-
1
-
-
66649105285
-
Evolution of pathogenicity and sexual reproduction in eight Candida genomes
-
Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC, Birren BW, Kellis M. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657-662. https://doi.org/10.1038/nature08064
-
(2009)
Nature
, vol.459
, pp. 657-662
-
-
Butler, G.1
Rasmussen, M.D.2
Lin, M.F.3
Santos, M.A.4
Sakthikumar, S.5
Munro, C.A.6
Rheinbay, E.7
Grabherr, M.8
Forche, A.9
Reedy, J.L.10
Agrafioti, I.11
Arnaud, M.B.12
Bates, S.13
Brown, A.J.14
Brunke, S.15
Costanzo, M.C.16
Fitzpatrick, D.A.17
de Groot, P.W.18
Harris, D.19
Hoyer, L.L.20
Hube, B.21
Klis, F.M.22
Kodira, C.23
Lennard, N.24
Logue, M.E.25
Martin, R.26
Neiman, A.M.27
Nikolaou, E.28
Quail, M.A.29
Quinn, J.30
Santos, M.C.31
Schmitzberger, F.F.32
Sherlock, G.33
Shah, P.34
Silverstein, K.A.35
Skrzypek, M.S.36
Soll, D.37
Staggs, R.38
Stansfield, I.39
Stumpf, M.P.40
Sudbery, P.E.41
Srikantha, T.42
Zeng, Q.43
Berman, J.44
Berriman, M.45
Heitman, J.46
Gow, N.A.47
Lorenz, M.C.48
Birren, B.W.49
Kellis, M.50
more..
-
2
-
-
84865605029
-
A review of Candida species causing blood stream infection
-
Giri S, Kindo AJ. 2012. A review of Candida species causing blood stream infection. Indian J Med Microbiol 30:270-278. https://doi.org/10.4103/ 0255-0857.99484
-
(2012)
Indian J Med Microbiol
, vol.30
, pp. 270-278
-
-
Giri, S.1
Kindo, A.J.2
-
3
-
-
33744462070
-
Debaryomyces hansenii-an extremophilic yeast with biotechnological potential
-
Breuer U, Harms H. 2006. Debaryomyces hansenii-an extremophilic yeast with biotechnological potential. Yeast 23:415-437. https://doi.org/ 10.1002/yea.1374
-
(2006)
Yeast
, vol.23
, pp. 415-437
-
-
Breuer, U.1
Harms, H.2
-
5
-
-
0035245285
-
Candida lusitaniae: a cause of breakthrough fungemia in cancer patients
-
Minari A, Hachem R, Raad I. 2001. Candida lusitaniae: a cause of breakthrough fungemia in cancer patients. Clin Infect Dis 32:186-190. https:// doi.org/10.1086/318473
-
(2001)
Clin Infect Dis
, vol.32
, pp. 186-190
-
-
Minari, A.1
Hachem, R.2
Raad, I.3
-
6
-
-
0037440154
-
Candida lusitaniae infections in the era of fluconazole availability
-
Hawkins JL, Baddour LM. 2003. Candida lusitaniae infections in the era of fluconazole availability. Clin Infect Dis 36:e14-e18. https://doi.org/10 .1086/344651
-
(2003)
Clin Infect Dis
, vol.36
, pp. e14-e18
-
-
Hawkins, J.L.1
Baddour, L.M.2
-
7
-
-
51649122008
-
Candida lusitaniae fungemia in cancer patients: risk factors for amphotericin B failure and outcome
-
Atkinson BJ, Lewis RE, Kontoyiannis DP. 2008. Candida lusitaniae fungemia in cancer patients: risk factors for amphotericin B failure and outcome. Med Mycol 46:541-546. https://doi.org/10.1080/136937 80801968571
-
(2008)
Med Mycol
, vol.46
, pp. 541-546
-
-
Atkinson, B.J.1
Lewis, R.E.2
Kontoyiannis, D.P.3
-
8
-
-
84988874574
-
Age and gender affect the composition of fungal population of the human gastrointestinal tract
-
Strati F, Di Paola M, Stefanini I, Albanese D, Rizzetto L, Lionetti P, Calabrò A, Jousson O, Donati C, Cavalieri D, De Filippo C. 2016. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front Microbiol 7:1227. https://doi.org/10.3389/fmicb.2016 .01227
-
(2016)
Front Microbiol
, vol.7
, pp. 1227
-
-
Strati, F.1
Di Paola, M.2
Stefanini, I.3
Albanese, D.4
Rizzetto, L.5
Lionetti, P.6
Calabrò, A.7
Jousson, O.8
Donati, C.9
Cavalieri, D.10
De Filippo, C.11
-
10
-
-
84884693979
-
Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm
-
Papon N, Courdavault V, Clastre M, Bennett RJ. 2013. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog 9:e1003550. https://doi.org/10.1371/journal .ppat.1003550
-
(2013)
PLoS Pathog
, vol.9
-
-
Papon, N.1
Courdavault, V.2
Clastre, M.3
Bennett, R.J.4
-
11
-
-
84954491041
-
Acquired multidrug antifungal resistance in Candida lusitaniae during therapy
-
Asner SA, Giulieri S, Diezi M, Marchetti O, Sanglard D. 2015. Acquired multidrug antifungal resistance in Candida lusitaniae during therapy. Antimicrob Agents Chemother 59:7715-7722. https://doi.org/10.1128/ AAC.02204-15
-
(2015)
Antimicrob Agents Chemother
, vol.59
, pp. 7715-7722
-
-
Asner, S.A.1
Giulieri, S.2
Diezi, M.3
Marchetti, O.4
Sanglard, D.5
-
12
-
-
84961169184
-
Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease
-
Hogan DA, Willger SD, Dolben EL, Hampton TH, Stanton BA, Morrison HG, Sogin ML, Czum J, Ashare A. 2016. Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease. PLoS One 11:e0149998. https://doi.org/10.1371/journal.pone.0149998
-
(2016)
PLoS One
, vol.11
-
-
Hogan, D.A.1
Willger, S.D.2
Dolben, E.L.3
Hampton, T.H.4
Stanton, B.A.5
Morrison, H.G.6
Sogin, M.L.7
Czum, J.8
Ashare, A.9
-
14
-
-
85018159712
-
The emerging pathogen Candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation
-
Larkin E, Hager C, Chandra J, Mukherjee PK, Retuerto M, Salem I, Long L, Isham N, Kovanda L, Borroto-Esoda K, Wring S, Angulo D, Ghannoum M. 2017. The emerging pathogen Candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob Agents Chemother 61:e02396-16. https://doi.org/10 .1128/AAC.02396-16
-
(2017)
Antimicrob Agents Chemother
, vol.61
-
-
Larkin, E.1
Hager, C.2
Chandra, J.3
Mukherjee, P.K.4
Retuerto, M.5
Salem, I.6
Long, L.7
Isham, N.8
Kovanda, L.9
Borroto-Esoda, K.10
Wring, S.11
Angulo, D.12
Ghannoum, M.13
-
15
-
-
74249092511
-
Fungal sex and pathogenesis
-
Butler G. 2010. Fungal sex and pathogenesis. Clin Microbiol Rev 23: 140-159. https://doi.org/10.1128/CMR.00053-09
-
(2010)
Clin Microbiol Rev
, vol.23
, pp. 140-159
-
-
Butler, G.1
-
16
-
-
84896367522
-
The cryptic sexual strategies of human fungal pathogens
-
Ene IV, Bennett RJ. 2014. The cryptic sexual strategies of human fungal pathogens. Nat Rev Microbiol 12:239-251. https://doi.org/10.1038/ nrmicro3236
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 239-251
-
-
Ene, I.V.1
Bennett, R.J.2
-
17
-
-
77952946376
-
The evolution of sex: a perspective from the fungal kingdom
-
Lee SC, Ni M, Li W, Shertz C, Heitman J. 2010. The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 74: 298-340. https://doi.org/10.1128/MMBR.00005-10
-
(2010)
Microbiol Mol Biol Rev
, vol.74
, pp. 298-340
-
-
Lee, S.C.1
Ni, M.2
Li, W.3
Shertz, C.4
Heitman, J.5
-
18
-
-
67349234131
-
Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex
-
Reedy JL, Floyd AM, Heitman J. 2009. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr Biol 19:891-899. https://doi.org/10.1016/j.cub.2009.04.058
-
(2009)
Curr Biol
, vol.19
, pp. 891-899
-
-
Reedy, J.L.1
Floyd, A.M.2
Heitman, J.3
-
19
-
-
84920527784
-
Mechanism and regulation of meiotic recombination initiation
-
Lam I, Keeney S. 2014. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 7:a016634. https://doi .org/10.1101/cshperspect.a016634
-
(2014)
Cold Spring Harb Perspect Biol
, vol.7
-
-
Lam, I.1
Keeney, S.2
-
20
-
-
84960156570
-
Atypical ploidy cycles, Spo11, and the evolution of meiosis
-
Bloomfield G. 2016. Atypical ploidy cycles, Spo11, and the evolution of meiosis. Semin Cell Dev Biol 54:158-164. https://doi.org/10.1016/j .semcdb.2016.01.026
-
(2016)
Semin Cell Dev Biol
, vol.54
, pp. 158-164
-
-
Bloomfield, G.1
-
21
-
-
84894274027
-
Convergent evolution of a fused sexual cycle promotes the haploid lifestyle
-
Sherwood RK, Scaduto CM, Torres SE, Bennett RJ. 2014. Convergent evolution of a fused sexual cycle promotes the haploid lifestyle. Nature 506:387-390. https://doi.org/10.1038/nature12891
-
(2014)
Nature
, vol.506
, pp. 387-390
-
-
Sherwood, R.K.1
Scaduto, C.M.2
Torres, S.E.3
Bennett, R.J.4
-
22
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. https:// doi.org/10.1126/science.1258096
-
(2014)
Science
, vol.346
-
-
Doudna, J.A.1
Charpentier, E.2
-
23
-
-
84940726919
-
A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families
-
Vyas VK, Barrasa MI, Fink GR. 2015. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv 1:e1500248. https://doi.org/10.1126/sciadv.1500248
-
(2015)
Sci Adv
, vol.1
-
-
Vyas, V.K.1
Barrasa, M.I.2
Fink, G.R.3
-
24
-
-
85002479532
-
Candida albicans gene deletion with a transient CRISPR-Cas9 system
-
Min K, Ichikawa Y, Woolford CA, Mitchell AP. 2016. Candida albicans gene deletion with a transient CRISPR-Cas9 system. mSphere 1:e00130-16. https://doi.org/10.1128/mSphere.00130-16
-
(2016)
mSphere
, vol.1
-
-
Min, K.1
Ichikawa, Y.2
Woolford, C.A.3
Mitchell, A.P.4
-
25
-
-
85027468902
-
Dramatic improvement of CRISPR/Cas9 editing in Candida albicans by increased single guide RNA expression
-
Ng H, Dean N. 2017. Dramatic improvement of CRISPR/Cas9 editing in Candida albicans by increased single guide RNA expression. mSphere 2:e00385-16. https://doi.org/10.1128/mSphere.00385-16
-
(2017)
mSphere
, vol.2
-
-
Ng, H.1
Dean, N.2
-
26
-
-
5044225522
-
The SAT1 flipper, an optimized tool for gene disruption in Candida albicans
-
Reuss O, Vik A, Kolter R, Morschhäuser J. 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127. https://doi.org/10.1016/j.gene.2004.06.021
-
(2004)
Gene
, vol.341
, pp. 119-127
-
-
Reuss, O.1
Vik, A.2
Kolter, R.3
Morschhäuser, J.4
-
28
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262-1278. https://doi .org/10.1016/j.cell.2014.05.010
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
29
-
-
7944231563
-
Non-homologous end-joining factors of Saccharomyces cerevisiae
-
Dudásová Z, Dudás A, Chovanec M. 2004. Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 28:581-601. https://doi.org/10.1016/j.femsre.2004.06.001
-
(2004)
FEMS Microbiol Rev
, vol.28
, pp. 581-601
-
-
Dudásová, Z.1
Dudás, A.2
Chovanec, M.3
-
30
-
-
84925141081
-
The Ku heterodimer: function in DNA repair and beyond
-
Fell VL, Schild-Poulter C. 2015. The Ku heterodimer: function in DNA repair and beyond. Mutat Res Rev Mutat Res 763:15-29. https://doi.org/ 10.1016/j.mrrev.2014.06.002
-
(2015)
Mutat Res Rev Mutat Res
, vol.763
, pp. 15-29
-
-
Fell, V.L.1
Schild-Poulter, C.2
-
31
-
-
34250624461
-
Gene targeting in filamentous fungi: the benefits of impaired repair
-
Krappmann S. 2007. Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21:25-29. https://doi.org/10.1016/j.fbr .2007.02.004
-
(2007)
Fungal Biol Rev
, vol.21
, pp. 25-29
-
-
Krappmann, S.1
-
32
-
-
84878937349
-
Efficient gene targeting in a Candida guilliermondii non-homologous end-joining pathway-deficient strain
-
Foureau E, Courdavault V, Rojas LF, Dutilleul C, Simkin AJ, Crèche J, Atehortùa L, Giglioli-Guivarc'h N, Clastre M, Papon N. 2013. Efficient gene targeting in a Candida guilliermondii non-homologous end-joining pathway-deficient strain. Biotechnol Lett 35:1035-1043. https://doi.org/ 10.1007/s10529-013-1169-7
-
(2013)
Biotechnol Lett
, vol.35
, pp. 1035-1043
-
-
Foureau, E.1
Courdavault, V.2
Rojas, L.F.3
Dutilleul, C.4
Simkin, A.J.5
Crèche, J.6
Atehortùa, L.7
Giglioli-Guivarc'h, N.8
Clastre, M.9
Papon, N.10
-
33
-
-
33645223703
-
A versatile and efficient gene-targeting system for Aspergillus nidulans
-
Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR. 2006. A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557-1566. https://doi.org/ 10.1534/genetics.105.052563
-
(2006)
Genetics
, vol.172
, pp. 1557-1566
-
-
Nayak, T.1
Szewczyk, E.2
Oakley, C.E.3
Osmani, A.4
Ukil, L.5
Murray, S.L.6
Hynes, M.J.7
Osmani, S.A.8
Oakley, B.R.9
-
34
-
-
85027462885
-
Use of RNA-protein complexes for genome editing in non-albicans Candida species
-
Grahl N, Demers EG, Crocker AW, Hogan DA. 2017. Use of RNA-protein complexes for genome editing in non-albicans Candida species. mSphere 2:e00218-17. https://doi.org/10.1128/mSphere.00218-17
-
(2017)
mSphere
, vol.2
-
-
Grahl, N.1
Demers, E.G.2
Crocker, A.W.3
Hogan, D.A.4
-
35
-
-
85016105655
-
The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data
-
Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. 2017. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 45:D592-D596. https://doi.org/10.1093/nar/ gkw924
-
(2017)
Nucleic Acids Res
, vol.45
, pp. D592-D596
-
-
Skrzypek, M.S.1
Binkley, J.2
Binkley, G.3
Miyasato, S.R.4
Simison, M.5
Sherlock, G.6
|