-
1
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. https://doi.org/10.1126/science .1225829
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
2
-
-
84929666410
-
Expanding the biologist's toolkit with CRISPR-Cas9
-
Sternberg SH, Doudna JA. 2015. Expanding the biologist's toolkit with CRISPR-Cas9. Mol Cell 58:568-574. https://doi.org/10.1016/j.molcel.2015 .02.032
-
(2015)
Mol Cell
, vol.58
, pp. 568-574
-
-
Sternberg, S.H.1
Doudna, J.A.2
-
3
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347-355. https://doi.org/10 .1038/nbt.2842
-
(2014)
Nat Biotechnol
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
4
-
-
85017170951
-
CRISPR-Cas9: from a bacterial immune system to genome-edited human cells in clinical trials
-
Kick L, Kirchner M, Schneider S. 2017. CRISPR-Cas9: from a bacterial immune system to genome-edited human cells in clinical trials. Bioengineered 8:280-286. https://doi.org/10.1080/21655979.2017 .1299834
-
(2017)
Bioengineered
, vol.8
, pp. 280-286
-
-
Kick, L.1
Kirchner, M.2
Schneider, S.3
-
5
-
-
85016481783
-
Location, location, location: use of CRISPR-Cas9 for genome editing in human pathogenic fungi
-
Mitchell AP. 2017. Location, location, location: use of CRISPR-Cas9 for genome editing in human pathogenic fungi. PLoS Pathog 13:e1006209. https://doi.org/10.1371/journal.ppat.1006209
-
(2017)
PLoS Pathog
, vol.13
-
-
Mitchell, A.P.1
-
6
-
-
85015959907
-
CRISPR-Cas9, the new kid on the block of fungal molecular biology
-
Krappmann S. 2017. CRISPR-Cas9, the new kid on the block of fungal molecular biology. Med Mycol 55:16-23. https://doi.org/10.1093/mmy/ myw097
-
(2017)
Med Mycol
, vol.55
, pp. 16-23
-
-
Krappmann, S.1
-
7
-
-
84940726919
-
A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families
-
Vyas VK, Barrasa MI, Fink GR. 2015. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv 1:e1500248. https://doi.org/10.1126/sciadv.1500248
-
(2015)
Sci Adv
, vol.1
-
-
Vyas, V.K.1
Barrasa, M.I.2
Fink, G.R.3
-
8
-
-
85002479532
-
Candida albicans gene deletion with a transient CRISPR-Cas9 system
-
Min K, Ichikawa Y, Woolford CA, Mitchell AP. 2016. Candida albicans gene deletion with a transient CRISPR-Cas9 system. mSphere 1:e00130-16. https://doi.org/10.1128/mSphere.00130-16
-
(2016)
mSphere
, vol.1
-
-
Min, K.1
Ichikawa, Y.2
Woolford, C.A.3
Mitchell, A.P.4
-
9
-
-
85027434900
-
Development of a CRISPRCas9 system for efficient genome editing of Candida lusitaniae
-
Norton EL, Sherwood RK, Bennett RJ. 2017. Development of a CRISPRCas9 system for efficient genome editing of Candida lusitaniae. mSphere 2:e00217-17. https://doi.org/10.1128/mSphere.00217-17
-
(2017)
mSphere
, vol.2
-
-
Norton, E.L.1
Sherwood, R.K.2
Bennett, R.J.3
-
10
-
-
84992363288
-
Genome engineering in the yeast pathogen Candida glabrata using the CRISPRCas9 system
-
Enkler L, Richer D, Marchand AL, Ferrandon D, Jossinet F. 2016. Genome engineering in the yeast pathogen Candida glabrata using the CRISPRCas9 system. Sci Rep 6:35766. https://doi.org/10.1038/srep35766
-
(2016)
Sci Rep
, vol.6
-
-
Enkler, L.1
Richer, D.2
Marchand, A.L.3
Ferrandon, D.4
Jossinet, F.5
-
11
-
-
84901843996
-
Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
-
Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24:1020-1027. https://doi .org/10.1101/gr.171264.113
-
(2014)
Genome Res
, vol.24
, pp. 1020-1027
-
-
Ramakrishna, S.1
Kwaku Dad, A.B.2
Beloor, J.3
Gopalappa, R.4
Lee, S.K.5
Kim, H.6
-
12
-
-
84947255513
-
DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
-
Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162-1164. https://doi.org/10.1038/nbt.3389
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1162-1164
-
-
Woo, J.W.1
Kim, J.2
Kwon, S.I.3
Corvalán, C.4
Cho, S.W.5
Kim, H.6
Kim, S.G.7
Kim, S.T.8
Choe, S.9
Kim, J.S.10
-
13
-
-
84974659966
-
CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii
-
Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR. 2016. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810. https://doi.org/10.1038/srep27810
-
(2016)
Sci Rep
, vol.6
-
-
Shin, S.E.1
Lim, J.M.2
Koh, H.G.3
Kim, E.K.4
Kang, N.K.5
Jeon, S.6
Kwon, S.7
Shin, W.S.8
Lee, B.9
Hwangbo, K.10
Kim, J.11
Ye, S.H.12
Yun, J.Y.13
Seo, H.14
Oh, H.M.15
Kim, K.J.16
Kim, J.S.17
Jeong, W.J.18
Chang, Y.K.19
Jeong, B.R.20
more..
-
14
-
-
84978765496
-
CRISPR/Cas9 based genome editing of Penicillium chrysogenum
-
Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygård Y. 2016. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5:754-764. https://doi.org/10.1021/acssynbio.6b00082
-
(2016)
ACS Synth Biol
, vol.5
, pp. 754-764
-
-
Pohl, C.1
Kiel, J.A.2
Driessen, A.J.3
Bovenberg, R.A.4
Nygård, Y.5
-
15
-
-
84949320290
-
Candida lusitaniae MICs to the echinocandins are elevated but FKSmediated resistance is rare
-
Lockhart SR, Pham CD, Kuykendall RJ, Bolden CB, Cleveland AA. 2016. Candida lusitaniae MICs to the echinocandins are elevated but FKSmediated resistance is rare. Diagn Microbiol Infect Dis 84:52-54. https:// doi.org/10.1016/j.diagmicrobio.2015.08.012
-
(2016)
Diagn Microbiol Infect Dis
, vol.84
, pp. 52-54
-
-
Lockhart, S.R.1
Pham, C.D.2
Kuykendall, R.J.3
Bolden, C.B.4
Cleveland, A.A.5
-
16
-
-
84900825264
-
Candida glabrata: a review of its features and resistance
-
Rodrigues CF, Silva S, Henriques M. 2014. Candida glabrata: a review of its features and resistance. Eur J Clin Microbiol Infect Dis 33:673-688. https://doi.org/10.1007/s10096-013-2009-3
-
(2014)
Eur J Clin Microbiol Infect Dis
, vol.33
, pp. 673-688
-
-
Rodrigues, C.F.1
Silva, S.2
Henriques, M.3
-
17
-
-
84994764927
-
Multidrug-resistant Candida auris: "new kid on the block" in hospital-associated infections?
-
Chowdhary A, Voss A, Meis JF. 2016. Multidrug-resistant Candida auris: "new kid on the block" in hospital-associated infections? J Hosp Infect 94:209-212. https://doi.org/10.1016/j.jhin.2016.08.004
-
(2016)
J Hosp Infect
, vol.94
, pp. 209-212
-
-
Chowdhary, A.1
Voss, A.2
Meis, J.F.3
-
18
-
-
84954491041
-
Acquired multidrug antifungal resistance in Candida lusitaniae during therapy
-
Asner SA, Giulieri S, Diezi M, Marchetti O, Sanglard D. 2015. Acquired multidrug antifungal resistance in Candida lusitaniae during therapy. Antimicrob Agents Chemother 59:7715-7722. https://doi.org/10.1128/ AAC.02204-15
-
(2015)
Antimicrob Agents Chemother
, vol.59
, pp. 7715-7722
-
-
Asner, S.A.1
Giulieri, S.2
Diezi, M.3
Marchetti, O.4
Sanglard, D.5
-
19
-
-
51649122008
-
Candida lusitaniae fungemia in cancer patients: risk factors for amphotericin B failure and outcome
-
Atkinson BJ, Lewis RE, Kontoyiannis DP. 2008. Candida lusitaniae fungemia in cancer patients: risk factors for amphotericin B failure and outcome. Med Mycol 46:541-546. https://doi.org/10.1080/13693780801968571
-
(2008)
Med Mycol
, vol.46
, pp. 541-546
-
-
Atkinson, B.J.1
Lewis, R.E.2
Kontoyiannis, D.P.3
-
20
-
-
79957509202
-
Development of echinocandin resistance in Clavispora lusitaniae during caspofungin treatment
-
Desnos-Ollivier M, Moquet O, Chouaki T, Guérin AM, Dromer F. 2011. Development of echinocandin resistance in Clavispora lusitaniae during caspofungin treatment. J Clin Microbiol 49:2304-2306. https://doi.org/ 10.1128/JCM.00325-11
-
(2011)
J Clin Microbiol
, vol.49
, pp. 2304-2306
-
-
Desnos-Ollivier, M.1
Moquet, O.2
Chouaki, T.3
Guérin, A.M.4
Dromer, F.5
-
21
-
-
84908303450
-
Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes
-
Kaloriti D, Jacobsen M, Yin Z, Patterson M, Tillmann A, Smith DA, Cook E, You T, Grimm MJ, Bohovych I, Grebogi C, Segal BH, Gow NA, Haynes K, Quinn J, Brown AJ. 2014. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes. mBio 5:e01334-14. https://doi.org/10.1128/mBio.01334-14
-
(2014)
mBio
, vol.5
-
-
Kaloriti, D.1
Jacobsen, M.2
Yin, Z.3
Patterson, M.4
Tillmann, A.5
Smith, D.A.6
Cook, E.7
You, T.8
Grimm, M.J.9
Bohovych, I.10
Grebogi, C.11
Segal, B.H.12
Gow, N.A.13
Haynes, K.14
Quinn, J.15
Brown, A.J.16
-
22
-
-
84874233056
-
Fungicidal drugs induce a common oxidative-damage cellular death pathway
-
Belenky P, Camacho D, Collins JJ. 2013. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep 3:350-358. https://doi.org/10.1016/j.celrep.2012.12.021
-
(2013)
Cell Rep
, vol.3
, pp. 350-358
-
-
Belenky, P.1
Camacho, D.2
Collins, J.J.3
-
23
-
-
0025183708
-
Basic local alignment search tool
-
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403-410. https://doi.org/10.1016/ S0022-2836(05)80360-2
-
(1990)
J Mol Biol
, vol.215
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
24
-
-
85016105655
-
The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data
-
Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. 2017. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 45:D592-D596. https://doi.org/10.1093/nar/ gkw924
-
(2017)
Nucleic Acids Res
, vol.45
, pp. D592-D596
-
-
Skrzypek, M.S.1
Binkley, J.2
Binkley, G.3
Miyasato, S.R.4
Simison, M.5
Sherlock, G.6
-
25
-
-
47049104770
-
High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p
-
Cuéllar-Cruz M, Briones-Martin-del-Campo M, Cañas-Villamar I, Montalvo-Arredondo J, Riego-Ruiz L, Castaño I, De Las Peñas A. 2008. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 7:814-825. https://doi.org/10.1128/EC.00011-08
-
(2008)
Eukaryot Cell
, vol.7
, pp. 814-825
-
-
Cuéllar-Cruz, M.1
Briones-Martin-del-Campo, M.2
Cañas-Villamar, I.3
Montalvo-Arredondo, J.4
Riego-Ruiz, L.5
Castaño, I.6
De Las Peñas, A.7
-
26
-
-
80054078476
-
Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
-
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10 .1038/msb.2011.75
-
(2011)
Mol Syst Biol
, vol.7
, pp. 539
-
-
Sievers, F.1
Wilm, A.2
Dineen, D.3
Gibson, T.J.4
Karplus, K.5
Li, W.6
Lopez, R.7
McWilliam, H.8
Remmert, M.9
Söding, J.10
Thompson, J.D.11
Higgins, D.G.12
-
27
-
-
12844257548
-
CaNAT1, a heterologous dominant selectable marker for transformation of Candida albicans and other pathogenic Candida species
-
Shen J, Guo W, Köhler JR. 2005. CaNAT1, a heterologous dominant selectable marker for transformation of Candida albicans and other pathogenic Candida species. Infect Immun 73:1239-1242. https://doi .org/10.1128/IAI.73.2.1239-1242.2005
-
(2005)
Infect Immun
, vol.73
, pp. 1239-1242
-
-
Shen, J.1
Guo, W.2
Köhler, J.R.3
-
28
-
-
84926433352
-
Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design
-
Farboud B, Meyer BJ. 2015. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics 199: 959-971. https://doi.org/10.1534/genetics.115.175166
-
(2015)
Genetics
, vol.199
, pp. 959-971
-
-
Farboud, B.1
Meyer, B.J.2
-
29
-
-
84992053169
-
First hospital outbreak of the globally emerging Candida auris in a European hospital
-
Schelenz S, Hagen F, Rhodes JL, Abdolrasouli A, Chowdhary A, Hall A, Ryan L, Shackleton J, Trimlett R, Meis JF, Armstrong-James D, Fisher MC. 2016. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control 5:35. https://doi .org/10.1186/s13756-016-0132-5
-
(2016)
Antimicrob Resist Infect Control
, vol.5
, pp. 35
-
-
Schelenz, S.1
Hagen, F.2
Rhodes, J.L.3
Abdolrasouli, A.4
Chowdhary, A.5
Hall, A.6
Ryan, L.7
Shackleton, J.8
Trimlett, R.9
Meis, J.F.10
Armstrong-James, D.11
Fisher, M.C.12
-
30
-
-
84979709470
-
Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation
-
Sharma C, Kumar N, Pandey R, Meis JF, Chowdhary A. 2016. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect 13:77-82. https://doi.org/10.1016/j.nmni.2016.07.003
-
(2016)
New Microbes New Infect
, vol.13
, pp. 77-82
-
-
Sharma, C.1
Kumar, N.2
Pandey, R.3
Meis, J.F.4
Chowdhary, A.5
-
31
-
-
84924997003
-
Electroporation-delivered fluorescent protein biosensors for probing molecular activities in cells without genetic encoding
-
Sun C, Ouyang M, Cao Z, Ma S, Alqublan H, Sriranganathan N, Wang Y, Lu C. 2014. Electroporation-delivered fluorescent protein biosensors for probing molecular activities in cells without genetic encoding. Chem Commun 50:11536-11539. https://doi.org/10.1039/c4cc04730c
-
(2014)
Chem Commun
, vol.50
, pp. 11536-11539
-
-
Sun, C.1
Ouyang, M.2
Cao, Z.3
Ma, S.4
Alqublan, H.5
Sriranganathan, N.6
Wang, Y.7
Lu, C.8
-
32
-
-
0032700177
-
Transformation of Candida albicans by electroporation
-
De Backer MD, Maes D, Vandoninck S, Logghe M, Contreras R, Luyten WH. 1999. Transformation of Candida albicans by electroporation. Yeast 15: 1609-1618. https://doi.org/10.1002/(SICI)1097-0061(199911) 15:15<1609::AID-YEA485>3.0.CO;2-Y
-
(1999)
Yeast
, vol.15
, pp. 1609-1618
-
-
De Backer, M.D.1
Maes, D.2
Vandoninck, S.3
Logghe, M.4
Contreras, R.5
Luyten, W.H.6
|