메뉴 건너뛰기




Volumn 46, Issue 1, 2013, Pages

Self-organizing maps with a time-varying structure

Author keywords

Neural networks; Self organizing maps; Unsupervised learning

Indexed keywords

CONFORMAL MAPPING; SELF ORGANIZING MAPS; TIME VARYING NETWORKS;

EID: 84887421516     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2522968.2522975     Document Type: Article
Times cited : (29)

References (65)
  • 5
    • 67349092431 scopus 로고    scopus 로고
    • Local adaptive receptive field self-organizing map for image color segmentation
    • ARAUJO, A. F. R. AND COSTA, D. C. 2009. Local adaptive receptive field self-organizing map for image color segmentation. Image Vis. Comput. 27, 9, 1229-1239.
    • (2009) Image Vis. Comput , vol.27 , Issue.9 , pp. 1229-1239
    • Araujo, A.F.R.1    Costa, D.C.2
  • 6
    • 33749245262 scopus 로고    scopus 로고
    • Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas
    • ATSALAKIS, A. AND PAPAMARKOS, N. 2006. Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas. Engin. Appl. Artif. Intell. 19, 7, 769-786.
    • (2006) Engin. Appl. Artif. Intell , vol.19 , Issue.7 , pp. 769-786
    • Atsalakis, A.1    Papamarkos, N.2
  • 7
    • 0346342550 scopus 로고    scopus 로고
    • A topological reinforcement learning agent for navigation
    • BRAGA, A. P. AND ARAUJO, A. F. 2003. A topological reinforcement learning agent for navigation. Neural Comput. Appl. 12, 220-236.
    • (2003) Neural Comput. Appl , vol.12 , pp. 220-236
    • Braga, A.P.1    Araujo, A.F.2
  • 10
    • 13844299255 scopus 로고    scopus 로고
    • New adaptive color quantization method based on self-organizing maps
    • CHANG, C.-H., XU, P., XIAO, R., AND SRIKANTHAN, T. 2005. New adaptive color quantization method based on self-organizing maps. IEEE Trans. Neural Netw. 16, 1, 237-249.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 237-249
    • Chang, C.-H.1    Xu, P.2    Xiao, R.3    Srikanthan, T.4
  • 12
    • 0035531693 scopus 로고    scopus 로고
    • Externally growing cell structures for data evaluation of chemical gas Sensors
    • CHENG, G. AND ZELL, A. 2001. Externally growing cell structures for data evaluation of chemical gas Sensors. Neural Comput. Appl. 10, 1, 89-97.
    • (2001) Neural Comput. Appl , vol.10 , Issue.1 , pp. 89-97
    • Cheng, G.1    Zell, A.2
  • 14
    • 70350712150 scopus 로고    scopus 로고
    • A som-based approach to estimating product properties from spectroscopic measurements
    • CORONA, F., LIITIAINEN, E., LENDASSE, A., SASSU, L., MELIS, S., AND BARATTI, R. 2009. A som-based approach to estimating product properties from spectroscopic measurements. Neurocomput. 73, 71-79.
    • (2009) Neurocomput , vol.73 , pp. 71-79
    • Corona, F.1    Liitiainen, E.2    Lendasse, A.3    Sassu, L.4    Melis, S.5    Baratti, R.6
  • 17
    • 0036826330 scopus 로고    scopus 로고
    • Uncovering hierarchical structure in data using the growing hierarchical self-organizing map
    • DITTENBACH, M.,RAUBER, A., ANDMERKL, D. 2002. Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomput. 48, 1-4, 199-216.
    • (2002) Neurocomput , vol.48 , Issue.1-4 , pp. 199-216
    • Dittenbach, M.1    Rauber, A.2    Andmerkl, D.3
  • 22
    • 40649092996 scopus 로고    scopus 로고
    • Following non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas network
    • FREZZA-BUET, H. 2008. Following non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas network. Neurocomput. 71, 7-9, 1191-1202.
    • (2008) Neurocomput , vol.71 , Issue.7-9 , pp. 1191-1202
    • Frezza-Buet, H.1
  • 23
    • 0028748949 scopus 로고
    • Growing cell structures-A self-organizing network for unsupervised and supervised learning
    • FRITZKE, B. 1994. Growing cell structures-A self-organizing network for unsupervised and supervised learning. Neural Netw. 7, 9, 1441-1460.
    • (1994) Neural Netw , vol.7 , Issue.9 , pp. 1441-1460
    • Fritzke, B.1
  • 24
    • 33750126257 scopus 로고
    • Growing grid-Aself-organizing network with constant neighborhood range and adaptation strength
    • FRITZKE, B. 1995a. Growing grid-Aself-organizing network with constant neighborhood range and adaptation strength. Neural Process. Lett. 2, 9-13.
    • (1995) Neural Process. Lett , vol.2 , pp. 9-13
    • Fritzke, B.1
  • 27
    • 0012532267 scopus 로고    scopus 로고
    • Unsupervised ontogenetic networks
    • E. Fiesler and R. Beale, Eds., Institute of Physics Publishing and Oxford University Press
    • FRITZKE, B. 1996b. Unsupervised ontogenetic networks. In Handbook of Neural Computation, E. Fiesler and R. Beale, Eds., Institute of Physics Publishing and Oxford University Press.
    • (1996) Handbook of Neural Computation
    • Fritzke, B.1
  • 29
    • 30644459258 scopus 로고    scopus 로고
    • An incremental network for on-line unsupervised classification and topology learning
    • FURAO, S. ANDHASEGAWA,O. 2006. An incremental network for on-line unsupervised classification and topology learning. Neural Netw. 19, 1, 90-106.
    • (2006) Neural Netw , vol.19 , Issue.1 , pp. 90-106
    • Furao, S.1    Andhasegawa, O.2
  • 30
    • 34848927515 scopus 로고    scopus 로고
    • An enhanced self-organizing incremental neural network for online unsupervised learning
    • FURAO, S., OGURA, T., AND HASEGAWA, O. 2007. An enhanced self-organizing incremental neural network for online unsupervised learning. Neural Netw. 20, 8, 893-903.
    • (2007) Neural Netw , vol.20 , Issue.8 , pp. 893-903
    • Furao, S.1    Ogura, T.2    Hasegawa, O.3
  • 32
    • 79960565717 scopus 로고    scopus 로고
    • Surveillance and human-computer interaction applications of self-growing models
    • GARCIA-RODRIGUEZ, J. AND GARCIA-CHAMIZO, J. M. 2011. Surveillance and human-computer interaction applications of self-growing models. Appl. Soft Comput. 11, 7, 4413-4431.
    • (2011) Appl. Soft Comput , vol.11 , Issue.7 , pp. 4413-4431
    • Garcia-Rodriguez, J.1    Garcia-Chamizo, J.M.2
  • 35
    • 41149114149 scopus 로고    scopus 로고
    • Three-dimensional surface reconstruction using meshing growing neural gas (mgng)
    • HOLDSTEIN, Y. AND FISCHER, A. 2008. Three-dimensional surface reconstruction using meshing growing neural gas (mgng). Vis. Comput. 24, 4, 295-302.
    • (2008) Vis. Comput , vol.24 , Issue.4 , pp. 295-302
    • Holdstein, Y.1    Fischer, A.2
  • 36
    • 34248547170 scopus 로고    scopus 로고
    • Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand
    • HUNG, C. AND TSAI, C.-F. 2008. Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand. Expert Syst. Appl. 34, 780-787.
    • (2008) Expert Syst. Appl , vol.34 , pp. 780-787
    • Hung, C.1    Tsai, C.-F.2
  • 40
    • 0344972929 scopus 로고    scopus 로고
    • WEBSOM-Self-organizing maps of document collections
    • KASKI, S., HONKELA, T., LAGUS, K., AND KOHONEN, T. 1998. WEBSOM-Self-organizing maps of document collections. Neurocomput. 21, 1-3, 101-117.
    • (1998) Neurocomput , vol.21 , Issue.1-3 , pp. 101-117
    • Kaski, S.1    Honkela, T.2    Lagus, K.3    Kohonen, T.4
  • 41
    • 3142715411 scopus 로고    scopus 로고
    • Three-dimensional map building for mobile robot navigation environments using a self-organizing neural network
    • KIM, M. Y. AND CHO, H. 2004. Three-dimensional map building for mobile robot navigation environments using a self-organizing neural network. J. Robotic Syst. 21, 6, 323-343.
    • (2004) J. Robotic Syst , vol.21 , Issue.6 , pp. 323-343
    • Kim, M.Y.1    Cho, H.2
  • 42
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • KOHONEN, T. 1982. Self-organized formation of topologically correct feature maps. Biol. Cybernet. 43, 59-69.
    • (1982) Biol. Cybernet , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 43
    • 0030129713 scopus 로고    scopus 로고
    • Constructing maps for mobile robot navigation based on ultrasonic range data
    • KURZ, A. 1996. Constructing maps for mobile robot navigation based on ultrasonic range data. IEEE Trans. Syst. Man, Cybernet. Part B: Cybernet., 26, 2, 233-242.
    • (1996) IEEE Trans. Syst. Man Cybernet. Part B: Cybernet , vol.26 , Issue.2 , pp. 233-242
    • Kurz, A.1
  • 45
    • 78751580355 scopus 로고    scopus 로고
    • Detecting imminent eruptive activity at mt etna, italy, in 2007-2008 through pattern classification of volcanic tremor data
    • LANGER, H., FALSAPERLA, S.,MESSINA, A., SPAMPINATO, S., AND BEHNCKE, B. 2011. Detecting imminent eruptive activity at mt etna, italy, in 2007-2008 through pattern classification of volcanic tremor data. J. Volcanology Geothermal Res. 200, 1-2, 1-17.
    • (2011) J. Volcanology Geothermal Res , vol.200 , Issue.1-2 , pp. 1-17
    • Langer, H.1    Falsaperla, S.2    Messina, A.3    Spampinato, S.4    Behncke, B.5
  • 47
    • 79955830979 scopus 로고    scopus 로고
    • Self-organizing fuzzy haptic teleoperation of mobile robot using sparse sonar data
    • LINDA, O. AND MANIC, M. 2011. Self-organizing fuzzy haptic teleoperation of mobile robot using sparse sonar data. IEEE Trans. Industr. Electron. 58, 8, 3187-3195.
    • (2011) IEEE Trans. Industr. Electron , vol.58 , Issue.8 , pp. 3187-3195
    • Linda, O.1    Manic, M.2
  • 48
    • 0036789790 scopus 로고    scopus 로고
    • A self-organising network that grows when required
    • MARSLAND, S., SHAPIRO, J., AND NEHMZOW, U. 2002. A self-organising network that grows when required. Neural Netw. 15, 8-9, 1041-1058.
    • (2002) Neural Netw , vol.15 , Issue.8-9 , pp. 1041-1058
    • Marsland, S.1    Shapiro, J.2    Nehmzow, U.3
  • 49
    • 0028204732 scopus 로고
    • Topology representing networks
    • MARTINETZ, T. AND SCHULTEN, K. 1994. Topology representing networks. Neural Netw. 7, 3, 507-522.
    • (1994) Neural Netw , vol.7 , Issue.3 , pp. 507-522
    • Martinetz, T.1    Schulten, K.2
  • 50
    • 77952965419 scopus 로고    scopus 로고
    • Growing self-organizing surface map: Learning a surface topology from a point cloud
    • MOLE, V. L. D. AND ARAUJO, A. F. R. 2010. Growing self-organizing surface map: Learning a surface topology from a point cloud. IEEE Trans. Neural Netw. 22, 3, 689-729.
    • (2010) IEEE Trans. Neural Netw , vol.22 , Issue.3 , pp. 689-729
    • Mole, V.L.D.1    Araujo, A.F.R.2
  • 51
    • 34548044455 scopus 로고    scopus 로고
    • Visual novelty detection with automatic scale selection
    • NETO, H. V. AND NEHMZOW, U. 2007. Visual novelty detection with automatic scale selection. Robotics Auton. Syst. 55, 9, 693-701.
    • (2007) Robotics Auton. Syst , vol.55 , Issue.9 , pp. 693-701
    • Neto, H.V.1    Nehmzow, U.2
  • 52
    • 33746260071 scopus 로고    scopus 로고
    • Externally growing self-organizing maps and its application to e-mail database visualization and exploration
    • NURNBERGER, A. AND DETYNIECKI, M. 2006. Externally growing self-organizing maps and its application to e-mail database visualization and exploration. Appl. Soft Comput. 6, 4, 357-371.
    • (2006) Appl. Soft Comput , vol.6 , Issue.4 , pp. 357-371
    • Nurnberger, A.1    Detyniecki, M.2
  • 53
    • 7444265318 scopus 로고    scopus 로고
    • Bibliography of self organizing map (som) papers: 1998-2001 addendum
    • OJA, M., KASKI, S., AND KOHONEN, T. 2003. Bibliography of self organizing map (som) papers: 1998-2001 addendum. Neural Comput. Surv. 3, 1, 1-156.
    • (2003) Neural Comput. Surv , vol.3 , Issue.1 , pp. 1-156
    • Oja, M.1    Kaski, S.2    Kohonen, T.3
  • 54
    • 62449166341 scopus 로고    scopus 로고
    • Detection of breast masses in mammogram images using growing neural gas algorithm and ripleys k function
    • OLIVEIRA MARTINS, L., SILVA, A. C., DE PAIVA, A. C., AND GATTASS, M. 2009. Detection of breast masses in mammogram images using growing neural gas algorithm and ripleys k function. J. Signal Process. Syst. 55, 77-90.
    • (2009) J. Signal Process. Syst , vol.55 , pp. 77-90
    • Oliveira Martins, L.1    Silva, A.C.2    De Paiva, A.C.3    Gattass, M.4
  • 55
    • 37549029724 scopus 로고    scopus 로고
    • A neural network based framework for directional primitive extraction
    • PENAS, M., PENEDO, M. G., AND CARREIRA, M. J. 2008. A neural network based framework for directional primitive extraction. Neural Process. Lett. 27, 67-83.
    • (2008) Neural Process. Lett , vol.27 , pp. 67-83
    • Penas, M.1    Penedo, M.G.2    Carreira, M.J.3
  • 56
    • 9144254114 scopus 로고    scopus 로고
    • Robust growing neural gas algorithm with application in cluster analysis
    • QIN, A. AND SUGANTHAN, P. 2004. Robust growing neural gas algorithm with application in cluster analysis. Neural Netw. 17, 8-9, 1135-1148.
    • (2004) Neural Netw , vol.17 , Issue.8-9 , pp. 1135-1148
    • Qin, A.1    Suganthan, P.2
  • 57
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data
    • RAUBER, A.,MERKL, D., AND DITTENBACH, M. 2002. The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data. IEEE Trans. Neural Netw. 13, 6, 1331-1341.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.6 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3
  • 58
    • 0016572913 scopus 로고
    • A vector space model for automatic indexing
    • SALTON, G.,WONG, A., AND YANG, C. S. 1975. A vector space model for automatic indexing. Comm. ACM 18, 11, 613-620.
    • (1975) Comm ACM , vol.18 , Issue.11 , pp. 613-620
    • Salton, G.1    Wong, A.2    Yang, C.S.3
  • 59
    • 0036808525 scopus 로고    scopus 로고
    • Automaticmultilevel thresholding for image segmentation by the growing time adaptive self-organizing map
    • SHAH-HOSSEINI, H. AND SAFABAKHSH, R. 2002. Automaticmultilevel thresholding for image segmentation by the growing time adaptive self-organizing map. IEEE Trans. Pattern Anal. Mach. Intell. 24, 10, 1388-1393.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.10 , pp. 1388-1393
    • Shah-Hosseini, H.1    Safabakhsh, R.2
  • 60
    • 80052816923 scopus 로고    scopus 로고
    • An incremental online semi-supervised active learning algorithm based on self-organizing incremental neural network
    • SHEN, F., YU, H., SAKURAI, K., AND HASEGAWA, O. 2011. An incremental online semi-supervised active learning algorithm based on self-organizing incremental neural network. Neural Comput. Appl. 20, 7, 1061-1074.
    • (2011) Neural Comput. Appl , vol.20 , Issue.7 , pp. 1061-1074
    • Shen, F.1    Yu, H.2    Sakurai, K.3    Hasegawa, O.4
  • 61
    • 1842535093 scopus 로고    scopus 로고
    • An integrative and interactive framework for improving biomedical pattern discovery and visualization
    • WANG, H.,AZUAJE, F., AND BLACK, N. D. 2004. An integrative and interactive framework for improving biomedical pattern discovery and visualization. IEEE Trans. Inf. Technol. Biomedicine 8, 1, 16-27.
    • (2004) IEEE Trans. Inf. Technol. Biomedicine , vol.8 , Issue.1 , pp. 16-27
    • Wang, H.1    Azuaje, F.2    Black, N.D.3
  • 62
    • 0033362693 scopus 로고    scopus 로고
    • On the characteristics of growing cell structures (gcs) neural network
    • WANG, J.-H. AND SUN, W.-D. 1999. On the characteristics of growing cell structures (gcs) neural network. Neural Process. Lett. 10, 139-149.
    • (1999) Neural Process. Lett , vol.10 , pp. 139-149
    • Wang, J.-H.1    Sun, W.-D.2
  • 63
    • 23244445943 scopus 로고    scopus 로고
    • Deterministic projection by growing cell structure networks for visualization of high-dimensionality datasets
    • WONG, J. W. H. AND CARTWRIGHT, H. M. 2005. Deterministic projection by growing cell structure networks for visualization of high-dimensionality datasets. J. Biomed. Inf. 38, 322-330.
    • (2005) J. Biomed. Inf , vol.38 , pp. 322-330
    • Wong, J.W.H.1    Cartwright, H.M.2
  • 64
    • 70350618311 scopus 로고    scopus 로고
    • An adaptive spatial clusteringmethod for automatic brain mr image segmentation
    • ZHANG, J. ANDDAI,D. 2009. An adaptive spatial clusteringmethod for automatic brain mr image segmentation. Progress Natural Sci. 19, 10, 1373-1382.
    • (2009) Progress Natural Sci , vol.19 , Issue.10 , pp. 1373-1382
    • Zhang, J.1    Anddai, D.2
  • 65
    • 48349101441 scopus 로고    scopus 로고
    • Improving pattern discovery and visualization of sage data through poisson-based self-adaptive neural networks
    • ZHENG, H.,WANG, H., AND AZUAJE, F. 2008. Improving pattern discovery and visualization of sage data through poisson-based self-adaptive neural networks. IEEE Trans. Inf. Technol. Biomed. 12, 4, 459-469.
    • (2008) IEEE Trans. Inf. Technol. Biomed , vol.12 , Issue.4 , pp. 459-469
    • Zheng, H.1    Wang, H.2    Azuaje, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.