3    Cavalieri, D.4
  • 35
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357-359.
    • (2012) Nat Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 39
    • 57149133795 scopus 로고    scopus 로고
    • Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species
    • Lee HY, Chou JY, Cheong L, Chang NH, Yang SY, Leu JY. 2008. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135:1065-1073.
    • (2008) Cell , vol.135 , pp. 1065-1073
    • Lee, H.Y.1    Chou, J.Y.2    Cheong, L.3    Chang, N.H.4    Yang, S.Y.5    Leu, J.Y.6
  • 40
    • 84976260685 scopus 로고    scopus 로고
    • Selfish drive can trump function when animal mitochondrial genomes compete
    • Ma H, O'Farrell PH. 2016. Selfish drive can trump function when animal mitochondrial genomes compete. Nat Genet 48:798-802.
    • (2016) Nat Genet , vol.48 , pp. 798-802
    • Ma, H.1    O'Farrell, P.H.2
  • 41
    • 80052795422 scopus 로고    scopus 로고
    • Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast
    • McFaline-Figueroa JR, Vevea J, Swayne TC, Zhou C, Liu C, Leung G, Boldogh IR, Pon LA. 2011. Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10:885-895.
    • (2011) Aging Cell , vol.10 , pp. 885-895
    • McFaline-Figueroa, J.R.1    Vevea, J.2    Swayne, T.C.3    Zhou, C.4    Liu, C.5    Leung, G.6    Boldogh, I.R.7    Pon, L.A.8
  • 42
    • 85028375919 scopus 로고    scopus 로고
    • Mitochondrialnuclear interactions mediate sex-specific transcriptional profiles in Drosophila
    • Mossman JA, Tross JG, Li N, Wu Z, Rand DM. 2016. Mitochondrialnuclear interactions mediate sex-specific transcriptional profiles in Drosophila. Genetics 116:192328.
    • (2016) Genetics , vol.116 , pp. 192328
    • Mossman, J.A.1    Tross, J.G.2    Li, N.3    Wu, Z.4    Rand, D.M.5
  • 44
    • 84960131150 scopus 로고    scopus 로고
    • Next-generation sequencing analysis of lager brewing yeast strains reveals the evolutionary history of interspecies hybridization
    • OkunoM, Kajitani R., Ryusui R.,Morimoto H., Kodama Y., & Itoh T. 2016. Next-generation sequencing analysis of lager brewing yeast strains reveals the evolutionary history of interspecies hybridization. DNA Res 23 (1): 67-80.
    • (2016) DNA Res , vol.23 , Issue.1 , pp. 67-80
    • Okuno, M.1    Kajitani, R.2    Ryusui, R.3    Morimoto, H.4    Kodama, Y.5    Itoh, T.6
  • 45
    • 84908632089 scopus 로고    scopus 로고
    • Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae
    • Paliwal S, Fiumera AC, Fiumera HL. 2014.Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae. Genetics 198:1251-1265.
    • (2014) Genetics , vol.198 , pp. 1251-1265
    • Paliwal, S.1    Fiumera, A.C.2    Fiumera, H.L.3
  • 46
    • 84861760530 scopus 로고    scopus 로고
    • IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth
    • Peng Y, Leung HC, Yiu S-M, Chin FY. 2012. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420-1428.
    • (2012) Bioinformatics , vol.28 , pp. 1420-1428
    • Peng, Y.1    Leung, H.C.2    Yiu, S.-M.3    Chin, F.Y.4
  • 47
    • 85012237690 scopus 로고    scopus 로고
    • Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species
    • Peris D, Arias A, Orlic S, Belloch C, Perez-Traves L, Querol A, Barrio E. 2017. Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species. Mol Phylo Evol. 108:49-60.
    • (2017) Mol Phylo Evol. , vol.108 , pp. 49-60
    • Peris, D.1    Arias, A.2    Orlic, S.3    Belloch, C.4    Perez-Traves, L.5    Querol, A.6    Barrio, E.7
  • 49
    • 0344110477 scopus 로고    scopus 로고
    • Structure and genetic stability of mitochondrial genomes vary among yeasts of the genus Saccharomyces
    • Piskur J, Smole S, Groth C, Petersen RF, PedersenMB. 1998. Structure and genetic stability of mitochondrial genomes vary among yeasts of the genus Saccharomyces. Int J Syst Bacteriol 48 (Pt 3): 1015-1024.
    • (1998) Int J Syst Bacteriol , vol.48 , pp. 1015-1024
    • Piskur, J.1    Smole, S.2    Groth, C.3    Petersen, R.F.4    Pedersen, M.B.5
  • 50
    • 84867635997 scopus 로고    scopus 로고
    • A complete sequence of Saccharomyces paradoxus mitochondrial genome that restores the respiration in S. Cerevisiae
    • Prochazka E, Franko F, Polakova S, Sulo P. 2012. A complete sequence of Saccharomyces paradoxus mitochondrial genome that restores the respiration in S. cerevisiae. FEMS Yeast Res 12:819-830.
    • (2012) FEMS Yeast Res , vol.12 , pp. 819-830
    • Prochazka, E.1    Franko, F.2    Polakova, S.3    Sulo, P.4
  • 51
    • 61449235344 scopus 로고    scopus 로고
    • The complex and dynamic genomes of industrial yeasts
    • Querol A, Bond U. 2009. The complex and dynamic genomes of industrial yeasts. FEMS Microbiol Lett 293:1-10.
    • (2009) FEMS Microbiol Lett , vol.293 , pp. 1-10
    • Querol, A.1    Bond, U.2
  • 52
    • 79961135005 scopus 로고    scopus 로고
    • R-Development-Core-Team. R Foundation for Statistical Computing. Vienna, Austria
    • R-Development-Core-Team. 2011. R: A language and environment for statistical computing. In: R Foundation for Statistical Computing. Vienna, Austria, 2013. http://www.R-project.org, ISBN 3-900051-07-0.
    • (2011) R: A Language and Environment for Statistical Computing
  • 54
    • 0042666852 scopus 로고    scopus 로고
    • Animal mitochondrial DNA recombination revisited
    • Rokas A, Ladoukakis E, Zouros E. 2003. Animal mitochondrial DNA recombination revisited. Trends Ecol Evol 18:411-417.
    • (2003) Trends Ecol Evol , vol.18 , pp. 411-417
    • Rokas, A.1    Ladoukakis, E.2    Zouros, E.3
  • 55
    • 84901694853 scopus 로고    scopus 로고
    • How common is homoploid hybrid speciation?
    • Schumer M, Rosenthal GG, Andolfatto P. 2014. How common is homoploid hybrid speciation? Evolution 68:1553-1560.
    • (2014) Evolution , vol.68 , pp. 1553-1560
    • Schumer, M.1    Rosenthal, G.G.2    Andolfatto, P.3
  • 57
    • 0036224204 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics
    • Sniegowski PD, Dombrowski PG, Fingerman E. 2002. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res 1:299-306.
    • (2002) FEMS Yeast Res , vol.1 , pp. 299-306
    • Sniegowski, P.D.1    Dombrowski, P.G.2    Fingerman, E.3
  • 58
    • 79957613599 scopus 로고    scopus 로고
    • MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
    • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739.
    • (2011) Mol Biol Evol , vol.28 , pp. 2731-2739
    • Tamura, K.1    Peterson, D.2    Peterson, N.3    Stecher, G.4    Nei, M.5    Kumar, S.6
  • 61
    • 84861627523 scopus 로고    scopus 로고
    • Mitochondrial inheritance: Diverse patterns and mechanisms with an emphasis on fungi
    • Wilson AJ, Xu J. 2012. Mitochondrial inheritance: diverse patterns and mechanisms with an emphasis on fungi. Mycology 3:158-166.
    • (2012) Mycology , vol.3 , pp. 158-166
    • Wilson, A.J.1    Xu, J.2
  • 62
    • 84934934130 scopus 로고    scopus 로고
    • Population structure of mitochondrial genomes in Saccharomyces cerevisiae
    • Wolters JF, Chiu K, Fiumera HL. 2015. Population structure of mitochondrial genomes in Saccharomyces cerevisiae. BMC Genomics 16:451.
    • (2015) BMC Genomics , vol.16 , pp. 451
    • Wolters, J.F.1    Chiu, K.2    Fiumera, H.L.3
  • 63
    • 84930860570 scopus 로고    scopus 로고
    • A dynamic mobile DNA family in the yeast mitochondrial genome
    • Wu B, Hao W. 2015. A dynamic mobile DNA family in the yeast mitochondrial genome. G3: Genesj Genomesj Genetics 5:1273-1282.
    • (2015) G3: Genesj Genomesj Genetics , vol.5 , pp. 1273-1282
    • Wu, B.1    Hao, W.2
  • 64
    • 84946550164 scopus 로고    scopus 로고
    • Mitochondrial inheritance in basidiomycete fungi
    • Xu J, Wang P. 2015. Mitochondrial inheritance in basidiomycete fungi. Fungal Biol Rev 29:209-219.
    • (2015) Fungal Biol Rev , vol.29 , pp. 209-219
    • Xu, J.1    Wang, P.2
  • 65
    • 66749180028 scopus 로고    scopus 로고
    • Divergence, hybridization, and recombination in the mitochondrial genome of the human pathogenic yeast Cryptococcus gattii
    • Xu J, Yan Z, Guo H. 2009.Divergence, hybridization, and recombination in the mitochondrial genome of the human pathogenic yeast Cryptococcus gattii. Mol Ecol 18:2628-2642.
    • (2009) Mol Ecol , vol.18 , pp. 2628-2642
    • Xu, J.1    Yan, Z.2    Guo, H.3
  • 66
    • 84901645732 scopus 로고    scopus 로고
    • GxGxE for lifespan in Drosophila: Mitochondrial, nuclear, and dietary interactions that modify longevity
    • Zhu CT, Ingelmo P, Rand DM. 2014. GxGxE for lifespan in Drosophila: mitochondrial, nuclear, and dietary interactions that modify longevity. PLoS Genet 10:e1004354.
    • (2014) PLoS Genet , vol.10 , pp. e1004354
    • Zhu, C.T.1    Ingelmo, P.2    Rand, D.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.