메뉴 건너뛰기




Volumn 121, Issue , 2014, Pages 198-206

Predicting component reliability and level of degradation with complex-valued neural networks

Author keywords

Complex valued neural networks; Level of degradation Railway turnout system; Neural networks; Reliability prediction

Indexed keywords

BENCHMARKING; FEEDFORWARD NEURAL NETWORKS; LEARNING ALGORITHMS; NEURAL NETWORKS; RAILROADS; RELIABILITY; TIME SERIES;

EID: 84884786395     PISSN: 09518320     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ress.2013.08.004     Document Type: Article
Times cited : (116)

References (60)
  • 1
    • 77949657428 scopus 로고    scopus 로고
    • A neural network applied to estimate burr {XII} distribution parameters
    • B. Abbasi, S. Hosseinifard, and D. Coit A neural network applied to estimate burr {XII} distribution parameters Reliability Engineering & System Safety 95 2010 647 654 http://dx.doi.org/10.1016/j.ress.2010.02.001
    • (2010) Reliability Engineering & System Safety , vol.95 , pp. 647-654
    • Abbasi, B.1    Hosseinifard, S.2    Coit, D.3
  • 2
    • 33748371451 scopus 로고    scopus 로고
    • Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm
    • DOI 10.1007/s00500-006-0075-5
    • I. Aizenberg, and C. Moraga Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm Soft Computing-A Fusion of Foundations, Methodologies and Applications 11 2007 169 183 (Pubitemid 44336453)
    • (2007) Soft Computing , vol.11 , Issue.2 , pp. 169-183
    • Aizenberg, I.1    Moraga, C.2
  • 3
    • 44349176195 scopus 로고    scopus 로고
    • Blur identification by multilayer neural network based on multivalued neurons
    • DOI 10.1109/TNN.2007.914158
    • I. Aizenberg, D.V. Paliy, J.M. Zurada, and J.T. Astola Blur identification by multilayer neural network based on multivalued neurons IEEE Transactions on Neural Networks 19 2008 883 898 (Pubitemid 351728823)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.5 , pp. 883-898
    • Aizenberg, I.1    Paliy, D.V.2    Zurada, J.M.3    Astola, J.T.4
  • 5
    • 79951889525 scopus 로고    scopus 로고
    • Artificial neural network application of modeling failure rate for Boeing 737 tires
    • A.Z. Al-Garni, and A. Jamal Artificial neural network application of modeling failure rate for Boeing 737 tires Quality and Reliability Engineering International 27 2011 209 219
    • (2011) Quality and Reliability Engineering International , vol.27 , pp. 209-219
    • Al-Garni, A.Z.1    Jamal, A.2
  • 6
    • 84872330186 scopus 로고    scopus 로고
    • A combination of support vector machine and k-nearest neighbors for machine fault detection
    • A.B. Andre, E. Beltrame, and J. Wainer A combination of support vector machine and k-nearest neighbors for machine fault detection Applied Artificial Intelligence 27 2013 36 49
    • (2013) Applied Artificial Intelligence , vol.27 , pp. 36-49
    • Andre, A.B.1    Beltrame, E.2    Wainer, J.3
  • 7
    • 5444267423 scopus 로고    scopus 로고
    • Naroas: A neural network-based advanced operator support system for the assessment of systems reliability
    • A.G. de Araujo Goes, M. Alvarenga, and P.F. e Melo Naroas: a neural network-based advanced operator support system for the assessment of systems reliability Reliability Engineering & System Safety 87 2005 149 161 http://dx.doi.org/10.1016/j.ress.2004.01.010
    • (2005) Reliability Engineering & System Safety , vol.87 , pp. 149-161
    • De Araujo Goes, A.G.1    Alvarenga, M.2    Melo P F, E.3
  • 8
    • 0035291219 scopus 로고    scopus 로고
    • Estimation in Degradation Models with Explanatory Variables
    • DOI 10.1023/A:1009629311100
    • V. Bagdonavicius, and M.S. Nikulin Estimation in degradation models with explanatory variables Lifetime Data Analysis 7 2001 85 103 (Pubitemid 33692877)
    • (2001) Lifetime Data Analysis , vol.7 , Issue.1 , pp. 85-103
    • Bagdonavicius, V.1    Nikulin, M.S.2
  • 12
    • 84861190001 scopus 로고    scopus 로고
    • Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load-haul-dump machine
    • S. Chatterjee, and S. Bandopadhyay Reliability estimation using a genetic algorithm-based artificial neural network: an application to a load-haul-dump machine Expert Systems with Applications 39 2012 10943 10951
    • (2012) Expert Systems with Applications , vol.39 , pp. 10943-10951
    • Chatterjee, S.1    Bandopadhyay, S.2
  • 13
    • 33845633182 scopus 로고    scopus 로고
    • Forecasting systems reliability based on support vector regression with genetic algorithms
    • K.Y. Chen Forecasting systems reliability based on support vector regression with genetic algorithms Reliability Engineering & System Safety 92 2007 423 432
    • (2007) Reliability Engineering & System Safety , vol.92 , pp. 423-432
    • Chen, K.Y.1
  • 14
    • 79958835436 scopus 로고    scopus 로고
    • Bayesian filtering: From Kalman filters to particle filters, and beyond
    • Z. Chen Bayesian filtering: from Kalman filters to particle filters, and beyond Statistics 182 2003 1 69
    • (2003) Statistics , vol.182 , pp. 1-69
    • Chen, Z.1
  • 16
    • 0042882224 scopus 로고    scopus 로고
    • On-line condition monitoring of a power transmission unit of a rail vehicle
    • P. Deuszkiewicz, and S. Radkowski On-line condition monitoring of a power transmission unit of a rail vehicle Mechanical Systems and Signal Processing 17 2003 1321 1334
    • (2003) Mechanical Systems and Signal Processing , vol.17 , pp. 1321-1334
    • Deuszkiewicz, P.1    Radkowski, S.2
  • 17
    • 84875250990 scopus 로고    scopus 로고
    • Layered clustering multi-fault diagnosis for hydraulic piston pump
    • J. Du, S. Wang, and H. Zhang Layered clustering multi-fault diagnosis for hydraulic piston pump Mechanical Systems and Signal Processing 36 2013 487 504
    • (2013) Mechanical Systems and Signal Processing , vol.36 , pp. 487-504
    • Du, J.1    Wang, S.2    Zhang, H.3
  • 23
    • 84860375483 scopus 로고    scopus 로고
    • Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life
    • C. Hu, B.D. Youn, P. Wang, and J.T. Yoon Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life Reliability Engineering & System Safety 103 2012 120 135 http://dx.doi.org/10.1016/j. ress.2012.03.008
    • (2012) Reliability Engineering & System Safety , vol.103 , pp. 120-135
    • Hu, C.1    Youn, B.D.2    Wang, P.3    Yoon, J.T.4
  • 24
    • 70449535551 scopus 로고    scopus 로고
    • System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization
    • C.H. Hu, X.S. Si, and J.B. Yang System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization Expert Systems with Applications 37 2010 2550 2562
    • (2010) Expert Systems with Applications , vol.37 , pp. 2550-2562
    • Hu, C.H.1    Si, X.S.2    Yang, J.B.3
  • 25
    • 33750338699 scopus 로고    scopus 로고
    • Robust recurrent neural network modeling for software fault detection and correction prediction
    • DOI 10.1016/j.ress.2006.04.007, PII S0951832006001001
    • Q. Hu, M. Xie, S. Ng, and G. Levitin Robust recurrent neural network modeling for software fault detection and correction prediction Reliability Engineering & System Safety 92 2007 332 340 http://dx.doi.org/10.1016/j. ress.2006.04.007 (Pubitemid 44635168)
    • (2007) Reliability Engineering and System Safety , vol.92 , Issue.3 , pp. 332-340
    • Hu, Q.P.1    Xie, M.2    Ng, S.H.3    Levitin, G.4
  • 26
    • 0035834544 scopus 로고    scopus 로고
    • Neural-network-based reliability analysis: A comparative study
    • DOI 10.1016/S0045-7825(01)00248-1, PII S0045782501002481, Micromechanics of Brittle Materials and Stochastic Analysis of Mechanical Systems
    • J.E. Hurtado, and D.A. Alvarez Neural-network-based reliability analysis: a comparative study Computer Methods in Applied Mechanics and Engineering 191 2001 113 132 (Pubitemid 33102226)
    • (2001) Computer Methods in Applied Mechanics and Engineering , vol.191 , Issue.1-2 , pp. 113-132
    • Hurtado, J.E.1    Alvarez, D.A.2
  • 27
    • 84872679273 scopus 로고    scopus 로고
    • Probability of failure for uncertain control systems using neural networks and multi-objective uniform-diversity genetic algorithms (MUGA)
    • A. Jamali, M. Ghamati, B. Ahmadi, and N. Nariman-zadeh Probability of failure for uncertain control systems using neural networks and multi-objective uniform-diversity genetic algorithms (MUGA) Engineering Applications of Artificial Intelligence 26 2013 714 723
    • (2013) Engineering Applications of Artificial Intelligence , vol.26 , pp. 714-723
    • Jamali, A.1    Ghamati, M.2    Ahmadi, B.3    Nariman-Zadeh, N.4
  • 28
    • 84872744828 scopus 로고    scopus 로고
    • A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft
    • G. Jin, D.E. Matthews, and Z. Zhou A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft Reliability Engineering & System Safety 113 2013 7 20 http://dx.doi.org/10.1016/j.ress.2012.12.011
    • (2013) Reliability Engineering & System Safety , vol.113 , pp. 7-20
    • Jin, G.1    Matthews, D.E.2    Zhou, Z.3
  • 29
    • 84885682869 scopus 로고    scopus 로고
    • Achieving maximum reliability in fault tolerant network design for variable networks
    • Kaushik B, Kaur N, Kohli AK. Achieving maximum reliability in fault tolerant network design for variable networks. Applied Soft Computing 2013;13(7):3211-24.
    • (2013) Applied Soft Computing , vol.13 , Issue.7 , pp. 3211-3224
    • Kaushik, B.1    Kaur, N.2    Kohli, A.K.3
  • 30
    • 84867235196 scopus 로고    scopus 로고
    • Seismic reliability assessment of {RC} structures including soil-structure interaction using wavelet weighted least squares support vector machine
    • M. Khatibinia, M.J. Fadaee, J. Salajegheh, and E. Salajegheh Seismic reliability assessment of {RC} structures including soil-structure interaction using wavelet weighted least squares support vector machine Reliability Engineering & System Safety 110 2013 22 33 http://dx.doi.org/10.1016/j.ress. 2012.09.006
    • (2013) Reliability Engineering & System Safety , vol.110 , pp. 22-33
    • Khatibinia, M.1    Fadaee, M.J.2    Salajegheh, J.3    Salajegheh, E.4
  • 31
    • 34447093987 scopus 로고    scopus 로고
    • Using fuzzy self-organising maps for safety critical systems
    • DOI 10.1016/j.ress.2006.10.005, PII S0951832006002122
    • Z. Kurd, and T.P. Kelly Using fuzzy self-organising maps for safety critical systems Reliability Engineering & System Safety 92 2007 1563 1583 http://dx.doi.org/10.1016/j.ress.2006.10.005 (Pubitemid 47031635)
    • (2007) Reliability Engineering and System Safety , vol.92 , Issue.11 , pp. 1563-1583
    • Kurd, Z.1    Kelly, T.P.2
  • 35
    • 84870578289 scopus 로고    scopus 로고
    • Reliability prediction for evolutionary product in the conceptual design phase using neural network-based fuzzy synthetic assessment
    • Y. Liu, H.Z. Huang, and D. Ling Reliability prediction for evolutionary product in the conceptual design phase using neural network-based fuzzy synthetic assessment International Journal of Systems Science 44 2013 545 555
    • (2013) International Journal of Systems Science , vol.44 , pp. 545-555
    • Liu, Y.1    Huang, H.Z.2    Ling, D.3
  • 36
    • 38649143614 scopus 로고    scopus 로고
    • Prediction of vehicle reliability performance using artificial neural networks
    • DOI 10.1016/j.eswa.2007.03.014, PII S0957417407001297
    • S. Lolas, and O.A. Olatunbosun Prediction of vehicle reliability performance using artificial neural networks Expert Systems with Applications 34 2008 2360 2369 (Pubitemid 351173747)
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2360-2369
    • Lolas, S.1    Olatunbosun, O.A.2
  • 37
    • 79957498228 scopus 로고    scopus 로고
    • Extraction of rules for faulty bearing classification by a neuro-fuzzy approach
    • G. Marichal, M. Artes, J.G. Prada, and O. Casanova Extraction of rules for faulty bearing classification by a neuro-fuzzy approach Mechanical Systems and Signal Processing 25 2011 2073 2082 http://dx.doi.org/10.1016/j.ymssp.2011. 01.014
    • (2011) Mechanical Systems and Signal Processing , vol.25 , pp. 2073-2082
    • Marichal, G.1    Artes, M.2    Prada, J.G.3    Casanova, O.4
  • 38
    • 80052449651 scopus 로고    scopus 로고
    • Failure and reliability prediction by support vector machines regression of time series data
    • M.D.C. Moura, E. Zio, I.D. Lins, and E. Droguett Failure and reliability prediction by support vector machines regression of time series data Reliability Engineering & System Safety 96 2011 1527 1534
    • (2011) Reliability Engineering & System Safety , vol.96 , pp. 1527-1534
    • Moura, M.D.C.1    Zio, E.2    Lins, I.D.3    Droguett, E.4
  • 40
    • 33644693593 scopus 로고    scopus 로고
    • System reliability forecasting by support vector machines with genetic algorithms
    • P.F. Pai System reliability forecasting by support vector machines with genetic algorithms Mathematical and Computer Modelling 43 2006 262 274
    • (2006) Mathematical and Computer Modelling , vol.43 , pp. 262-274
    • Pai, P.F.1
  • 42
    • 0031212714 scopus 로고    scopus 로고
    • Survey of artificial intelligence methods for detection and identification of component faults in nuclear power plants
    • J. Reifman Survey of artificial intelligence methods for detection and identification of component faults in nuclear power plants Nuclear Technology 119 1997 76 97 (Pubitemid 127601958)
    • (1997) Nuclear Technology , vol.119 , Issue.1 , pp. 76-97
    • Reifman, J.1
  • 43
    • 84874829107 scopus 로고    scopus 로고
    • Singular spectrum analysis and forecasting of failure time series
    • S.C.M. Rocco Singular spectrum analysis and forecasting of failure time series Reliability & Engineering System Safety 114 2013 126 136
    • (2013) Reliability & Engineering System Safety , vol.114 , pp. 126-136
    • Rocco, S.C.M.1
  • 44
    • 33846227548 scopus 로고    scopus 로고
    • A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems
    • DOI 10.1016/j.ress.2006.02.003, PII S0951832006000548, Recent Adances in Theory and Applications of Stochastic Point Process Models in Reliability Engineering
    • S.C.M. Rocco, and E. Zio A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems Reliability Engineering & System Safety 92 2007 593 600 (Pubitemid 46108529)
    • (2007) Reliability Engineering and System Safety , vol.92 , Issue.5 , pp. 593-600
    • Rocco, S.C.M.1    Zio, E.2
  • 45
    • 79953711402 scopus 로고    scopus 로고
    • Artificial neural network model of the strength of thin rectangular plates with weld induced initial imperfections
    • Z. Sadovsky, and C.G. Soares Artificial neural network model of the strength of thin rectangular plates with weld induced initial imperfections Reliability Engineering & System Safety 96 2011 713 717 http://dx.doi.org/ 10.1016/j.ress.2011.02.010
    • (2011) Reliability Engineering & System Safety , vol.96 , pp. 713-717
    • Sadovsky, Z.1    Soares, C.G.2
  • 47
    • 84872402918 scopus 로고    scopus 로고
    • Remaining useful life estimation based on stochastic deterioration models: A comparative study
    • K.L. Son, M. Fouladirad, A. Barros, E. Levrat, and B. Iung Remaining useful life estimation based on stochastic deterioration models: a comparative study Reliability Engineering & System Safety 112 2013 165 175 http://dx.doi.org/10.1016/j.ress.2012.11.022
    • (2013) Reliability Engineering & System Safety , vol.112 , pp. 165-175
    • Son, K.L.1    Fouladirad, M.2    Barros, A.3    Levrat, E.4    Iung, B.5
  • 48
    • 0036604737 scopus 로고    scopus 로고
    • Estimation of all-terminal network reliability using an artificial neural network
    • DOI 10.1016/S0305-0548(00)00088-5, PII S0305054800000885
    • C. Srivaree-Ratana, A. Konak, and A.E. Smith Estimation of all-terminal network reliability using an artificial neural network Computers & Operations Research 29 2002 849 868 (Pubitemid 34135094)
    • (2002) Computers and Operations Research , vol.29 , Issue.7 , pp. 849-868
    • Srivaree-Ratana, C.1    Konak, A.2    Smith, A.E.3
  • 49
    • 0026070619 scopus 로고
    • Neural network realization of Markov reliability and fault-tolerance models
    • M. Suliman, and M.A. Manzoul Neural network realization of Markov reliability and fault-tolerance models Microelectronics and Reliability 31 1991 141 147
    • (1991) Microelectronics and Reliability , vol.31 , pp. 141-147
    • Suliman, M.1    Manzoul, M.A.2
  • 50
    • 0036875990 scopus 로고    scopus 로고
    • Self-commissioning training algorithms for neural networks with applications to electric machine fault diagnostics
    • R.M. Tallam, T.G. Habetler, and R.G. Harley Self-commissioning training algorithms for neural networks with applications to electric machine fault diagnostics IEEE Transactions on Power Electronics 17 2002 1089 1095
    • (2002) IEEE Transactions on Power Electronics , vol.17 , pp. 1089-1095
    • Tallam, R.M.1    Habetler, T.G.2    Harley, R.G.3
  • 51
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • P. Tamilselvan, and P. Wang Failure diagnosis using deep belief learning based health state classification Reliability Engineering & System Safety 115 2013 124 135 〈URL: http://www.sciencedirect.com/science/ article/pii/S0951832013000574. http://dx.doi.org/10.1016/j.ress.2013.02.022
    • (2013) Reliability Engineering & System Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 53
    • 84884707909 scopus 로고    scopus 로고
    • Adaptive neural subtractive clustering fuzzy inference system for the detection of high impedance fault on distribution power system
    • A. Tawafan, M.B. Sulaiman, and Z.B. Ibrahim Adaptive neural subtractive clustering fuzzy inference system for the detection of high impedance fault on distribution power system IAES International Journal of Artificial Intelligence (IJ-AI) 1 2012 63 72
    • (2012) IAES International Journal of Artificial Intelligence (IJ-AI) , vol.1 , pp. 63-72
    • Tawafan, A.1    Sulaiman, M.B.2    Ibrahim, Z.B.3
  • 54
    • 77953323622 scopus 로고    scopus 로고
    • A neural network approach for remaining useful life prediction utilizing both failure and suspension histories
    • Z. Tian, L. Wong, and N. Safaei A neural network approach for remaining useful life prediction utilizing both failure and suspension histories Mechanical Systems and Signal Processing 24 2010 1542 1555
    • (2010) Mechanical Systems and Signal Processing , vol.24 , pp. 1542-1555
    • Tian, Z.1    Wong, L.2    Safaei, N.3
  • 56
    • 28844433590 scopus 로고    scopus 로고
    • Modified self-organising map for automated novelty detection applied to vibration signal monitoring
    • DOI 10.1016/j.ymssp.2005.01.008, PII S0888327005000178
    • M.L.D. Wong, L.B. Jack, and A.K. Nandi Modified self-organising map for automated novelty detection applied to vibration signal monitoring Mechanical Systems and Signal Processing 20 2006 593 610 (Pubitemid 41766673)
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.3 , pp. 593-610
    • Wong, M.L.D.1    Jack, L.B.2    Nandi, A.K.3
  • 57
    • 15944420505 scopus 로고    scopus 로고
    • Application of neural networks in forecasting engine systems reliability
    • DOI 10.1016/S1568-4946(02)00059-5, PII S1568494602000595
    • K. Xu, M. Xie, L.C. Tang, and S.L. Ho Application of neural networks in forecasting engine systems reliability Applied Soft Computing 2 2003 255 268 (Pubitemid 40442502)
    • (2003) Applied Soft Computing Journal , vol.2 , Issue.4 , pp. 255-268
    • Xu, K.1    Xie, M.2    Tang, L.C.3    Ho, S.L.4
  • 58
    • 0034813955 scopus 로고    scopus 로고
    • Intelligent predictive decision support system for condition-based maintenance
    • DOI 10.1007/s001700170173
    • R.C.M. Yam, P.W. Tse, L. Li, and P. Tu Intelligent predictive decision support system for condition-based maintenance The International Journal of Advanced Manufacturing Technology 17 2001 383 391 (Pubitemid 32914802)
    • (2001) International Journal of Advanced Manufacturing Technology , vol.17 , Issue.5 , pp. 383-391
    • Yam, R.C.M.1    Tse, P.W.2    Li, L.3    Tu, P.4
  • 59
    • 2942561579 scopus 로고    scopus 로고
    • Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural networks
    • DOI 10.1006/mssp.2001.1469
    • D.M. Yang, A.F. Stronach, P. MacConnell, and J. Penman Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural networks Mechanical Systems and Signal Processing 16 2002 391 411 (Pubitemid 40000348)
    • (2002) Mechanical Systems and Signal Processing , vol.16 , Issue.2-3 , pp. 391-411
    • Yang, D.-M.1    Stronach, A.F.2    MacConnell, P.3    Penman, J.4
  • 60
    • 84864486999 scopus 로고    scopus 로고
    • Failure and reliability predictions by infinite impulse response locally recurrent neural networks
    • E. Zio, M. Broggi, L.R. Golea, and N. Pedroni Failure and reliability predictions by infinite impulse response locally recurrent neural networks Chemical Engineering Transactions 26 2012
    • (2012) Chemical Engineering Transactions , vol.26
    • Zio, E.1    Broggi, M.2    Golea, L.R.3    Pedroni, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.