메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1781-1787

Extreme learning machines for predicting operation disruption events in railway systems

Author keywords

[No Author keywords available]

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; FORECASTING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; RELIABILITY;

EID: 84900032120     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (25)
  • 1
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Bengio, Y. (2000). Gradient-based optimization of hyperparameters. Neural Computation 12(8), 1889-1900.
    • (2000) Neural Computation , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 2
    • 84861190001 scopus 로고    scopus 로고
    • Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine
    • Chatterjee, S. & S. Bandopadhyay (2012). Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine. Expert Systems with Applications 39(12), 10943-10951.
    • (2012) Expert Systems with Applications , vol.39 , Issue.12 , pp. 10943-10951
    • Chatterjee, S.1    Bandopadhyay, S.2
  • 3
    • 39049085335 scopus 로고    scopus 로고
    • Fault detection and diagnosis for railway track circuits using neurofuzzy systems
    • Chen, J., C. Roberts, & P. Weston (2008). Fault detection and diagnosis for railway track circuits using neurofuzzy systems. Control Engineering Practice 16(5), 585-596.
    • (2008) Control Engineering Practice , vol.16 , Issue.5 , pp. 585-596
    • Chen, J.1    Roberts, C.2    Weston, P.3
  • 7
    • 33846382724 scopus 로고    scopus 로고
    • A digital filterbased approach to the remote condition monitoring of railway turnouts
    • Garcia Marquez, F.P. & F. Schmid (2007). A digital filterbased approach to the remote condition monitoring of railway turnouts. Reliability Engineering & System Safety 92(6), 830-840.
    • (2007) Reliability Engineering & System Safety , vol.92 , Issue.6 , pp. 830-840
    • Garcia Marquez, F.P.1    Schmid, F.2
  • 10
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • &
    • Hoerl, A.E. & R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 11
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang, G.-B. & L. Chen (2007). Convex incremental extreme learning machine. Neurocomputing 70(1618), 3056-3062.
    • (2007) Neurocomputing , vol.70 , Issue.1618 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 12
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang, G.-B. & L. Chen (2008). Enhanced random search based incremental extreme learning machine. Neurocomputing 71(1618), 3460-3468.
    • (2008) Neurocomputing , vol.71 , Issue.1618 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 13
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang, G.-B., L. Chen, & C.-K. Siew (2006). Universal approximation using incremental constructive feedforward networks with random hidden nodes. Neural Networks, IEEE Transactions on 17(4), 879-892.
    • (2006) Neural Networks, IEEE Transactions on , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 17
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, G.-B., Q.-Y. Zhu, & C.-K. Siew (2006). Extreme learning machine: Theory and applications. Neurocomputing 70(13), 489-501.
    • (2006) Neurocomputing , vol.70 , Issue.13 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 18
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger, H. & H. Haas (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78-80.
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 19
    • 38649143614 scopus 로고    scopus 로고
    • Prediction of vehicle reliability performance using artificial neural networks
    • Lolas, S. & O.A. Olatunbosun (2008). Prediction of vehicle reliability performance using artificial neural networks. Expert Systems with Applications 34(4), 2360-2369.
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2360-2369
    • Lolas, S.1    Olatunbosun, O.A.2
  • 20
    • 80052449651 scopus 로고    scopus 로고
    • Failure and reliability prediction by support vector machines regression of time series data
    • Moura, M.d.C., E. Zio, I.D. Lins, & E. Droguett (2011). Failure and reliability prediction by support vector machines regression of time series data. Reliability Engineering & System Safety 96(11), 1527-1534.
    • (2011) Reliability Engineering & System Safety , vol.96 , Issue.11 , pp. 1527-1534
    • Moura, M.D.C.1    Zio, E.2    Lins, I.D.3    Droguett, E.4
  • 23
    • 0003969585 scopus 로고    scopus 로고
    • reprint of 1982 ed. afterword of 2006 (2nd ed.). New York, NY: Springer New York
    • Vapnik, V.N. (2006). Estimation of dependences based on empirical data reprint of 1982 ed. afterword of 2006 (2nd ed.). New York, NY: Springer New York.
    • (2006) Estimation of Dependences Based on Empirical Data
    • Vapnik, V.N.1
  • 25
    • 80052944609 scopus 로고    scopus 로고
    • Feature selection for high-dimensional machinery fault diagnosis data using multiple models and radial basis function networks
    • Zhang, K., Y. Li, P. Scarf, & A. Ball (2011). Feature selection for high-dimensional machinery fault diagnosis data using multiple models and radial basis function networks. Neurocomputing 74(17), 2941-2952.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 2941-2952
    • Zhang, K.1    Li, Y.2    Scarf, P.3    Ball, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.