메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Predictive subspace learning for multi-view data: A large margin approach

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE ENHANCEMENT;

EID: 85161973444     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (109)

References (31)
  • 1
    • 0041494133 scopus 로고    scopus 로고
    • A kernel method for canonical correlation analysis
    • S. Akaho. A kernel method for canonical correlation analysis. In IMPS, 2001.
    • (2001) IMPS
    • Akaho, S.1
  • 2
    • 70450128164 scopus 로고    scopus 로고
    • Two-view feature generation model for semi-supervised learning
    • K. Ando and T. Zhang. Two-view feature generation model for semi-supervised learning. In ICML, 2007.
    • (2007) ICML
    • Ando, K.1    Zhang, T.2
  • 4
    • 1542287501 scopus 로고    scopus 로고
    • Modeling annotated data
    • D. M. Blei and M. I. Jordan. Modeling annotated data. In ACM SIGIR, pages 127-134, 2003.
    • (2003) ACM SIGIR , pp. 127-134
    • Blei, D.M.1    Jordan, M.I.2
  • 5
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3:993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 6
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-trainnig
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-trainnig. In COLT, 1998.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 7
    • 14344251008 scopus 로고    scopus 로고
    • Co-EM support vector learning
    • U. Brefeld and T. Scheffer. Co-EM support vector learning. In ICML, 2004.
    • (2004) ICML
    • Brefeld, U.1    Scheffer, T.2
  • 9
    • 80052418610 scopus 로고    scopus 로고
    • Multi-view learning in the presence of view disagreement
    • C.M. Christoudias, R. Urtasun, and T. Darrell. Multi-view learning in the presence of view disagreement. In UAI, 2008.
    • (2008) UAI
    • Christoudias, C.M.1    Urtasun, R.2    Darrell, T.3
  • 10
    • 74049158146 scopus 로고    scopus 로고
    • NUS-WIDE: A real-world web image database from national university of singapore
    • T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng. NUS-WIDE: A real-world web image database from national university of singapore. In CIVR, 2009.
    • (2009) CIVR
    • Chua, T.-S.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.-T.6
  • 11
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. JMLR, (2):265-292, 2001.
    • (2001) JMLR , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 15
    • 34948822293 scopus 로고    scopus 로고
    • Scene classification using bag-of-regions representations
    • D. Gökalp and S. Aksoy. Scene classification using bag-of-regions representations. In CVPR, 2007.
    • (2007) CVPR
    • Gökalp, D.1    Aksoy, S.2
  • 16
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 17
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321-377, 1936.
    • (1936) Biometrika , vol.28 , Issue.3-4 , pp. 321-377
    • Hotelling, H.1
  • 18
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 19
    • 51949107638 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D. G. Lowe. Object recognition from local scale-invariant features. In CVPR, 1999.
    • (1999) CVPR
    • Lowe, D.G.1
  • 20
    • 77956556686 scopus 로고    scopus 로고
    • Replicated softmax: An undirected topic model
    • R. Salakhutdinov and G. E. Hinton. Replicated softmax: an undirected topic model. In NIPS, 2009.
    • (2009) NIPS
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 21
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • L. van der Maaten and G. Hinton. Visualizing data using t-SNE. JMLR, 9:2579-2605, 2008.
    • (2008) JMLR , vol.9 , pp. 2579-2605
    • Maaten Der L.Van1    Hinton, G.2
  • 22
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 23
    • 33749245495 scopus 로고    scopus 로고
    • Topic modeling: Beyond bag-of-words
    • H. M. Wallach. Topic modeling: Beyond bag-of-words. In ICML, 2006.
    • (2006) ICML
    • Wallach, H.M.1
  • 24
    • 70450178502 scopus 로고    scopus 로고
    • Simultaneous image classification and annotation
    • C. Wang, D. M. Blei, and L. Fei-Fei. Simultaneous image classification and annotation. In CVPR, 2009.
    • (2009) CVPR
    • Wang, C.1    Blei, D.M.2    Fei-Fei, L.3
  • 25
    • 33749256914 scopus 로고    scopus 로고
    • A new learning algorithm for mean field boltzmann machines
    • M. Welling and G. E. Hinton. A new learning algorithm for mean field boltzmann machines. In ICANN, 2001.
    • (2001) ICANN
    • Welling, M.1    Hinton, G.E.2
  • 26
    • 33745780732 scopus 로고    scopus 로고
    • Exponential family harmoniums with an application to information retrieval
    • M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums with an application to information retrieval. In NIPS, pages 1481-1488, 2004.
    • (2004) NIPS , pp. 1481-1488
    • Welling, M.1    Rosen-Zvi, M.2    Hinton, G.E.3
  • 27
    • 3242679207 scopus 로고    scopus 로고
    • A generalized mean field algorithm for variational inference in exponential families
    • E. P. Xing, M. I. Jordan, and S. Russell. A generalized mean field algorithm for variational inference in exponential families. In UAI, 2003.
    • (2003) UAI
    • Xing, E.P.1    Jordan, M.I.2    Russell, S.3
  • 28
    • 67449114623 scopus 로고    scopus 로고
    • Mining associated text and images with dual-wing harmoniums
    • E. P. Xing, R. Yan, and A. G. Hauptmann. Mining associated text and images with dual-wing harmoniums. In UAI, 2005.
    • (2005) UAI
    • Xing, E.P.1    Yan, R.2    Hauptmann, A.G.3
  • 29
    • 55649111242 scopus 로고    scopus 로고
    • Harmonium models for semantic video representation and classification
    • J. Yang, Y. Liu, E. P. Xing, and A. G. Hauptmann. Harmonium models for semantic video representation and classification. In SDM, 2007.
    • (2007) SDM
    • Yang, J.1    Liu, Y.2    Xing, E.P.3    Hauptmann, A.G.4
  • 30
    • 55149096818 scopus 로고    scopus 로고
    • Flexible latent variable models for multi-task learning
    • J. Zhang, Z. Ghahramani, and Y. Yang. Flexible latent variable models for multi-task learning. Machine Learning, 73(3):221-242, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 221-242
    • Zhang, J.1    Ghahramani, Z.2    Yang, Y.3
  • 31
    • 71149117321 scopus 로고    scopus 로고
    • MedLDA: Maximum margin supervised topic models for regression and classification
    • J. Zhu, A. Ahmed, and E. P. Xing. MedLDA: Maximum margin supervised topic models for regression and classification. In ICML, 2009.
    • (2009) ICML
    • Zhu, J.1    Ahmed, A.2    Xing, E.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.