-
1
-
-
85014052295
-
Flexible expressed region analysis for RNA-seq with derfinder
-
Collado-Torres L, Nellore A, Frazee AC, Wilks C, Love MI, Langmead B, Irizarry RA, Leek JT, Jaffe AE. Flexible expressed region analysis for RNA-seq with derfinder. Nucleic Acids Res. 2016:852. doi: 10.1093/nar/gkw852.
-
(2016)
Nucleic Acids Res.
, pp. 852
-
-
Collado-Torres, L.1
Nellore, A.2
Frazee, A.C.3
Wilks, C.4
Love, M.I.5
Langmead, B.6
Irizarry, R.A.7
Leek, J.T.8
Jaffe, A.E.9
-
2
-
-
84865527768
-
Detecting differential usage of exons from RNA-seq data
-
Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012; 22(10):2008-17. doi: 10.1101/gr.133744.111.
-
(2012)
Genome Res
, vol.22
, Issue.10
, pp. 2008-2017
-
-
Anders, S.1
Reyes, A.2
Huber, W.3
-
3
-
-
84966283954
-
Near-optimal probabilistic RNA-seq quantification
-
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5):525-7. doi: 10.1038/nbt.3519.
-
(2016)
Nat Biotechnol
, vol.34
, Issue.5
, pp. 525-527
-
-
Bray, N.L.1
Pimentel, H.2
Melsted, P.3
Pachter, L.4
-
4
-
-
84897397058
-
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
-
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics (Oxford, England). 2014; 30(7):923-30. doi: 10.1093/bioinformatics/btt656.
-
(2014)
Bioinformatics (Oxford, England)
, vol.30
, Issue.7
, pp. 923-930
-
-
Liao, Y.1
Smyth, G.K.2
Shi, W.3
-
5
-
-
79961123152
-
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
-
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011; 12(1):323. doi: 10.1186/1471-2105-12-323.
-
(2011)
BMC Bioinforma
, vol.12
, Issue.1
, pp. 323
-
-
Li, B.1
Dewey, C.N.2
-
6
-
-
85014549629
-
Salmon provides fast and bias-aware quantification of transcript expression
-
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods. 2017; 14(4):417-419. doi: 10.1038/nmeth.4197.
-
(2017)
Nature Methods
, vol.14
, Issue.4
, pp. 417-419
-
-
Patro, R.1
Duggal, G.2
Love, M.I.3
Irizarry, R.A.4
Kingsford, C.5
-
7
-
-
84867021118
-
Alternative α-synuclein transcript usage as a convergent mechanism in Parkinson's disease pathology
-
Rhinn H, Qiang L, Yamashita T, Rhee D, Zolin A, Vanti W, Abeliovich A, Dauer W, Przedborski S, Spillantini MG, Singleton AB, Polymeropoulos MH, Satake W, Simon-Sanchez J, Nalls MA, Wan OW, Chung KK, Burre J, Abeliovich A, Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK, Lesnick TG, Moran LB, Zhang Y, James M, Middleton FA, Davis RL, Zheng B, Hudson NJ, Reverter A, Dalrymple BP, Presson AP, D'Haeseleer P, Liang S, Somogyi R, Margolin AA, Reverter A, Hudson NJ, Nagaraj SH, Perez-Enciso M, Dalrymple BP, Myers AJ, Braak H, Webster JA, Kim J, Kuo YM, Mosharov EV, Park SS, Schulz EM, Lee D, Alberio T, Gomez-Santos C, Freedman ML, Lewis BP, Burge CB, Bartel DP, Vasudevan S, Tong Y, Steitz JA, Junn E, Sylvestre J, Margeot A, Jacq C, Dujardin G, Corral-Debrinski M, Corral-Debrinski M, Blugeon C, Jacq C, Russo A, Kamp F, Subramanian A, Goecks J, Nekrutenko A, Taylor J, Langmead B, Trapnell C, Pop M, Salzberg SL, Rhinn H, Qiang L, Yu W, Andreadis A, Luo M, Baas PW, Staropoli JF, Vonsattel JP, Amaya MPD, Keller CE, Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL. Alternative α-synuclein transcript usage as a convergent mechanism in Parkinson's disease pathology. Nat Commun. 2012; 3:1084. doi: 10.1038/ncomms2032.
-
(2012)
Nat Commun
, vol.3
, pp. 1084
-
-
Rhinn, H.1
Qiang, L.2
Yamashita, T.3
Rhee, D.4
Zolin, A.5
Vanti, W.6
Abeliovich, A.7
Dauer, W.8
Przedborski, S.9
Spillantini, M.G.10
Singleton, A.B.11
Polymeropoulos, M.H.12
Satake, W.13
Simon-Sanchez, J.14
Nalls, M.A.15
Wan, O.W.16
Chung, K.K.17
Burre, J.18
Abeliovich, A.19
Devi, L.20
Raghavendran, V.21
Prabhu, B.M.22
Avadhani, N.G.23
Anandatheerthavarada, H.K.24
Lesnick, T.G.25
Moran, L.B.26
Zhang, Y.27
James, M.28
Middleton, F.A.29
Davis, R.L.30
Zheng, B.31
Hudson, N.J.32
Reverter, A.33
Dalrymple, B.P.34
Presson, A.P.35
D'Haeseleer, P.36
Liang, S.37
Somogyi, R.38
Margolin, A.A.39
Reverter, A.40
Hudson, N.J.41
Nagaraj, S.H.42
Perez-Enciso, M.43
Dalrymple, B.P.44
Myers, A.J.45
Braak, H.46
Webster, J.A.47
Kim, J.48
Kuo, Y.M.49
Mosharov, E.V.50
Park, S.S.51
Schulz, E.M.52
Lee, D.53
Alberio, T.54
Gomez-Santos, C.55
Freedman, M.L.56
Lewis, B.P.57
Burge, C.B.58
Bartel, D.P.59
Vasudevan, S.60
Tong, Y.61
Steitz, J.A.62
Junn, E.63
Sylvestre, J.64
Margeot, A.65
Jacq, C.66
Dujardin, G.67
Corral-Debrinski, M.68
Corral-Debrinski, M.69
Blugeon, C.70
Jacq, C.71
Russo, A.72
Kamp, F.73
Subramanian, A.74
Goecks, J.75
Nekrutenko, A.76
Taylor, J.77
Langmead, B.78
Trapnell, C.79
Pop, M.80
Salzberg, S.L.81
Rhinn, H.82
Qiang, L.83
Yu, W.84
Andreadis, A.85
Luo, M.86
Baas, P.W.87
Staropoli, J.F.88
Vonsattel, J.P.89
Amaya, M.P.D.90
Keller, C.E.91
Gruber, A.R.92
Lorenz, R.93
Bernhart, S.H.94
Neubock, R.95
Hofacker, I.L.96
more..
-
8
-
-
84907057471
-
AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer
-
Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, Lotan TL, Zheng Q, De Marzo AM, Isaacs JT, Isaacs WB, Nadal R, Paller CJ, Denmeade SR, Carducci MA, Eisenberger MA, Luo J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014; 371(11):1028-38. doi: 10.1056/NEJMoa1315815.
-
(2014)
N Engl J Med
, vol.371
, Issue.11
, pp. 1028-1038
-
-
Antonarakis, E.S.1
Lu, C.2
Wang, H.3
Luber, B.4
Nakazawa, M.5
Roeser, J.C.6
Chen, Y.7
Mohammad, T.A.8
Chen, Y.9
Fedor, H.L.10
Lotan, T.L.11
Zheng, Q.12
De Marzo, A.M.13
Isaacs, J.T.14
Isaacs, W.B.15
Nadal, R.16
Paller, C.J.17
Denmeade, S.R.18
Carducci, M.A.19
Eisenberger, M.A.20
Luo, J.21
more..
-
9
-
-
84968903135
-
Coming of age: ten years of next-generation sequencing technologies
-
Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016; 17(6):333-51. doi: 10.1038/nrg.2016.49.
-
(2016)
Nat Rev Genet
, vol.17
, Issue.6
, pp. 333-351
-
-
Goodwin, S.1
McPherson, J.D.2
McCombie, W.R.3
-
10
-
-
85010908291
-
Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
-
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016; 4:1521. doi: 10.12688/f1000research.7563.2.
-
(2016)
F1000Research
, vol.4
, pp. 1521
-
-
Soneson, C.1
Love, M.I.2
Robinson, M.D.3
-
11
-
-
77953018202
-
mRNA-seq with agnostic splice site discovery for nervous system transcriptomics tested in chronic pain
-
Hammer P, Banck MS, Amberg R, Wang C, Petznick G, Luo S, Khrebtukova I, Schroth GP, Beyerlein P, Beutler AS. mRNA-seq with agnostic splice site discovery for nervous system transcriptomics tested in chronic pain. Genome Res. 2010; 20(6):847-60. doi: 10.1101/gr.101204.109.
-
(2010)
Genome Res
, vol.20
, Issue.6
, pp. 847-860
-
-
Hammer, P.1
Banck, M.S.2
Amberg, R.3
Wang, C.4
Petznick, G.5
Luo, S.6
Khrebtukova, I.7
Schroth, G.P.8
Beyerlein, P.9
Beutler, A.S.10
-
12
-
-
84896735766
-
voom: precision weights unlock linear model analysis tools for RNA-seq read counts
-
Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014; 15(2):29. doi: 10.1186/gb-2014-15-2-r29.
-
(2014)
Genome Biol
, vol.15
, Issue.2
, pp. 29
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
Smyth, G.K.4
-
13
-
-
33845756231
-
A two-step multiple comparison procedure for a large number of tests and multiple treatments
-
Jiang H, Doerge RW. A two-step multiple comparison procedure for a large number of tests and multiple treatments. Stat Appl Genet Mol Biol. 2006; 5:28. doi: 10.2202/1544-6115.1223.
-
(2006)
Stat Appl Genet Mol Biol
, vol.5
, pp. 28
-
-
Jiang, H.1
Doerge, R.W.2
-
14
-
-
64549088392
-
A flexible two-stage procedure for identifying gene sets that are differentially expressed
-
Heller R, Manduchi E, Grant GR, Ewens WJ. A flexible two-stage procedure for identifying gene sets that are differentially expressed. Bioinformatics (Oxford, England). 2009; 25(8):1019-25. doi: 10.1093/bioinformatics/btp076.
-
(2009)
Bioinformatics (Oxford, England)
, vol.25
, Issue.8
, pp. 1019-1025
-
-
Heller, R.1
Manduchi, E.2
Grant, G.R.3
Ewens, W.J.4
-
15
-
-
84891829779
-
Selective inference on multiple families of hypotheses
-
Benjamini Y, Bogomolov M. Selective inference on multiple families of hypotheses. J R Stat Soc Ser B (Stat Methodol). 2014; 76(1):297-318. doi: 10.1111/rssb.12028.
-
(2014)
J R Stat Soc Ser B (Stat Methodol)
, vol.76
, Issue.1
, pp. 297-318
-
-
Benjamini, Y.1
Bogomolov, M.2
-
16
-
-
13644271264
-
A two-step strategy for detecting differential gene expression in cDNA microarray data
-
Lu Y, Zhu J, Liu P. A two-step strategy for detecting differential gene expression in cDNA microarray data. Curr Genet. 2005; 47(2):121-31. doi: 10.1007/s00294-004-0551-3.
-
(2005)
Curr Genet
, vol.47
, Issue.2
, pp. 121-131
-
-
Lu, Y.1
Zhu, J.2
Liu, P.3
-
17
-
-
56049099059
-
Screening for partial conjunction hypotheses
-
Benjamini Y, Heller R. Screening for partial conjunction hypotheses. Biometrics. 2008; 64(4):1215-22. doi: 10.1111/j.1541-0420.2007.00984.x.
-
(2008)
Biometrics
, vol.64
, Issue.4
, pp. 1215-1222
-
-
Benjamini, Y.1
Heller, R.2
-
18
-
-
0035733108
-
The control of the false discovery rate in multiple testing under dependency
-
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001; 29(4):1165-88. doi: 10.1214/aos/1013699998.
-
(2001)
Ann Stat
, vol.29
, Issue.4
, pp. 1165-1188
-
-
Benjamini, Y.1
Yekutieli, D.2
-
19
-
-
0037433040
-
Identifying differentially expressed genes using false discovery rate controlling procedures
-
Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics (Oxford, England). 2003; 19(3):368-75.
-
(2003)
Bioinformatics (Oxford, England)
, vol.19
, Issue.3
, pp. 368-375
-
-
Reiner, A.1
Yekutieli, D.2
Benjamini, Y.3
-
20
-
-
84920859614
-
A multiple testing method for hypotheses structured in a directed acyclic graph
-
Meijer RJ, Goeman JJ. A multiple testing method for hypotheses structured in a directed acyclic graph. Biom J. 2015; 57(1):123-43. doi: 10.1002/bimj.201300253.
-
(2015)
Biom J
, vol.57
, Issue.1
, pp. 123-143
-
-
Meijer, R.J.1
Goeman, J.J.2
-
21
-
-
84995767838
-
Multiple testing of gene sets from Gene Ontology: possibilities and pitfalls
-
Meijer RJ, Goeman JJ. Multiple testing of gene sets from Gene Ontology: possibilities and pitfalls. Brief Bioinform. 2016; 17(5):808-18. doi: 10.1093/bib/bbv091.
-
(2016)
Brief Bioinform
, vol.17
, Issue.5
, pp. 808-818
-
-
Meijer, R.J.1
Goeman, J.J.2
-
22
-
-
84955102551
-
A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta
-
Moeys S, Frenkel J, Lembke C, Gillard JTF, Devos V, Van den Berge K, Bouillon B, Huysman MJJ, De Decker S, Scharf J, Bones A, Brembu T, Winge P, Sabbe K, Vuylsteke M, Clement L, De Veylder L, Pohnert G, Vyverman W. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep. 2016; 6:19252. doi: 10.1038/srep19252.
-
(2016)
Sci Rep
, vol.6
, pp. 19252
-
-
Moeys, S.1
Frenkel, J.2
Lembke, C.3
Gillard, J.T.F.4
Devos, V.5
Van den Berge, K.6
Bouillon, B.7
Huysman, M.J.J.8
De Decker, S.9
Scharf, J.10
Bones, A.11
Brembu, T.12
Winge, P.13
Sabbe, K.14
Vuylsteke, M.15
Clement, L.16
De Veylder, L.17
Pohnert, G.18
Vyverman, W.19
-
23
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):25. doi: 10.1186/gb-2010-11-3-r25.
-
(2010)
Genome Biol
, vol.11
, Issue.3
, pp. 25
-
-
Robinson, M.D.1
Oshlack, A.2
-
24
-
-
84956574798
-
Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage
-
Soneson C, Matthes KL, Nowicka M, Law CW, Robinson MD. Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage. Genome Biol. 2016; 17(1):12. doi: 10.1186/s13059-015-0862-3.
-
(2016)
Genome Biol
, vol.17
, Issue.1
, pp. 12
-
-
Soneson, C.1
Matthes, K.L.2
Nowicka, M.3
Law, C.W.4
Robinson, M.D.5
-
25
-
-
84862777104
-
RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings
-
Ren S, Peng Z, Mao JH, Yu Y, Yin C, Gao X, Cui Z, Zhang J, Yi K, Xu W, Chen C, Wang F, Guo X, Lu J, Yang J, Wei M, Tian Z, Guan Y, Tang L, Xu C, Wang L, Gao X, Tian W, Wang J, Yang H, Wang J, Sun Y. RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res. 2012; 22(5):806-21. doi: 10.1038/cr.2012.30.
-
(2012)
Cell Res
, vol.22
, Issue.5
, pp. 806-821
-
-
Ren, S.1
Peng, Z.2
Mao, J.H.3
Yu, Y.4
Yin, C.5
Gao, X.6
Cui, Z.7
Zhang, J.8
Yi, K.9
Xu, W.10
Chen, C.11
Wang, F.12
Guo, X.13
Lu, J.14
Yang, J.15
Wei, M.16
Tian, Z.17
Guan, Y.18
Tang, L.19
Xu, C.20
Wang, L.21
Gao, X.22
Tian, W.23
Wang, J.24
Yang, H.25
Wang, J.26
Sun, Y.27
more..
-
26
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England). 2010; 26(1):139-40. doi: 10.1093/bioinformatics/btp616.
-
(2010)
Bioinformatics (Oxford, England)
, vol.26
, Issue.1
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
27
-
-
77953095629
-
Independent filtering increases detection power for high-throughput experiments
-
Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010; 107(21):9546-51. doi: 10.1073/pnas.0914005107.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.21
, pp. 9546-9551
-
-
Bourgon, R.1
Gentleman, R.2
Huber, W.3
-
28
-
-
84879488128
-
Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene
-
Gonzàlez-Porta M, Frankish A, Rung J, Harrow J, Brazma A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 2013; 14(7):70. doi: 10.1186/gb-2013-14-7-r70.
-
(2013)
Genome Biol
, vol.14
, Issue.7
, pp. 70
-
-
Gonzàlez-Porta, M.1
Frankish, A.2
Rung, J.3
Harrow, J.4
Brazma, A.5
-
29
-
-
35948981637
-
Cytochrome P450 3A5 is highly expressed in normal prostate cells but absent in prostate cancer
-
Leskelä S, Honrado E, Montero-Conde C, Landa I, Cascón A, Letón R, Talavera P, Cózar JM, Concha A, Robledo M, Rodríguez-Antona C. Cytochrome P450 3A5 is highly expressed in normal prostate cells but absent in prostate cancer. Endocr Relat Cancer. 2007; 14(3):645-54. doi: 10.1677/ERC-07-0078.
-
(2007)
Endocr Relat Cancer
, vol.14
, Issue.3
, pp. 645-654
-
-
Leskelä, S.1
Honrado, E.2
Montero-Conde, C.3
Landa, I.4
Cascón, A.5
Letón, R.6
Talavera, P.7
Cózar, J.M.8
Concha, A.9
Robledo, M.10
Rodríguez-Antona, C.11
-
30
-
-
84929645865
-
Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment
-
Brohee L, Demine S, Willems J, Arnould T, Colige AC, Deroanne CF. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015; 6(13):11264-80. doi: 10.18632/oncotarget.3595.
-
(2015)
Oncotarget
, vol.6
, Issue.13
, pp. 11264-11280
-
-
Brohee, L.1
Demine, S.2
Willems, J.3
Arnould, T.4
Colige, A.C.5
Deroanne, C.F.6
-
31
-
-
70349545839
-
Identification of seven new prostate cancer susceptibility loci through a genome-wide association study
-
Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G, Muir K, Hopper JL, Henderson BE, Haiman CA, Schleutker J, Hamdy FC, Neal DE, Donovan JL, Stanford JL, Ostrander EA, Ingles SA, John EM, Thibodeau SN, Schaid D, Park JY, Spurdle A, Clements J, Dickinson JL, Maier C, Vogel W, Dörk T, Rebbeck TR, Cooney KA, Cannon-Albright L, Chappuis PO, Hutter P, Zeegers M, Kaneva R, Zhang HW, Lu YJ, Foulkes WD, English DR, Leongamornlert DA, Tymrakiewicz M, Morrison J, Ardern-Jones AT, Hall AL, O'Brien LT, Wilkinson RA, Saunders EJ, Page EC, Sawyer EJ, Edwards SM, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As N, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Cooper CS, Southey MC, Lophatananon A, Liu JF, Kolonel LN, Le Marchand L, Wahlfors T, Tammela TL, Auvinen A, Lewis SJ, Cox A, FitzGerald LM, Koopmeiners JS, Karyadi DM, Kwon EM, Stern MC, Corral R, Joshi AD, Shahabi A, McDonnell SK, Sellers TA, Pow-Sang J, Chambers S, Aitken J, Gardiner RAF, Batra J, Kedda MA, Lose F, Polanowski A, Patterson B, Serth J, Meyer A, Luedeke M, Stefflova K, Ray AM, Lange EM, Farnham J, Khan H, Slavov C, Mitkova A, Cao G, Easton DF. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet. 2009; 41(10):1116-21. doi: 10.1038/ng.450.
-
(2009)
Nat Genet
, vol.41
, Issue.10
, pp. 1116-1121
-
-
Eeles, R.A.1
Kote-Jarai, Z.2
Al Olama, A.A.3
Giles, G.G.4
Guy, M.5
Severi, G.6
Muir, K.7
Hopper, J.L.8
Henderson, B.E.9
Haiman, C.A.10
Schleutker, J.11
Hamdy, F.C.12
Neal, D.E.13
Donovan, J.L.14
Stanford, J.L.15
Ostrander, E.A.16
Ingles, S.A.17
John, E.M.18
Thibodeau, S.N.19
Schaid, D.20
Park, J.Y.21
Spurdle, A.22
Clements, J.23
Dickinson, J.L.24
Maier, C.25
Vogel, W.26
Dörk, T.27
Rebbeck, T.R.28
Cooney, K.A.29
Cannon-Albright, L.30
Chappuis, P.O.31
Hutter, P.32
Zeegers, M.33
Kaneva, R.34
Zhang, H.W.35
Lu, Y.J.36
Foulkes, W.D.37
English, D.R.38
Leongamornlert, D.A.39
Tymrakiewicz, M.40
Morrison, J.41
Ardern-Jones, A.T.42
Hall, A.L.43
O'Brien, L.T.44
Wilkinson, R.A.45
Saunders, E.J.46
Page, E.C.47
Sawyer, E.J.48
Edwards, S.M.49
Dearnaley, D.P.50
Horwich, A.51
Huddart, R.A.52
Khoo, V.S.53
Parker, C.C.54
Van As, N.55
Woodhouse, C.J.56
Thompson, A.57
Christmas, T.58
Ogden, C.59
Cooper, C.S.60
Southey, M.C.61
Lophatananon, A.62
Liu, J.F.63
Kolonel, L.N.64
Le Marchand, L.65
Wahlfors, T.66
Tammela, T.L.67
Auvinen, A.68
Lewis, S.J.69
Cox, A.70
FitzGerald, L.M.71
Koopmeiners, J.S.72
Karyadi, D.M.73
Kwon, E.M.74
Stern, M.C.75
Corral, R.76
Joshi, A.D.77
Shahabi, A.78
McDonnell, S.K.79
Sellers, T.A.80
Pow-Sang, J.81
Chambers, S.82
Aitken, J.83
Gardiner, R.A.F.84
Batra, J.85
Kedda, M.A.86
Lose, F.87
Polanowski, A.88
Patterson, B.89
Serth, J.90
Meyer, A.91
Luedeke, M.92
Stefflova, K.93
Ray, A.M.94
Lange, E.M.95
Farnham, J.96
Khan, H.97
Slavov, C.98
Mitkova, A.99
more..
-
32
-
-
79251483149
-
Inherited genetic markers discovered to date are able to identify a significant number of men at considerably elevated risk for prostate cancer
-
Sun J, Kader AK, Hsu FC, Kim ST, Zhu Y, Turner AR, Jin T, Zhang Z, Adolfsson J, Wiklund F, Zheng SL, Isaacs WB, Grönberg H, Xu J. Inherited genetic markers discovered to date are able to identify a significant number of men at considerably elevated risk for prostate cancer. Prostate. 2011; 71(4):421-30. doi: 10.1002/pros.21256.
-
(2011)
Prostate
, vol.71
, Issue.4
, pp. 421-430
-
-
Sun, J.1
Kader, A.K.2
Hsu, F.C.3
Kim, S.T.4
Zhu, Y.5
Turner, A.R.6
Jin, T.7
Zhang, Z.8
Adolfsson, J.9
Wiklund, F.10
Zheng, S.L.11
Isaacs, W.B.12
Grönberg, H.13
Xu, J.14
-
33
-
-
85003441754
-
Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation
-
Love MI, Hogenesch JB, Irizarry RA. Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nat Biotechnol. 2016. doi: 10.1038/nbt.3682.
-
(2016)
Nat Biotechnol.
-
-
Love, M.I.1
Hogenesch, J.B.2
Irizarry, R.A.3
-
34
-
-
84951746644
-
Many phenotypes without many false discoveries: error controlling strategies for multitrait association studies
-
Peterson CB, Bogomolov M, Benjamini Y, Sabatti C. Many phenotypes without many false discoveries: error controlling strategies for multitrait association studies. Genet Epidemiol. 2016; 40(1):45-56. doi: 10.1002/gepi.21942.
-
(2016)
Genet Epidemiol
, vol.40
, Issue.1
, pp. 45-56
-
-
Peterson, C.B.1
Bogomolov, M.2
Benjamini, Y.3
Sabatti, C.4
-
35
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodological). 1995; 57(1):289-300.
-
(1995)
J R Stat Soc Series B (Methodological)
, vol.57
, Issue.1
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
36
-
-
33847290868
-
FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis
-
Reiner-Benaim A. FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis. Biom J Biom Z. 2007; 49(1):107-26.
-
(2007)
Biom J Biom Z
, vol.49
, Issue.1
, pp. 107-126
-
-
Reiner-Benaim, A.1
-
37
-
-
84890829458
-
Modified sequentially rejective multiple test procedures
-
Shaffer JP. Modified sequentially rejective multiple test procedures. J Am Stat Assoc. 1986; 81(395):826. doi: 10.2307/2289016.
-
(1986)
J Am Stat Assoc
, vol.81
, Issue.395
, pp. 826
-
-
Shaffer, J.P.1
-
38
-
-
0002294347
-
A simple sequentially rejective multiple test procedure
-
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979; 6(2):65-70.
-
(1979)
Scand J Stat
, vol.6
, Issue.2
, pp. 65-70
-
-
Holm, S.1
-
39
-
-
81055124271
-
ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets
-
Frazee AC, Langmead B, Leek JT. ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinforma. 2011; 12(1):449. doi: 10.1186/1471-2105-12-449.
-
(2011)
BMC Bioinforma
, vol.12
, Issue.1
, pp. 449
-
-
Frazee, A.C.1
Langmead, B.2
Leek, J.T.3
-
40
-
-
85017363752
-
Reproducible RNA-seq analysis using recount2
-
Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature Biotechnology. 2017; 35(4):319-321. doi: 10.1038/nbt.3838.
-
(2017)
Nature Biotechnology
, vol.35
, Issue.4
, pp. 319-321
-
-
Collado-Torres, L.1
Nellore, A.2
Kammers, K.3
Ellis, S.E.4
Taub, M.A.5
Hansen, K.D.6
Jaffe, A.E.7
Langmead, B.8
Leek, J.T.9
-
41
-
-
84903146127
-
Robustly detecting differential expression in RNA sequencing data using observation weights
-
Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res. 2014; 42(11):91. doi: 10.1093/nar/gku310.
-
(2014)
Nucleic Acids Res
, vol.42
, Issue.11
, pp. 91
-
-
Zhou, X.1
Lindsay, H.2
Robinson, M.D.3
-
42
-
-
77950460661
-
Understanding mechanisms underlying human gene expression variation with RNA sequencing
-
Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature. 2010; 464(7289):768-2. doi: 10.1038/nature08872.
-
(2010)
Nature
, vol.464
, Issue.7289
, pp. 768-772
-
-
Pickrell, J.K.1
Marioni, J.C.2
Pai, A.A.3
Degner, J.F.4
Engelhardt, B.E.5
Nkadori, E.6
Veyrieras, J.B.7
Stephens, M.8
Gilad, Y.9
Pritchard, J.K.10
-
43
-
-
79961123152
-
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
-
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011; 12:323. doi: 10.1186/1471-2105-12-323.
-
(2011)
BMC Bioinforma
, vol.12
, pp. 323
-
-
Li, B.1
Dewey, C.N.2
-
44
-
-
77957920003
-
Polymorphic cis- and trans-regulation of human gene expression
-
Cheung VG, Nayak RR, Wang IX, Elwyn S, Cousins SM, Morley M, Spielman RS. Polymorphic cis- and trans-regulation of human gene expression. PLoS Biol. 2010; 8(9):1000480. doi: 10.1371/journal.pbio.1000480.
-
(2010)
PLoS Biol
, vol.8
, Issue.9
, pp. 1000480
-
-
Cheung, V.G.1
Nayak, R.R.2
Wang, I.X.3
Elwyn, S.4
Cousins, S.M.5
Morley, M.6
Spielman, R.S.7
-
45
-
-
84874677498
-
A comparison of methods for differential expression analysis of RNA-seq data
-
Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinforma. 2013; 14:91. doi: 10.1186/1471-2105-14-91.
-
(2013)
BMC Bioinforma
, vol.14
, pp. 91
-
-
Soneson, C.1
Delorenzi, M.2
-
46
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):106. doi: 10.1186/gb-2010-11-10-r106.
-
(2010)
Genome Biol
, vol.11
, Issue.10
, pp. 106
-
-
Anders, S.1
Huber, W.2
-
47
-
-
84999780248
-
The Lair: a resource for exploratory analysis of published RNA-Seq data
-
Pimentel H, Sturmfels P, Bray N, Melsted P, Pachter L. The Lair: a resource for exploratory analysis of published RNA-Seq data. BMC Bioinforma. 2016; 17(1):490. doi: 10.1186/s12859-016-1357-2.
-
(2016)
BMC Bioinforma
, vol.17
, Issue.1
, pp. 490
-
-
Pimentel, H.1
Sturmfels, P.2
Bray, N.3
Melsted, P.4
Pachter, L.5
|