메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1019-1025

Ensemble feature weighting based on local learning and diversity

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ACCURACY; DATA SETS; ENSEMBLE FEATURE SELECTIONS; ENSEMBLE METHODS; FEATURE WEIGHTING; LOCAL LEARNING; SAMPLE COMPLEXITY; SAMPLE WEIGHTING; SMALL SAMPLES;

EID: 84868285653     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (34)
  • 1
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • Abeel, T.; Helleputte, T.; de Peer, Y. V.; Dupont, P.; and Saeys, Y. 2010. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26:392-398.
    • (2010) Bioinformatics , vol.26 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    De Peer, Y.V.3    Dupont, P.4    Saeys, Y.5
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., and Vapnik, V. 1995. Support-vector networks. Machine Learning 20:273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman, G. 2003. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research 3:1289-1305.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I.; Weston, J.; Barnhill, S.; and Vapnik, V. 2002. Gene selection for cancer classification using support vector machines. Machine Learning 46:389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 14
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: A study on high dimensional spaces
    • Kalousis, A.; Prados, J.; and Hilario, M. 2007. Stability of feature selection algorithms: a study on high dimensional spaces. Knowledge and Information Systems 12:95-116.
    • (2007) Knowledge and Information Systems , vol.12 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 17
    • 67349250195 scopus 로고    scopus 로고
    • Feature selection based on loss margin of nearest neighbor classification
    • Li, Y., and Lu, B. L. 2009. Feature selection based on loss margin of nearest neighbor classification. Pattern Recognition 42:1914-1921.
    • (2009) Pattern Recognition , vol.42 , pp. 1914-1921
    • Li, Y.1    Lu, B.L.2
  • 18
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu, H., and Yu, L. 2005. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowledge and Data Engineering 17:494-502.
    • (2005) IEEE Trans. Knowledge and Data Engineering , vol.17 , pp. 494-502
    • Liu, H.1    Yu, L.2
  • 22
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • Robnik-Sikonja, M., and Kononenko, I. 2003. Theoretical and empirical analysis of relieff and rrelieff. Machine Learning 53:23-69.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 24
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y.; Inza, I.; and Larranaga, P. 2007. A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 25
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E.; Freud, Y.; Bartlett, P.; and Lee, W. S. 1998. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics 26:1651-1686.
    • (1998) The Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freud, Y.2    Bartlett, P.3    Lee, W.S.4
  • 27
    • 34247622378 scopus 로고    scopus 로고
    • Iterative relief for feature weighting: Algorithms, theories, and applications
    • Sun, Y. J. 2007. Iterative relief for feature weighting: Algorithms, theories, and applications. IEEE Trans. on Pattern Analysis and Machine Intelligence 29:1035-1051.
    • (2007) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.29 , pp. 1035-1051
    • Sun, Y.J.1
  • 30
    • 77956023732 scopus 로고    scopus 로고
    • Combating the small sample class imbalance problem using feature selection
    • Wasikowski, M., and Chen, X. 2010. Combating the small sample class imbalance problem using feature selection. IEEE Trans. on Knowledge and Data Engineering 22:1388-1400.
    • (2010) IEEE Trans. on Knowledge and Data Engineering , vol.22 , pp. 1388-1400
    • Wasikowski, M.1    Chen, X.2
  • 32
    • 0347067948 scopus 로고    scopus 로고
    • Covering number bounds of certain regularized linear function classes
    • Zhang, T. 2002. Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research 2:527-550.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 527-550
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.