메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

stageR: A general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage

Author keywords

Differential expression; Differential transcript usage; RNA sequencing; Stage wise testing

Indexed keywords

DNA TRANSCRIPTION; GENE EXPRESSION; RNA SEQUENCE; ALGORITHM; ANIMAL; BIOLOGY; COMPUTER SIMULATION; GENE EXPRESSION PROFILING; GENE EXPRESSION REGULATION; GENETIC ASSOCIATION STUDY; HUMAN; PROCEDURES; REPRODUCIBILITY; SENSITIVITY AND SPECIFICITY;

EID: 85027144648     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-017-1277-0     Document Type: Article
Times cited : (79)

References (47)
  • 2
    • 84865527768 scopus 로고    scopus 로고
    • Detecting differential usage of exons from RNA-seq data
    • Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012; 22(10):2008-17. doi: 10.1101/gr.133744.111.
    • (2012) Genome Res , vol.22 , Issue.10 , pp. 2008-2017
    • Anders, S.1    Reyes, A.2    Huber, W.3
  • 3
    • 84966283954 scopus 로고    scopus 로고
    • Near-optimal probabilistic RNA-seq quantification
    • Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5):525-7. doi: 10.1038/nbt.3519.
    • (2016) Nat Biotechnol , vol.34 , Issue.5 , pp. 525-527
    • Bray, N.L.1    Pimentel, H.2    Melsted, P.3    Pachter, L.4
  • 4
    • 84897397058 scopus 로고    scopus 로고
    • featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
    • Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics (Oxford, England). 2014; 30(7):923-30. doi: 10.1093/bioinformatics/btt656.
    • (2014) Bioinformatics (Oxford, England) , vol.30 , Issue.7 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 5
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011; 12(1):323. doi: 10.1186/1471-2105-12-323.
    • (2011) BMC Bioinforma , vol.12 , Issue.1 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 6
    • 85014549629 scopus 로고    scopus 로고
    • Salmon provides fast and bias-aware quantification of transcript expression
    • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods. 2017; 14(4):417-419. doi: 10.1038/nmeth.4197.
    • (2017) Nature Methods , vol.14 , Issue.4 , pp. 417-419
    • Patro, R.1    Duggal, G.2    Love, M.I.3    Irizarry, R.A.4    Kingsford, C.5
  • 9
    • 84968903135 scopus 로고    scopus 로고
    • Coming of age: ten years of next-generation sequencing technologies
    • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016; 17(6):333-51. doi: 10.1038/nrg.2016.49.
    • (2016) Nat Rev Genet , vol.17 , Issue.6 , pp. 333-351
    • Goodwin, S.1    McPherson, J.D.2    McCombie, W.R.3
  • 10
    • 85010908291 scopus 로고    scopus 로고
    • Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
    • Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 2016; 4:1521. doi: 10.12688/f1000research.7563.2.
    • (2016) F1000Research , vol.4 , pp. 1521
    • Soneson, C.1    Love, M.I.2    Robinson, M.D.3
  • 12
    • 84896735766 scopus 로고    scopus 로고
    • voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014; 15(2):29. doi: 10.1186/gb-2014-15-2-r29.
    • (2014) Genome Biol , vol.15 , Issue.2 , pp. 29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 13
    • 33845756231 scopus 로고    scopus 로고
    • A two-step multiple comparison procedure for a large number of tests and multiple treatments
    • Jiang H, Doerge RW. A two-step multiple comparison procedure for a large number of tests and multiple treatments. Stat Appl Genet Mol Biol. 2006; 5:28. doi: 10.2202/1544-6115.1223.
    • (2006) Stat Appl Genet Mol Biol , vol.5 , pp. 28
    • Jiang, H.1    Doerge, R.W.2
  • 14
    • 64549088392 scopus 로고    scopus 로고
    • A flexible two-stage procedure for identifying gene sets that are differentially expressed
    • Heller R, Manduchi E, Grant GR, Ewens WJ. A flexible two-stage procedure for identifying gene sets that are differentially expressed. Bioinformatics (Oxford, England). 2009; 25(8):1019-25. doi: 10.1093/bioinformatics/btp076.
    • (2009) Bioinformatics (Oxford, England) , vol.25 , Issue.8 , pp. 1019-1025
    • Heller, R.1    Manduchi, E.2    Grant, G.R.3    Ewens, W.J.4
  • 15
    • 84891829779 scopus 로고    scopus 로고
    • Selective inference on multiple families of hypotheses
    • Benjamini Y, Bogomolov M. Selective inference on multiple families of hypotheses. J R Stat Soc Ser B (Stat Methodol). 2014; 76(1):297-318. doi: 10.1111/rssb.12028.
    • (2014) J R Stat Soc Ser B (Stat Methodol) , vol.76 , Issue.1 , pp. 297-318
    • Benjamini, Y.1    Bogomolov, M.2
  • 16
    • 13644271264 scopus 로고    scopus 로고
    • A two-step strategy for detecting differential gene expression in cDNA microarray data
    • Lu Y, Zhu J, Liu P. A two-step strategy for detecting differential gene expression in cDNA microarray data. Curr Genet. 2005; 47(2):121-31. doi: 10.1007/s00294-004-0551-3.
    • (2005) Curr Genet , vol.47 , Issue.2 , pp. 121-131
    • Lu, Y.1    Zhu, J.2    Liu, P.3
  • 17
    • 56049099059 scopus 로고    scopus 로고
    • Screening for partial conjunction hypotheses
    • Benjamini Y, Heller R. Screening for partial conjunction hypotheses. Biometrics. 2008; 64(4):1215-22. doi: 10.1111/j.1541-0420.2007.00984.x.
    • (2008) Biometrics , vol.64 , Issue.4 , pp. 1215-1222
    • Benjamini, Y.1    Heller, R.2
  • 18
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001; 29(4):1165-88. doi: 10.1214/aos/1013699998.
    • (2001) Ann Stat , vol.29 , Issue.4 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 19
    • 0037433040 scopus 로고    scopus 로고
    • Identifying differentially expressed genes using false discovery rate controlling procedures
    • Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics (Oxford, England). 2003; 19(3):368-75.
    • (2003) Bioinformatics (Oxford, England) , vol.19 , Issue.3 , pp. 368-375
    • Reiner, A.1    Yekutieli, D.2    Benjamini, Y.3
  • 20
    • 84920859614 scopus 로고    scopus 로고
    • A multiple testing method for hypotheses structured in a directed acyclic graph
    • Meijer RJ, Goeman JJ. A multiple testing method for hypotheses structured in a directed acyclic graph. Biom J. 2015; 57(1):123-43. doi: 10.1002/bimj.201300253.
    • (2015) Biom J , vol.57 , Issue.1 , pp. 123-143
    • Meijer, R.J.1    Goeman, J.J.2
  • 21
    • 84995767838 scopus 로고    scopus 로고
    • Multiple testing of gene sets from Gene Ontology: possibilities and pitfalls
    • Meijer RJ, Goeman JJ. Multiple testing of gene sets from Gene Ontology: possibilities and pitfalls. Brief Bioinform. 2016; 17(5):808-18. doi: 10.1093/bib/bbv091.
    • (2016) Brief Bioinform , vol.17 , Issue.5 , pp. 808-818
    • Meijer, R.J.1    Goeman, J.J.2
  • 23
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):25. doi: 10.1186/gb-2010-11-3-r25.
    • (2010) Genome Biol , vol.11 , Issue.3 , pp. 25
    • Robinson, M.D.1    Oshlack, A.2
  • 24
    • 84956574798 scopus 로고    scopus 로고
    • Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage
    • Soneson C, Matthes KL, Nowicka M, Law CW, Robinson MD. Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage. Genome Biol. 2016; 17(1):12. doi: 10.1186/s13059-015-0862-3.
    • (2016) Genome Biol , vol.17 , Issue.1 , pp. 12
    • Soneson, C.1    Matthes, K.L.2    Nowicka, M.3    Law, C.W.4    Robinson, M.D.5
  • 26
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England). 2010; 26(1):139-40. doi: 10.1093/bioinformatics/btp616.
    • (2010) Bioinformatics (Oxford, England) , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 27
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-throughput experiments
    • Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010; 107(21):9546-51. doi: 10.1073/pnas.0914005107.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.21 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3
  • 28
    • 84879488128 scopus 로고    scopus 로고
    • Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene
    • Gonzàlez-Porta M, Frankish A, Rung J, Harrow J, Brazma A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 2013; 14(7):70. doi: 10.1186/gb-2013-14-7-r70.
    • (2013) Genome Biol , vol.14 , Issue.7 , pp. 70
    • Gonzàlez-Porta, M.1    Frankish, A.2    Rung, J.3    Harrow, J.4    Brazma, A.5
  • 30
    • 84929645865 scopus 로고    scopus 로고
    • Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment
    • Brohee L, Demine S, Willems J, Arnould T, Colige AC, Deroanne CF. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015; 6(13):11264-80. doi: 10.18632/oncotarget.3595.
    • (2015) Oncotarget , vol.6 , Issue.13 , pp. 11264-11280
    • Brohee, L.1    Demine, S.2    Willems, J.3    Arnould, T.4    Colige, A.C.5    Deroanne, C.F.6
  • 33
    • 85003441754 scopus 로고    scopus 로고
    • Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation
    • Love MI, Hogenesch JB, Irizarry RA. Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nat Biotechnol. 2016. doi: 10.1038/nbt.3682.
    • (2016) Nat Biotechnol.
    • Love, M.I.1    Hogenesch, J.B.2    Irizarry, R.A.3
  • 34
    • 84951746644 scopus 로고    scopus 로고
    • Many phenotypes without many false discoveries: error controlling strategies for multitrait association studies
    • Peterson CB, Bogomolov M, Benjamini Y, Sabatti C. Many phenotypes without many false discoveries: error controlling strategies for multitrait association studies. Genet Epidemiol. 2016; 40(1):45-56. doi: 10.1002/gepi.21942.
    • (2016) Genet Epidemiol , vol.40 , Issue.1 , pp. 45-56
    • Peterson, C.B.1    Bogomolov, M.2    Benjamini, Y.3    Sabatti, C.4
  • 35
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodological). 1995; 57(1):289-300.
    • (1995) J R Stat Soc Series B (Methodological) , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 36
    • 33847290868 scopus 로고    scopus 로고
    • FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis
    • Reiner-Benaim A. FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis. Biom J Biom Z. 2007; 49(1):107-26.
    • (2007) Biom J Biom Z , vol.49 , Issue.1 , pp. 107-126
    • Reiner-Benaim, A.1
  • 37
    • 84890829458 scopus 로고
    • Modified sequentially rejective multiple test procedures
    • Shaffer JP. Modified sequentially rejective multiple test procedures. J Am Stat Assoc. 1986; 81(395):826. doi: 10.2307/2289016.
    • (1986) J Am Stat Assoc , vol.81 , Issue.395 , pp. 826
    • Shaffer, J.P.1
  • 38
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979; 6(2):65-70.
    • (1979) Scand J Stat , vol.6 , Issue.2 , pp. 65-70
    • Holm, S.1
  • 39
    • 81055124271 scopus 로고    scopus 로고
    • ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets
    • Frazee AC, Langmead B, Leek JT. ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinforma. 2011; 12(1):449. doi: 10.1186/1471-2105-12-449.
    • (2011) BMC Bioinforma , vol.12 , Issue.1 , pp. 449
    • Frazee, A.C.1    Langmead, B.2    Leek, J.T.3
  • 41
    • 84903146127 scopus 로고    scopus 로고
    • Robustly detecting differential expression in RNA sequencing data using observation weights
    • Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res. 2014; 42(11):91. doi: 10.1093/nar/gku310.
    • (2014) Nucleic Acids Res , vol.42 , Issue.11 , pp. 91
    • Zhou, X.1    Lindsay, H.2    Robinson, M.D.3
  • 43
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011; 12:323. doi: 10.1186/1471-2105-12-323.
    • (2011) BMC Bioinforma , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 45
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinforma. 2013; 14:91. doi: 10.1186/1471-2105-14-91.
    • (2013) BMC Bioinforma , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 46
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):106. doi: 10.1186/gb-2010-11-10-r106.
    • (2010) Genome Biol , vol.11 , Issue.10 , pp. 106
    • Anders, S.1    Huber, W.2
  • 47
    • 84999780248 scopus 로고    scopus 로고
    • The Lair: a resource for exploratory analysis of published RNA-Seq data
    • Pimentel H, Sturmfels P, Bray N, Melsted P, Pachter L. The Lair: a resource for exploratory analysis of published RNA-Seq data. BMC Bioinforma. 2016; 17(1):490. doi: 10.1186/s12859-016-1357-2.
    • (2016) BMC Bioinforma , vol.17 , Issue.1 , pp. 490
    • Pimentel, H.1    Sturmfels, P.2    Bray, N.3    Melsted, P.4    Pachter, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.