메뉴 건너뛰기




Volumn 45, Issue 5, 2012, Pages 2005-2018

A unified dimensionality reduction framework for semi-paired and semi-supervised multi-view data

Author keywords

Correlation analysis; Dimensionality reduction; Multi view data; Semi paired learning; Semi supervised learning

Indexed keywords

CORRELATION ANALYSIS; DIMENSIONALITY REDUCTION; MULTI-VIEWS; SEMI-PAIRED LEARNING; SEMI-SUPERVISED LEARNING;

EID: 84855890338     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.11.008     Document Type: Article
Times cited : (79)

References (45)
  • 6
    • 78149316549 scopus 로고    scopus 로고
    • Weakly-paired maximum covariance analysis for multimodal dimensionality reduction and transfer learning
    • Hersonissos, Greece
    • C.H. Lampert, O. Kromer, Weakly-paired maximum covariance analysis for multimodal dimensionality reduction and transfer learning, in: Proceedings of the 11th European Conference on Computer Vision, Hersonissos, Greece, 2010, pp. 566579.
    • (2010) Proceedings of the 11th European Conference on Computer Vision , pp. 566-579
    • Lampert, C.H.1    Kromer, O.2
  • 14
    • 70449704123 scopus 로고    scopus 로고
    • Multiple view semi-supervised dimensionality reduction
    • C. Hou, C. Zhang, Y. Wu, and F. Nie Multiple view semi-supervised dimensionality reduction Pattern Recognition 43 2010 720 730
    • (2010) Pattern Recognition , vol.43 , pp. 720-730
    • Hou, C.1    Zhang, C.2    Wu, Y.3    Nie, F.4
  • 16
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling Relations between two sets of variates Biometrika 28 1936 321 372
    • (1936) Biometrika , vol.28 , pp. 321-372
    • Hotelling, H.1
  • 17
    • 33745859053 scopus 로고    scopus 로고
    • A Probability Interpretation of Canonical Correlation Analysis
    • Department of Statistics, University of California, Berkeley
    • F.R. Banch, M.I. Jordan, A Probability Interpretation of Canonical Correlation Analysis. 2005, Technical Report 688. Department of Statistics, University of California, Berkeley.
    • (2005) Technical Report 688
    • Banch, F.R.1    Jordan, M.I.2
  • 18
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning method
    • D.R. Hardoon, S. Szedmak, and J.S. Tayloy Canonical correlation analysis: an overview with application to learning method Neural Computation 16 2004 2639 2664
    • (2004) Neural Computation , vol.16 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Tayloy, J.S.3
  • 19
    • 80052923449 scopus 로고    scopus 로고
    • Localization with incompletely paired data in complex wireless sensor network
    • J. Gu, S. Chen, and Y. Zhuang Localization with incompletely paired data in complex wireless sensor network IEEE Transaction on Wireless Communication 10 9 2011 2841 2849
    • (2011) IEEE Transaction on Wireless Communication , vol.10 , Issue.9 , pp. 2841-2849
    • Gu, J.1    Chen, S.2    Zhuang, Y.3
  • 21
    • 74849109025 scopus 로고    scopus 로고
    • A new canonical correlation analysis algorithm with local discrimination
    • Y. Peng, D. Zhao, and J. Zhang A new canonical correlation analysis algorithm with local discrimination Neural Processing Letters 31 2010 1 15
    • (2010) Neural Processing Letters , vol.31 , pp. 1-15
    • Peng, Y.1    Zhao, D.2    Zhang, J.3
  • 25
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from examples
    • M. Belkin, P. Niyogi, and V. Sindhwani Manifold regularization: a geometric framework for learning from examples The Journal of Machine Learning 7 2006 2399 2434
    • (2006) The Journal of Machine Learning , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 28
    • 33745456231 scopus 로고    scopus 로고
    • Department of Computer Sciences, University of Wisconsin Madison
    • X. Zhu Semi-Supervised Learning Literature Survey 2008 Department of Computer Sciences, University of Wisconsin Madison
    • (2008) Semi-Supervised Learning Literature Survey
    • Zhu, X.1
  • 31
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semi-supervised dimensionality reduction
    • Y. Song, F. Nie, C. Zhang, and S. Xiang A unified framework for semi-supervised dimensionality reduction Pattern Recognition 41 2008 2789 2799
    • (2008) Pattern Recognition , vol.41 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3    Xiang, S.4
  • 32
  • 34
    • 77952423823 scopus 로고    scopus 로고
    • Semi-supervised local Fisher discriminant analysis for dimensionality reduction
    • M. Sugiyama, T. Idé, S. Nakajima, and J. Sese Semi-supervised local Fisher discriminant analysis for dimensionality reduction Machine Learning 78 2010 35 61
    • (2010) Machine Learning , vol.78 , pp. 35-61
    • Sugiyama, M.1    Idé, T.2    Nakajima, S.3    Sese, J.4
  • 35
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • M. Sugiyama Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis Journal of Machine Learning Research 8 2007 1027 1061
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 36
  • 39
    • 0038648412 scopus 로고    scopus 로고
    • Appearance models based on kernel canonical correlation analysis
    • T. Melzer, M. Reiter, and H. Bischof Appearance models based on kernel canonical correlation analysis Pattern Recognition 36 9 2003 1961 1971
    • (2003) Pattern Recognition , vol.36 , Issue.9 , pp. 1961-1971
    • Melzer, T.1    Reiter, M.2    Bischof, H.3
  • 42
    • 77952518276 scopus 로고    scopus 로고
    • A unified semi-supervised dimensionality reduction framework for manifold learning
    • R. Chatpatanasiri, and B. Kijsirikul A unified semi-supervised dimensionality reduction framework for manifold learning Neurocomputing 73 2010 1631 1640
    • (2010) Neurocomputing , vol.73 , pp. 1631-1640
    • Chatpatanasiri, R.1    Kijsirikul, B.2
  • 45
    • 84855893745 scopus 로고    scopus 로고
    • Exploiting tag and word correlation for improved webpage clustering
    • Toronto, Canada
    • A. Trivedi, P. Rai, S. DuVall, Exploiting tag and word correlation for improved webpage clustering, in: Proceedings of the SMUC, Toronto, Canada, 2010.
    • (2010) Proceedings of the SMUC
    • Trivedi, A.1    Rai, P.2    Duvall, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.