메뉴 건너뛰기




Volumn 2, Issue 3, 2017, Pages

Development of a CRISPR-Cas9 system for efficient genome editing of Candida lusitaniae

Author keywords

CRISPR; DNA double strand break; Homology directed repair; Nonhomologous end joining

Indexed keywords


EID: 85027434900     PISSN: None     EISSN: 23795042     Source Type: Journal    
DOI: 10.1128/mSphere.00217-17     Document Type: Article
Times cited : (26)

References (35)
  • 2
    • 84865605029 scopus 로고    scopus 로고
    • A review of Candida species causing blood stream infection
    • Giri S, Kindo AJ. 2012. A review of Candida species causing blood stream infection. Indian J Med Microbiol 30:270-278. https://doi.org/10.4103/ 0255-0857.99484
    • (2012) Indian J Med Microbiol , vol.30 , pp. 270-278
    • Giri, S.1    Kindo, A.J.2
  • 3
    • 33744462070 scopus 로고    scopus 로고
    • Debaryomyces hansenii-an extremophilic yeast with biotechnological potential
    • Breuer U, Harms H. 2006. Debaryomyces hansenii-an extremophilic yeast with biotechnological potential. Yeast 23:415-437. https://doi.org/ 10.1002/yea.1374
    • (2006) Yeast , vol.23 , pp. 415-437
    • Breuer, U.1    Harms, H.2
  • 4
    • 0024555517 scopus 로고
    • Emergence of a new opportunistic pathogen, Candida lusitaniae
    • Blinkhorn RJ, Adelstein D, Spagnuolo PJ. 1989. Emergence of a new opportunistic pathogen, Candida lusitaniae. J Clin Microbiol 27:236-240
    • (1989) J Clin Microbiol , vol.27 , pp. 236-240
    • Blinkhorn, R.J.1    Adelstein, D.2    Spagnuolo, P.J.3
  • 5
    • 0035245285 scopus 로고    scopus 로고
    • Candida lusitaniae: a cause of breakthrough fungemia in cancer patients
    • Minari A, Hachem R, Raad I. 2001. Candida lusitaniae: a cause of breakthrough fungemia in cancer patients. Clin Infect Dis 32:186-190. https:// doi.org/10.1086/318473
    • (2001) Clin Infect Dis , vol.32 , pp. 186-190
    • Minari, A.1    Hachem, R.2    Raad, I.3
  • 6
    • 0037440154 scopus 로고    scopus 로고
    • Candida lusitaniae infections in the era of fluconazole availability
    • Hawkins JL, Baddour LM. 2003. Candida lusitaniae infections in the era of fluconazole availability. Clin Infect Dis 36:e14-e18. https://doi.org/10 .1086/344651
    • (2003) Clin Infect Dis , vol.36 , pp. e14-e18
    • Hawkins, J.L.1    Baddour, L.M.2
  • 7
    • 51649122008 scopus 로고    scopus 로고
    • Candida lusitaniae fungemia in cancer patients: risk factors for amphotericin B failure and outcome
    • Atkinson BJ, Lewis RE, Kontoyiannis DP. 2008. Candida lusitaniae fungemia in cancer patients: risk factors for amphotericin B failure and outcome. Med Mycol 46:541-546. https://doi.org/10.1080/136937 80801968571
    • (2008) Med Mycol , vol.46 , pp. 541-546
    • Atkinson, B.J.1    Lewis, R.E.2    Kontoyiannis, D.P.3
  • 10
    • 84884693979 scopus 로고    scopus 로고
    • Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm
    • Papon N, Courdavault V, Clastre M, Bennett RJ. 2013. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog 9:e1003550. https://doi.org/10.1371/journal .ppat.1003550
    • (2013) PLoS Pathog , vol.9
    • Papon, N.1    Courdavault, V.2    Clastre, M.3    Bennett, R.J.4
  • 11
    • 84954491041 scopus 로고    scopus 로고
    • Acquired multidrug antifungal resistance in Candida lusitaniae during therapy
    • Asner SA, Giulieri S, Diezi M, Marchetti O, Sanglard D. 2015. Acquired multidrug antifungal resistance in Candida lusitaniae during therapy. Antimicrob Agents Chemother 59:7715-7722. https://doi.org/10.1128/ AAC.02204-15
    • (2015) Antimicrob Agents Chemother , vol.59 , pp. 7715-7722
    • Asner, S.A.1    Giulieri, S.2    Diezi, M.3    Marchetti, O.4    Sanglard, D.5
  • 12
    • 84961169184 scopus 로고    scopus 로고
    • Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease
    • Hogan DA, Willger SD, Dolben EL, Hampton TH, Stanton BA, Morrison HG, Sogin ML, Czum J, Ashare A. 2016. Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease. PLoS One 11:e0149998. https://doi.org/10.1371/journal.pone.0149998
    • (2016) PLoS One , vol.11
    • Hogan, D.A.1    Willger, S.D.2    Dolben, E.L.3    Hampton, T.H.4    Stanton, B.A.5    Morrison, H.G.6    Sogin, M.L.7    Czum, J.8    Ashare, A.9
  • 15
    • 74249092511 scopus 로고    scopus 로고
    • Fungal sex and pathogenesis
    • Butler G. 2010. Fungal sex and pathogenesis. Clin Microbiol Rev 23: 140-159. https://doi.org/10.1128/CMR.00053-09
    • (2010) Clin Microbiol Rev , vol.23 , pp. 140-159
    • Butler, G.1
  • 16
    • 84896367522 scopus 로고    scopus 로고
    • The cryptic sexual strategies of human fungal pathogens
    • Ene IV, Bennett RJ. 2014. The cryptic sexual strategies of human fungal pathogens. Nat Rev Microbiol 12:239-251. https://doi.org/10.1038/ nrmicro3236
    • (2014) Nat Rev Microbiol , vol.12 , pp. 239-251
    • Ene, I.V.1    Bennett, R.J.2
  • 17
    • 77952946376 scopus 로고    scopus 로고
    • The evolution of sex: a perspective from the fungal kingdom
    • Lee SC, Ni M, Li W, Shertz C, Heitman J. 2010. The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 74: 298-340. https://doi.org/10.1128/MMBR.00005-10
    • (2010) Microbiol Mol Biol Rev , vol.74 , pp. 298-340
    • Lee, S.C.1    Ni, M.2    Li, W.3    Shertz, C.4    Heitman, J.5
  • 18
    • 67349234131 scopus 로고    scopus 로고
    • Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex
    • Reedy JL, Floyd AM, Heitman J. 2009. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr Biol 19:891-899. https://doi.org/10.1016/j.cub.2009.04.058
    • (2009) Curr Biol , vol.19 , pp. 891-899
    • Reedy, J.L.1    Floyd, A.M.2    Heitman, J.3
  • 19
    • 84920527784 scopus 로고    scopus 로고
    • Mechanism and regulation of meiotic recombination initiation
    • Lam I, Keeney S. 2014. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 7:a016634. https://doi .org/10.1101/cshperspect.a016634
    • (2014) Cold Spring Harb Perspect Biol , vol.7
    • Lam, I.1    Keeney, S.2
  • 20
    • 84960156570 scopus 로고    scopus 로고
    • Atypical ploidy cycles, Spo11, and the evolution of meiosis
    • Bloomfield G. 2016. Atypical ploidy cycles, Spo11, and the evolution of meiosis. Semin Cell Dev Biol 54:158-164. https://doi.org/10.1016/j .semcdb.2016.01.026
    • (2016) Semin Cell Dev Biol , vol.54 , pp. 158-164
    • Bloomfield, G.1
  • 21
    • 84894274027 scopus 로고    scopus 로고
    • Convergent evolution of a fused sexual cycle promotes the haploid lifestyle
    • Sherwood RK, Scaduto CM, Torres SE, Bennett RJ. 2014. Convergent evolution of a fused sexual cycle promotes the haploid lifestyle. Nature 506:387-390. https://doi.org/10.1038/nature12891
    • (2014) Nature , vol.506 , pp. 387-390
    • Sherwood, R.K.1    Scaduto, C.M.2    Torres, S.E.3    Bennett, R.J.4
  • 22
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. The new frontier of genome engineering with CRISPR-Cas9
    • Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. https:// doi.org/10.1126/science.1258096
    • (2014) Science , vol.346
    • Doudna, J.A.1    Charpentier, E.2
  • 23
    • 84940726919 scopus 로고    scopus 로고
    • A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families
    • Vyas VK, Barrasa MI, Fink GR. 2015. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv 1:e1500248. https://doi.org/10.1126/sciadv.1500248
    • (2015) Sci Adv , vol.1
    • Vyas, V.K.1    Barrasa, M.I.2    Fink, G.R.3
  • 24
    • 85002479532 scopus 로고    scopus 로고
    • Candida albicans gene deletion with a transient CRISPR-Cas9 system
    • Min K, Ichikawa Y, Woolford CA, Mitchell AP. 2016. Candida albicans gene deletion with a transient CRISPR-Cas9 system. mSphere 1:e00130-16. https://doi.org/10.1128/mSphere.00130-16
    • (2016) mSphere , vol.1
    • Min, K.1    Ichikawa, Y.2    Woolford, C.A.3    Mitchell, A.P.4
  • 25
    • 85027468902 scopus 로고    scopus 로고
    • Dramatic improvement of CRISPR/Cas9 editing in Candida albicans by increased single guide RNA expression
    • Ng H, Dean N. 2017. Dramatic improvement of CRISPR/Cas9 editing in Candida albicans by increased single guide RNA expression. mSphere 2:e00385-16. https://doi.org/10.1128/mSphere.00385-16
    • (2017) mSphere , vol.2
    • Ng, H.1    Dean, N.2
  • 26
    • 5044225522 scopus 로고    scopus 로고
    • The SAT1 flipper, an optimized tool for gene disruption in Candida albicans
    • Reuss O, Vik A, Kolter R, Morschhäuser J. 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127. https://doi.org/10.1016/j.gene.2004.06.021
    • (2004) Gene , vol.341 , pp. 119-127
    • Reuss, O.1    Vik, A.2    Kolter, R.3    Morschhäuser, J.4
  • 28
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262-1278. https://doi .org/10.1016/j.cell.2014.05.010
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 29
    • 7944231563 scopus 로고    scopus 로고
    • Non-homologous end-joining factors of Saccharomyces cerevisiae
    • Dudásová Z, Dudás A, Chovanec M. 2004. Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 28:581-601. https://doi.org/10.1016/j.femsre.2004.06.001
    • (2004) FEMS Microbiol Rev , vol.28 , pp. 581-601
    • Dudásová, Z.1    Dudás, A.2    Chovanec, M.3
  • 30
    • 84925141081 scopus 로고    scopus 로고
    • The Ku heterodimer: function in DNA repair and beyond
    • Fell VL, Schild-Poulter C. 2015. The Ku heterodimer: function in DNA repair and beyond. Mutat Res Rev Mutat Res 763:15-29. https://doi.org/ 10.1016/j.mrrev.2014.06.002
    • (2015) Mutat Res Rev Mutat Res , vol.763 , pp. 15-29
    • Fell, V.L.1    Schild-Poulter, C.2
  • 31
    • 34250624461 scopus 로고    scopus 로고
    • Gene targeting in filamentous fungi: the benefits of impaired repair
    • Krappmann S. 2007. Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21:25-29. https://doi.org/10.1016/j.fbr .2007.02.004
    • (2007) Fungal Biol Rev , vol.21 , pp. 25-29
    • Krappmann, S.1
  • 34
    • 85027462885 scopus 로고    scopus 로고
    • Use of RNA-protein complexes for genome editing in non-albicans Candida species
    • Grahl N, Demers EG, Crocker AW, Hogan DA. 2017. Use of RNA-protein complexes for genome editing in non-albicans Candida species. mSphere 2:e00218-17. https://doi.org/10.1128/mSphere.00218-17
    • (2017) mSphere , vol.2
    • Grahl, N.1    Demers, E.G.2    Crocker, A.W.3    Hogan, D.A.4
  • 35
    • 85016105655 scopus 로고    scopus 로고
    • The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data
    • Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. 2017. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 45:D592-D596. https://doi.org/10.1093/nar/ gkw924
    • (2017) Nucleic Acids Res , vol.45 , pp. D592-D596
    • Skrzypek, M.S.1    Binkley, J.2    Binkley, G.3    Miyasato, S.R.4    Simison, M.5    Sherlock, G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.