메뉴 건너뛰기




Volumn 26, Issue 3, 2015, Pages 458-471

Dimension selective self-organizing maps with time-varying structure for subspace and projected clustering

Author keywords

High dimensional data; local receptive field; relevance learning; self organizing maps (SOMs); subspace clustering.

Indexed keywords

CONFORMAL MAPPING; SELF ORGANIZING MAPS;

EID: 85027943614     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2315571     Document Type: Article
Times cited : (30)

References (33)
  • 1
    • 77949600442 scopus 로고    scopus 로고
    • A Wordsets based document clustering algorithm for large datasets
    • A. Sharma and R. Dhir, "A Wordsets based document clustering algorithm for large datasets," in Proc. Int. Conf. Methods Models Comput. Sci., 2009, pp. 1-7.
    • (2009) Proc. Int. Conf. Methods Models Comput. Sci. , pp. 1-7
    • Sharma, A.1    Dhir, R.2
  • 2
    • 38949093567 scopus 로고    scopus 로고
    • Automated SNP genotype clustering algorithm to improve data completeness in high-throughput SNP genotyping datasets from custom arrays
    • Dec.
    • E. M. Smith, J. Littrell, and M. Olivier, "Automated SNP genotype clustering algorithm to improve data completeness in high-throughput SNP genotyping datasets from custom arrays," Genomics Proteomics Bioinf., vol. 5, nos. 3-4, pp. 256-259, Dec. 2007.
    • (2007) Genomics Proteomics Bioinf. , vol.5 , Issue.3-4 , pp. 256-259
    • Smith, E.M.1    Littrell, J.2    Olivier, M.3
  • 3
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu, "Subspace clustering for high dimensional data: A review," ACM SIGKDD Explorations Newslett., vol. 6, no. 1, pp. 90-105, 2004.
    • (2004) ACM SIGKDD Explorations Newslett. , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 4
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Mar.
    • H.-P. Kriegel, P. Kröger, and A. Zimek, "Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering," ACM Trans. Knowl. Discovery Data, vol. 3, no. 1, pp. 1-58, Mar. 2009.
    • (2009) ACM Trans. Knowl. Discovery Data , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 5
    • 85032760331 scopus 로고    scopus 로고
    • Subspace clustering
    • Mar.
    • R. Vidal, "Subspace clustering," IEEE Trans. Signal Process. Magn., vol. 28, no. 2, pp. 52-68, Mar. 2011.
    • (2011) IEEE Trans. Signal Process. Magn. , vol.28 , Issue.2 , pp. 52-68
    • Vidal, R.1
  • 6
    • 84865086621 scopus 로고    scopus 로고
    • Dimension selective self-organizing maps for clustering high dimensional data
    • Brisbane, CA, USA Aug.
    • H. F. Bassani and A. F. R. Araujo, "Dimension selective self-organizing maps for clustering high dimensional data," in Proc. IEEE Int. Joint Conf. Neural Netw., Brisbane, CA, USA, Aug. 2012, pp. 1-8.
    • (2012) Proc. IEEE Int. Joint Conf. Neural Netw. , pp. 1-8
    • Bassani, H.F.1    Araujo, A.F.R.2
  • 11
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: A survey
    • Nov.
    • D. Jiang, C. Tang, and A. Zhang, "Cluster analysis for gene expression data: A survey," IEEE Trans. Knowl. Data Eng., vol. 16, no. 11, pp. 1370-1386, Nov. 2004.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.11 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 12
    • 85028134143 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Electr. Electron. Eng., Nanyang Technol. Univ., Singapore
    • K. S. H. Sim, "Enhanced subspace clustering," Ph.D. dissertation, Dept. Electr. Electron. Eng., Nanyang Technol. Univ., Singapore, 2012.
    • (2012) Enhanced Subspace Clustering
    • Sim, K.S.H.1
  • 13
    • 84973857317 scopus 로고
    • Art 2: Self-organization of stable category recognition codes for analog input patterns
    • Dec.
    • G. A. Carpenter and S. Grossberg, "Art 2: Self-organization of stable category recognition codes for analog input patterns," Appl. Opt., vol. 26, no. 23, pp. 4919-4930, Dec. 1987.
    • (1987) Appl. Opt. , vol.26 , Issue.23 , pp. 4919-4930
    • Carpenter, G.A.1    Grossberg, S.2
  • 14
    • 0036120047 scopus 로고    scopus 로고
    • Projective art for clustering data sets in high dimensional spaces
    • Y. Cao and J. Wu, "Projective art for clustering data sets in high dimensional spaces," Neural Netw., vol. 15, no. 1, pp. 105-120, 2002.
    • (2002) Neural Netw. , vol.15 , Issue.1 , pp. 105-120
    • Cao, Y.1    Wu, J.2
  • 15
    • 0025489075 scopus 로고
    • The self-organizing map
    • Sep.
    • T. Kohonen, "The self-organizing map," Proc. IEEE, vol. 78, no. 9, pp. 1464-1480, Sep. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 17
    • 84893588453 scopus 로고    scopus 로고
    • Learning vector quantization with local adaptive weighting for relevance determination in genome-wide association studies
    • Dallas, TX, USA Aug.
    • F. R. B. Araujo, H. F. Bassani, and A. F. R. Araujo, "Learning vector quantization with local adaptive weighting for relevance determination in genome-wide association studies," in Proc. IEEE Int. Joint Conf. Neural Netw., Dallas, TX, USA, Aug. 2013, pp. 1-8.
    • (2013) Proc. IEEE Int. Joint Conf. Neural Netw. , pp. 1-8
    • Araujo, F.R.B.1    Bassani, H.F.2    Araujo, A.F.R.3
  • 18
    • 84887421516 scopus 로고    scopus 로고
    • Self-organizing maps with a time varying structure
    • Jul.
    • A. F. Araujo and R. L. Rego, "Self-organizing maps with a time varying structure," ACM Comput. Surv., vol. 46, no. 1, pp. 7:1-7:38, Jul. 2013.
    • (2013) ACM Comput. Surv. , vol.46 , Issue.1 , pp. 71-738
    • Araujo, A.F.1    Rego, R.L.2
  • 19
    • 67349092431 scopus 로고    scopus 로고
    • Local adaptive receptive field selforganizing map for image color segmentation
    • A. F. R. Araujo and D. C. Costa, "Local adaptive receptive field selforganizing map for image color segmentation," Image Vis. Comput., vol. 27, no. 9, pp. 1229-1239, 2009.
    • (2009) Image Vis. Comput. , vol.27 , Issue.9 , pp. 1229-1239
    • Araujo, A.F.R.1    Costa, D.C.2
  • 22
    • 20844440247 scopus 로고    scopus 로고
    • Frequent-pattern based iterative projected clustering
    • M. L. Yiu and N. Mamoulis, "Frequent-pattern based iterative projected clustering," in Proc. IEEE Int. Conf. Data Mining, 2004, pp. 689-692.
    • (2004) Proc. IEEE Int. Conf. Data Mining , pp. 689-692
    • Yiu, M.L.1    Mamoulis, N.2
  • 23
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
    • G. Moise and J. Sander, "Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering," in Proc. ACM Int. Conf. Knowl. Discovery Data Mining, 2008, pp. 533-541.
    • (2008) Proc. ACM Int. Conf. Knowl. Discovery Data Mining , pp. 533-541
    • Moise, G.1    Sander, J.2
  • 24
    • 71949123741 scopus 로고    scopus 로고
    • Subspace and projected clustering: Experimental evaluation and analysis
    • G. Moise, A. Zimek, P. Kröger, H.-P. Kriegel, and J. Sander, "Subspace and projected clustering: Experimental evaluation and analysis," Knowl. Inf. Syst., vol. 21, no. 3, pp. 299-326, 2009.
    • (2009) Knowl. Inf. Syst. , vol.21 , Issue.3 , pp. 299-326
    • Moise, G.1    Zimek, A.2    Kröger, P.3    Kriegel, H.-P.4    Sander, J.5
  • 25
    • 30144438432 scopus 로고    scopus 로고
    • Generalized principal component analysis (GPCA)
    • Dec.
    • R. Vidal, Y. Ma, and S. Sastry, "Generalized principal component analysis (GPCA)," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 12, pp. 1-15, Dec. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.12 , pp. 1-15
    • Vidal, R.1    Ma, Y.2    Sastry, S.3
  • 27
    • 40649124522 scopus 로고    scopus 로고
    • PARTCAT: A subspace clustering algorithm for high dimensional categorical data
    • Jul.
    • G. Gan, J. Wu, and Z. Yang, "PARTCAT: A subspace clustering algorithm for high dimensional categorical data," in Proc. Int. Joint Conf. Neural Netw., Jul. 2006, pp. 4406-4412.
    • (2006) Proc. Int. Joint Conf. Neural Netw. , pp. 4406-4412
    • Gan, G.1    Wu, J.2    Yang, Z.3
  • 28
    • 67049137962 scopus 로고    scopus 로고
    • INSCY: Indexing subspace clusters with in-process-removal of redundancy
    • Dec.
    • I. Assent, R. Krieger, E. Müller, and T. Seidl, "INSCY: Indexing subspace clusters with in-process-removal of redundancy," in Proc. IEEE Int. Conf. Data Mining, Dec. 2008, pp. 719-724.
    • (2008) Proc. IEEE Int. Conf. Data Mining , pp. 719-724
    • Assent, I.1    Krieger, R.2    Müller, E.3    Seidl, T.4
  • 32
    • 15844394066 scopus 로고    scopus 로고
    • A comparison of uncertainty and sensitivity analysis results obtained with random and latin hypercube sampling
    • J. Helton, F. Davis, and J. Johnson, "A comparison of uncertainty and sensitivity analysis results obtained with random and latin hypercube sampling," Rel. Eng., Syst. Safety, vol. 89, no. 3, pp. 305-330, 2005.
    • (2005) Rel. Eng., Syst. Safety , vol.89 , Issue.3 , pp. 305-330
    • Helton, J.1    Davis, F.2    Johnson, J.3
  • 33
    • 33746622162 scopus 로고    scopus 로고
    • Comparing subspace clusterings
    • Jul.
    • A. Patrikainen and M. Meila, "Comparing subspace clusterings," IEEE Trans. Knowl. Data Eng., vol. 18, no. 7, pp. 902-916, Jul. 2006.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.7 , pp. 902-916
    • Patrikainen, A.1    Meila, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.