메뉴 건너뛰기




Volumn 30, Issue 5, 2017, Pages 622-628

Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status

Author keywords

Deep learning; MGMT methylation; MRI

Indexed keywords

ALKYLATION; CLASSIFICATION (OF INFORMATION); DEEP LEARNING; DIAGNOSIS; FORECASTING; MAGNETIC RESONANCE IMAGING; MEDICAL IMAGING; METHYLATION; NETWORK ARCHITECTURE; NEURAL NETWORKS; TUMORS;

EID: 85026904407     PISSN: 08971889     EISSN: 1618727X     Source Type: Journal    
DOI: 10.1007/s10278-017-0009-z     Document Type: Article
Times cited : (168)

References (37)
  • 1
    • 84863562673 scopus 로고    scopus 로고
    • Glioblastoma survival in the United States before and during the temozolomide era
    • PID: 22045118
    • Johnson DR, O’Neill BP: Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359–364, 2011
    • (2011) J Neurooncol , vol.107 , pp. 359-364
    • Johnson, D.R.1    O’Neill, B.P.2
  • 4
    • 44449133653 scopus 로고    scopus 로고
    • Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging
    • PID: 18349315
    • Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfinos JG, Zagzag D, Johnson G: Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498, 2008
    • (2008) Radiology , vol.247 , pp. 490-498
    • Law, M.1    Young, R.J.2    Babb, J.S.3    Peccerelli, N.4    Chheang, S.5    Gruber, M.L.6    Miller, D.C.7    Golfinos, J.G.8    Zagzag, D.9    Johnson, G.10
  • 5
    • 84905046756 scopus 로고    scopus 로고
    • Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor
    • PID: 24646147
    • Jain R, Poisson LM, Gutman D et al.: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272:484–493, 2014
    • (2014) Radiology , vol.272 , pp. 484-493
    • Jain, R.1    Poisson, L.M.2    Gutman, D.3
  • 6
    • 84885951502 scopus 로고    scopus 로고
    • The prognostic value of MGMT promoter methylation in glioblastoma multiforme: a meta-analysis
    • COI: 1:CAS:528:DC%2BC3sXhs1Sqsr3O, PID: 23397067
    • Zhang K, Wang X-Q, Zhou B, Zhang L: The prognostic value of MGMT promoter methylation in glioblastoma multiforme: a meta-analysis. Fam Cancer 12:449–458, 2013
    • (2013) Fam Cancer , vol.12 , pp. 449-458
    • Zhang, K.1    Wang, X.-Q.2    Zhou, B.3    Zhang, L.4
  • 7
    • 84992146440 scopus 로고    scopus 로고
    • IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy
    • PID: 27764705
    • Li H, Li J, Cheng G, Zhang J, Li X: IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg 151:31–36, 2016
    • (2016) Clin Neurol Neurosurg , vol.151 , pp. 31-36
    • Li, H.1    Li, J.2    Cheng, G.3    Zhang, J.4    Li, X.5
  • 8
    • 75849146316 scopus 로고    scopus 로고
    • MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma
    • COI: 1:CAS:528:DC%2BC3cXotFKitb8%3D, PID: 20150378
    • Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, Bekele BN, Aldape KD: MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12:116–121, 2010
    • (2010) Neuro Oncol , vol.12 , pp. 116-121
    • Rivera, A.L.1    Pelloski, C.E.2    Gilbert, M.R.3    Colman, H.4    De La Cruz, C.5    Sulman, E.P.6    Bekele, B.N.7    Aldape, K.D.8
  • 9
    • 84926244656 scopus 로고    scopus 로고
    • Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics
    • PID: 25410316
    • Ellingson BM: Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep 15:506, 2015
    • (2015) Curr Neurol Neurosci Rep , vol.15 , pp. 506
    • Ellingson, B.M.1
  • 10
    • 84942078834 scopus 로고    scopus 로고
    • Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method
    • PID: 26229673
    • Rundle-Thiele D, Day B, Stringer B et al.: Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method. J Med Radiat Sci 62:92–98, 2015
    • (2015) J Med Radiat Sci , vol.62 , pp. 92-98
    • Rundle-Thiele, D.1    Day, B.2    Stringer, B.3
  • 11
    • 70749119866 scopus 로고    scopus 로고
    • An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging
    • COI: 1:CAS:528:DC%2BC3cXltFGgsLY%3D, PID: 19796694
    • Drabycz S, Roldán G, de Robles P, Adler D, McIntyre JB, Magliocco AM, Cairncross JG, Mitchell JR: An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 49:1398–1405, 2010
    • (2010) Neuroimage , vol.49 , pp. 1398-1405
    • Drabycz, S.1    Roldán, G.2    de Robles, P.3    Adler, D.4    McIntyre, J.B.5    Magliocco, A.M.6    Cairncross, J.G.7    Mitchell, J.R.8
  • 13
    • 84862880290 scopus 로고    scopus 로고
    • Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging
    • PID: 21833736
    • Moon W-J, Choi JW, Roh HG, Lim SD, Koh Y-C: Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 54:555–563, 2012
    • (2012) Neuroradiology , vol.54 , pp. 555-563
    • Moon, W.-J.1    Choi, J.W.2    Roh, H.G.3    Lim, S.D.4    Koh, Y.-C.5
  • 14
    • 84905440015 scopus 로고    scopus 로고
    • Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging
    • PID: 24949678
    • Ahn SS, Shin N-Y, Chang JH, Kim SH, Kim EH, Kim DW, Lee S-K: Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg 121:367–373, 2014
    • (2014) J Neurosurg , vol.121 , pp. 367-373
    • Ahn, S.S.1    Shin, N.-Y.2    Chang, J.H.3    Kim, S.H.4    Kim, E.H.5    Kim, D.W.6    Lee, S.-K.7
  • 15
    • 84862895140 scopus 로고    scopus 로고
    • Continuing the search for MR imaging biomarkers for MGMT promoter methylation status: conventional and perfusion MRI revisited
    • PID: 22006425
    • Gupta A, Omuro AMP, Shah AD, Graber JJ, Shi W, Zhang Z, Young RJ: Continuing the search for MR imaging biomarkers for MGMT promoter methylation status: conventional and perfusion MRI revisited. Neuroradiology 54:641–643, 2012
    • (2012) Neuroradiology , vol.54 , pp. 641-643
    • Gupta, A.1    Omuro, A.M.P.2    Shah, A.D.3    Graber, J.J.4    Shi, W.5    Zhang, Z.6    Young, R.J.7
  • 18
    • 84932649039 scopus 로고    scopus 로고
    • Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors
    • COI: 1:CAS:528:DC%2BC2MXhtFyrsbvO, PID: 26061753
    • Eckel-Passow JE, Lachance DH, Molinaro AM et al.: Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508, 2015
    • (2015) N Engl J Med , vol.372 , pp. 2499-2508
    • Eckel-Passow, J.E.1    Lachance, D.H.2    Molinaro, A.M.3
  • 19
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique
    • Greenspan H, van Ginneken B, Summers RM: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153–1159, 2016
    • (2016) IEEE Trans Med Imaging , vol.35 , pp. 1153-1159
    • Greenspan, H.1    van Ginneken, B.2    Summers, R.M.3
  • 20
    • 84968662241 scopus 로고    scopus 로고
    • Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
    • PID: 26955021
    • Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35:1207–1216, 2016
    • (2016) IEEE Trans Med Imaging , vol.35 , pp. 1207-1216
    • Anthimopoulos, M.1    Christodoulidis, S.2    Ebner, L.3    Christe, A.4    Mougiakakou, S.5
  • 22
    • 85012297277 scopus 로고    scopus 로고
    • A deep learning approach for the analysis of masses in mammograms with minimal user intervention
    • PID: 28171807
    • Dhungel N, Carneiro G, Bradley AP: A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 37:114–128, 2017
    • (2017) Med Image Anal , vol.37 , pp. 114-128
    • Dhungel, N.1    Carneiro, G.2    Bradley, A.P.3
  • 23
    • 84993995751 scopus 로고    scopus 로고
    • Deep learning for automated skeletal bone age assessment in X-ray images
    • COI: 1:STN:280:DC%2BC2snjtlCqtA%3D%3D, PID: 27816861
    • Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R: Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51, 2017
    • (2017) Med Image Anal , vol.36 , pp. 41-51
    • Spampinato, C.1    Palazzo, S.2    Giordano, D.3    Aldinucci, M.4    Leonardi, R.5
  • 25
    • 84991063753 scopus 로고    scopus 로고
    • High-throughput classification of radiographs using deep convolutional neural networks
    • PID: 27730417
    • Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging 30:95–101, 2017
    • (2017) J Digit Imaging , vol.30 , pp. 95-101
    • Rajkomar, A.1    Lingam, S.2    Taylor, A.G.3    Blum, M.4    Mongan, J.5
  • 29
    • 85029683230 scopus 로고    scopus 로고
    • Ren S, Sun J, Deep Residual Learning for Image Recognition. arXiv [cs.CV
    • He K, Zhang X, Ren S, Sun J: Deep Residual Learning for Image Recognition. arXiv [cs.CV]. 2015. https://arxiv.org/abs/1512.03385
    • (2015) Zhang , vol.10
    • He, K.1
  • 30
    • 84990050094 scopus 로고    scopus 로고
    • Identity Mappings in Deep Residual Networks
    • He K, Zhang X, Ren S, Sun J: Identity Mappings in Deep Residual Networks. In: Lecture Notes in Computer Science. 2016, pp 630–645. https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38
    • (2016) Lecture Notes in Computer Science , pp. 630-645
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 32
    • 84973911419 scopus 로고    scopus 로고
    • Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 I.E
    • He K, Zhang X, Ren S, Sun J: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 I.E. International Conference on Computer Vision (ICCV), 2015. doi: 10.1109/iccv.2015.123
    • (2015) International Conference on Computer Vision (ICCV)
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 33
    • 84943792566 scopus 로고    scopus 로고
    • Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
    • loffe S, Szegedy C: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv [cs.LG]. 2015. https://arxiv.org/abs/1502.03167
    • (2015) arXiv [cs.LG]
    • loffe, S.1    Szegedy, C.2
  • 34
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • COI: 1:STN:280:DC%2BC2sjotVartA%3D%3D, PID: 9744903, 1998
    • Dietterich TG: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–1923, 1998 1998
    • (1998) Neural Comput , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 36
    • 84989286067 scopus 로고    scopus 로고
    • Residual Networks Behave Like Ensembles of Relatively Shallow Networks
    • Veit A, Wilber M, Belongie S: Residual Networks Behave Like Ensembles of Relatively Shallow Networks. arXiv [cs.CV]. 2016. https://arxiv.org/abs/1605.06431
    • (2016) arXiv [cs.CV]
    • Veit, A.1    Wilber, M.2    Belongie, S.3
  • 37
    • 0344374438 scopus 로고    scopus 로고
    • On standardizing the MR image intensity scale
    • PID: 10571928
    • Nyúl LG, Udupa JK: On standardizing the MR image intensity scale. Magn Reson Med 42:1072–1081, 1999
    • (1999) Magn Reson Med , vol.42 , pp. 1072-1081
    • Nyúl, L.G.1    Udupa, J.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.