메뉴 건너뛰기




Volumn , Issue , 2012, Pages

Dimension Selective Self-Organizing Maps for clustering high dimensional data

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; HIGH DIMENSIONAL DATA; HIGH DIMENSIONAL DATASETS; PROJECTED CLUSTERING; SELF ORGANIZING PROCESS; TRADITIONAL CLUSTERING;

EID: 84865086621     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2012.6252416     Document Type: Conference Paper
Times cited : (11)

References (30)
  • 1
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu, "Subspace clustering for high dimensional data: a review," ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 90-105, 2004.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 2
    • 85032760331 scopus 로고    scopus 로고
    • Subspace clustering
    • march
    • R. Vidal, "Subspace clustering," Signal Processing Magazine, IEEE, vol. 28, no. 2, pp. 52 -68, march 2011.
    • (2011) Signal Processing Magazine, IEEE , vol.28 , Issue.2 , pp. 52-68
    • Vidal, R.1
  • 3
    • 20844440247 scopus 로고    scopus 로고
    • Frequent-pattern based iterative projected clustering
    • M. L. Yiu and N. Mamoulis, "Frequent-pattern based iterative projected clustering," in ICDM, 2004, pp. 689-692.
    • (2004) ICDM , pp. 689-692
    • Yiu, M.L.1    Mamoulis, N.2
  • 4
    • 41949137770 scopus 로고    scopus 로고
    • Unsupervised segmentation of natural images via lossy data compression
    • A. Y. Yang, J. Wright, S. Sastry, and Y. Ma, "Unsupervised segmentation of natural images via lossy data compression," Computer Vision and Image Understand, vol. 110, p. 212-225, 2008.
    • (2008) Computer Vision and Image Understand , vol.110 , pp. 212-225
    • Yang, A.Y.1    Wright, J.2    Sastry, S.3    Ma, Y.4
  • 5
    • 42549164992 scopus 로고    scopus 로고
    • Multiframe motion segmentation with missing data using powerfactorization and gpca
    • R. Vidal, R. Tron, and R. Hartley, "Multiframe motion segmentation with missing data using powerfactorization and gpca," International Journal of Computer Vision, vol. 79, pp. 85-105, 2008.
    • (2008) International Journal of Computer Vision , vol.79 , pp. 85-105
    • Vidal, R.1    Tron, R.2    Hartley, R.3
  • 6
    • 1542329224 scopus 로고    scopus 로고
    • An algebraic geometric approach to the identification of a class of linear hybrid systems
    • R. Vidal, S. Soatto, Y. Ma, and S. Sastry, "An algebraic geometric approach to the identification of a class of linear hybrid systems," in IEEE Conference on Decision and Control, 2003, pp. 167-172.
    • (2003) IEEE Conference on Decision and Control , pp. 167-172
    • Vidal, R.1    Soatto, S.2    Ma, Y.3    Sastry, S.4
  • 7
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Aggarwal, J. Gehrke, D. Gunopulos, and P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications," in In SIGMOD, 1998, pp. 94-105.
    • (1998) SIGMOD , pp. 94-105
    • Aggarwal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 9
    • 0036361164 scopus 로고    scopus 로고
    • A monte carlo algorithm for fast projective clustering
    • C. E. A. Procopiuc, "A monte carlo algorithm for fast projective clustering," in SIGMOD, 2002, pp. 418-427.
    • (2002) SIGMOD , pp. 418-427
    • Procopiuc, C.E.A.1
  • 10
    • 19544389465 scopus 로고    scopus 로고
    • Schism: A new approach for interesting subspace mining
    • K. Sequeira and M. Zaki, "Schism: A new approach for interesting subspace mining," in ICDM, 2004, pp. 186-193.
    • (2004) ICDM , pp. 186-193
    • Sequeira, K.1    Zaki, M.2
  • 11
    • 2942588997 scopus 로고    scopus 로고
    • Density-connected subspace clustering for high-dimensional data
    • K. Kailing, H. P. Kriegel, and P. Kroger, "Density-connected subspace clustering for high-dimensional data," in SDM, 2004, pp. 246-257.
    • (2004) SDM , pp. 246-257
    • Kailing, K.1    Kriegel, H.P.2    Kroger, P.3
  • 12
    • 34547251368 scopus 로고    scopus 로고
    • A generic framework for efficient subspace clustering of high-dimensional data
    • H. P. Kriegel, P. Kroger, M. Renz, and S. Wurst, "A generic framework for efficient subspace clustering of high-dimensional data," in ICDM, 2005, pp. 250-257.
    • (2005) ICDM , pp. 250-257
    • Kriegel, H.P.1    Kroger, P.2    Renz, M.3    Wurst, S.4
  • 13
    • 57849131064 scopus 로고    scopus 로고
    • P3c: A robust projected clustering algorithm
    • G. Moise, J. Sander, and M. Ester, "P3c: A robust projected clustering algorithm," in ICDM, 2006, pp. 414-425.
    • (2006) ICDM , pp. 414-425
    • Moise, G.1    Sander, J.2    Ester, M.3
  • 15
    • 67049137962 scopus 로고    scopus 로고
    • INSCY: Indexing subspace clusters with in-process-removal of redundancy
    • I. Assent, R. Krieger, E. Müller, and T. Seidl, "INSCY: Indexing subspace clusters with in-process-removal of redundancy," in ICDM, 2008, pp. 719-724.
    • (2008) ICDM , pp. 719-724
    • Assent, I.1    Krieger, R.2    Müller, E.3    Seidl, T.4
  • 16
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
    • G. Moise and J. Sander, "Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering," in KDD, 2008, pp. 533-541.
    • (2008) KDD , pp. 533-541
    • Moise, G.1    Sander, J.2
  • 17
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol. 78, no. 9, pp. 1464-1480, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 19
    • 0025235219 scopus 로고
    • Art-3 - Hierarchical search using chemical transmitters in self-organizing pattern-recognition architectures
    • G. A. Carpenter and S. Grossberg, "Art-3 - hierarchical search using chemical transmitters in self-organizing pattern-recognition architectures," Neural Networks, vol. 3, no. 2, pp. 129-152, 1990.
    • (1990) Neural Networks , vol.3 , Issue.2 , pp. 129-152
    • Carpenter, G.A.1    Grossberg, S.2
  • 20
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • A. K. Jain, M. N. Murty, and P. J. Flynn, "Data clustering: A review," Computing, vol. 31, no. 3, 1999.
    • (1999) Computing , vol.31 , Issue.3
    • Jain, A.K.1    Murty, M.N.2    Flynn, P.J.3
  • 22
    • 0036120047 scopus 로고    scopus 로고
    • Projective art for clustering data sets in high dimensional spaces
    • Y. Cao and J. Wu, "Projective art for clustering data sets in high dimensional spaces," Neural Networks, vol. 15, pp. 105-120, 2002.
    • (2002) Neural Networks , vol.15 , pp. 105-120
    • Cao, Y.1    Wu, J.2
  • 25
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • B. Hammer, M. Strickert, and T. Villmann, "Supervised neural gas with general similarity measure," NEURAL PROCESSING LETTERS, vol. 21, no. 1, pp. 21-44, 2005.
    • (2005) Neural Processing Letters , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 27
    • 0028748949 scopus 로고
    • Growing cell structures-a self-organizing network for unsupervised and supervised learning
    • B. Fritzke, "Growing cell structures-a self-organizing network for unsupervised and supervised learning," Neural Networks, vol. 7, no. 9, pp. 1441-1460, 1994.
    • (1994) Neural Networks , vol.7 , Issue.9 , pp. 1441-1460
    • Fritzke, B.1
  • 29
    • 0036789790 scopus 로고    scopus 로고
    • A self-organising network that grows when required
    • S. Marsland, J. Shapiro, and U. Nehmzow, "A self-organising network that grows when required," Neural Networks, vol. 15, no. 8-9, pp. 1041-1058, 2002.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1041-1058
    • Marsland, S.1    Shapiro, J.2    Nehmzow, U.3
  • 30
    • 67349092431 scopus 로고    scopus 로고
    • Local adaptive receptive field self-organizing map for image color segmentation
    • A. F. R. Aráujo and D. C. Costa, "Local adaptive receptive field self-organizing map for image color segmentation," Image and Vision Computing, vol. 27, no. 9, pp. 1229-1239, 2009.
    • (2009) Image and Vision Computing , vol.27 , Issue.9 , pp. 1229-1239
    • Aráujo, A.F.R.1    Costa, D.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.