메뉴 건너뛰기




Volumn 40, Issue 15, 2013, Pages 6033-6040

Predicting time series of railway speed restrictions with time-dependent machine learning techniques

Author keywords

Binary time series predictions; Conditional restricted Boltzmann machines; Discrete event diagnostic data; Echo state networks; Neural networks; Railway operations disruptions; Speed reductions; Tilting system

Indexed keywords

BINARY TIME SERIES; CONDITIONAL RESTRICTED BOLTZMANN MACHINES; DISCRETE EVENTS; ECHO STATE NETWORKS; RAILWAY OPERATIONS; SPEED REDUCTION; TILTING SYSTEM;

EID: 84878930351     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.04.038     Document Type: Article
Times cited : (25)

References (34)
  • 2
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Y. Bengio Gradient-based optimization of hyperparameters Neural Computation 12 2000 1889 1900
    • (2000) Neural Computation , vol.12 , pp. 1889-1900
    • Bengio, Y.1
  • 3
    • 84861190001 scopus 로고    scopus 로고
    • Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine
    • S. Chatterjee, and S. Bandopadhyay Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine Expert Systems with Applications 39 2012 10943 10951
    • (2012) Expert Systems with Applications , vol.39 , pp. 10943-10951
    • Chatterjee, S.1    Bandopadhyay, S.2
  • 6
    • 84995289379 scopus 로고    scopus 로고
    • Predicting potential railway operations disruptions caused by critical component failure using echo state neural networks and automatically collected diagnostic data
    • in press
    • Fink, O., Nash, A., & Weidmann, U. (2013). Predicting potential railway operations disruptions caused by critical component failure using echo state neural networks and automatically collected diagnostic data. In: Transportation Research Record: Journal of the Transportation Research Board, in press.
    • (2013) Transportation Research Record: Journal of the Transportation Research Board
    • Fink, O.1    Nash, A.2    Weidmann, U.3
  • 9
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A.E. Hoerl, and R.W. Kennard Ridge regression: Biased estimation for nonorthogonal problems Technometrics 12 1970 55 67
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • K. Hornik, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359 366 (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 11
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • G.B. Huang Learning capability and storage capacity of two-hidden-layer feedforward networks IEEE Transactions on Neural Networks 14 2003 274 281
    • (2003) IEEE Transactions on Neural Networks , vol.14 , pp. 274-281
    • Huang, G.B.1
  • 13
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication
    • DOI 10.1126/science.1091277
    • H. Jaeger, and H. Haas Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication Science 304 2004 78 80 (Pubitemid 38455427)
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 14
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and applications of echo state networks with leaky- integrator neurons
    • DOI 10.1016/j.neunet.2007.04.016, PII S089360800700041X, Echo State Networks and Liquid State Machines
    • H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert Optimization and applications of echo state networks with leaky-integrator neurons Neural Networks 20 2007 335 352 (Pubitemid 46876638)
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 335-352
    • Jaeger, H.1    Lukosevicius, M.2    Popovici, D.3    Siewert, U.4
  • 15
    • 0000293377 scopus 로고
    • Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method
    • E. Johansson, F. Dowla, and D. Goodman Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method International Journal of Neural Systems 02 1991 291 301
    • (1991) International Journal of Neural Systems , vol.2 , pp. 291-301
    • Johansson, E.1    Dowla, F.2    Goodman, D.3
  • 18
    • 0001409017 scopus 로고
    • A class of logistic regression models for multivariate binary time series
    • K.Y. Liang, and S.L. Zeger A class of logistic regression models for multivariate binary time series Journal of the American Statistical Association 84 1989 447 451
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 447-451
    • Liang, K.Y.1    Zeger, S.L.2
  • 19
    • 58349117010 scopus 로고    scopus 로고
    • Short-term stock price prediction based on echo state networks
    • X. Lin, Z. Yang, and Y. Song Short-term stock price prediction based on echo state networks Expert Systems with Applications 36 2009 7313 7317
    • (2009) Expert Systems with Applications , vol.36 , pp. 7313-7317
    • Lin, X.1    Yang, Z.2    Song, Y.3
  • 21
    • 84872502995 scopus 로고    scopus 로고
    • A practical guide to applying echo state networks
    • Lecture notes in computer science Springer Berlin Heidelberg
    • M. Lukosevicius A practical guide to applying echo state networks A practical guide to applying echo state networks Lecture notes in computer science Vol. 7700 2012 Springer Berlin Heidelberg
    • (2012) A Practical Guide to Applying Echo State Networks , vol.7700
    • Lukosevicius, M.1
  • 25
    • 33644693593 scopus 로고    scopus 로고
    • System reliability forecasting by support vector machines with genetic algorithms
    • P.F. Pai System reliability forecasting by support vector machines with genetic algorithms Mathematical and Computer Modelling 43 2006 262 274
    • (2006) Mathematical and Computer Modelling , vol.43 , pp. 262-274
    • Pai, P.F.1
  • 30
    • 15944420505 scopus 로고    scopus 로고
    • Application of neural networks in forecasting engine systems reliability
    • DOI 10.1016/S1568-4946(02)00059-5, PII S1568494602000595
    • K. Xu, M. Xie, L.C. Tang, and S.L. Ho Application of neural networks in forecasting engine systems reliability Applied Soft Computing 2 2003 255 268 (Pubitemid 40442502)
    • (2003) Applied Soft Computing Journal , vol.2 , Issue.4 , pp. 255-268
    • Xu, K.1    Xie, M.2    Tang, L.C.3    Ho, S.L.4
  • 31
    • 34047260770 scopus 로고    scopus 로고
    • Time-series prediction with single integrate-and-fire neuron
    • DOI 10.1016/j.asoc.2006.02.004, PII S1568494606000299
    • A. Yadav, D. Mishra, R.N. Yadav, S. Ray, and P.K. Kalra Time-series prediction with single integrate-and-fire neuron Applied Soft Computing 7 2007 739 745 (Pubitemid 46551916)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.3 , pp. 739-745
    • Yadav, A.1    Mishra, D.2    Yadav, R.N.3    Ray, S.4    Kalra, P.K.5
  • 32
    • 80053564252 scopus 로고    scopus 로고
    • Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data
    • Z. Zainuddin, and O. Pauline Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data Applied Soft Computing 11 2011 4866 4874
    • (2011) Applied Soft Computing , vol.11 , pp. 4866-4874
    • Zainuddin, Z.1    Pauline, O.2
  • 34
    • 34249306232 scopus 로고    scopus 로고
    • Statistical fuzzy interval neural networks for currency exchange rate time series prediction
    • DOI 10.1016/j.asoc.2006.01.002, PII S1568494606000068, Soft Computing for Time Series Prediction
    • Y.Q. Zhang, and X. Wan Statistical fuzzy interval neural networks for currency exchange rate time series prediction Applied Soft Computing 7 2007 1149 1156 (Pubitemid 46810389)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.4 , pp. 1149-1156
    • Zhang, Y.-Q.1    Wan, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.