-
1
-
-
84863562673
-
Glioblastoma survival in the United States before and during the temozolomide era
-
PID: 22045118
-
Johnson DR, O’Neill BP: Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359–364, 2011
-
(2011)
J Neurooncol
, vol.107
, pp. 359-364
-
-
Johnson, D.R.1
O’Neill, B.P.2
-
2
-
-
84965190602
-
Pros and cons of current brain tumor imaging
-
PID: 25313235
-
Ellingson BM, Wen PY, van den Bent MJ, Cloughesy TF: Pros and cons of current brain tumor imaging. Neuro Oncol 16(Suppl 7):vii2–vi11, 2014
-
(2014)
Neuro Oncol
, vol.16
, pp. vii2-vi11
-
-
Ellingson, B.M.1
Wen, P.Y.2
van den Bent, M.J.3
Cloughesy, T.F.4
-
3
-
-
84988876994
-
Prediction of brain MR scans in longitudinal tumor follow-up studies
-
PID: 23286047
-
Weizman L, Ben-Sira L, Joskowicz L, Aizenstein O, Shofty B, Constantini S, Ben-Bashat D: Prediction of brain MR scans in longitudinal tumor follow-up studies. Med Image Comput Comput Assist Interv 15:179–187, 2012
-
(2012)
Med Image Comput Comput Assist Interv
, vol.15
, pp. 179-187
-
-
Weizman, L.1
Ben-Sira, L.2
Joskowicz, L.3
Aizenstein, O.4
Shofty, B.5
Constantini, S.6
Ben-Bashat, D.7
-
4
-
-
44449133653
-
Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging
-
PID: 18349315
-
Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfinos JG, Zagzag D, Johnson G: Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498, 2008
-
(2008)
Radiology
, vol.247
, pp. 490-498
-
-
Law, M.1
Young, R.J.2
Babb, J.S.3
Peccerelli, N.4
Chheang, S.5
Gruber, M.L.6
Miller, D.C.7
Golfinos, J.G.8
Zagzag, D.9
Johnson, G.10
-
5
-
-
84905046756
-
Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor
-
PID: 24646147
-
Jain R, Poisson LM, Gutman D et al.: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272:484–493, 2014
-
(2014)
Radiology
, vol.272
, pp. 484-493
-
-
Jain, R.1
Poisson, L.M.2
Gutman, D.3
-
6
-
-
84885951502
-
The prognostic value of MGMT promoter methylation in glioblastoma multiforme: a meta-analysis
-
COI: 1:CAS:528:DC%2BC3sXhs1Sqsr3O, PID: 23397067
-
Zhang K, Wang X-Q, Zhou B, Zhang L: The prognostic value of MGMT promoter methylation in glioblastoma multiforme: a meta-analysis. Fam Cancer 12:449–458, 2013
-
(2013)
Fam Cancer
, vol.12
, pp. 449-458
-
-
Zhang, K.1
Wang, X.-Q.2
Zhou, B.3
Zhang, L.4
-
7
-
-
84992146440
-
IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy
-
PID: 27764705
-
Li H, Li J, Cheng G, Zhang J, Li X: IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg 151:31–36, 2016
-
(2016)
Clin Neurol Neurosurg
, vol.151
, pp. 31-36
-
-
Li, H.1
Li, J.2
Cheng, G.3
Zhang, J.4
Li, X.5
-
8
-
-
75849146316
-
MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma
-
COI: 1:CAS:528:DC%2BC3cXotFKitb8%3D, PID: 20150378
-
Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, Bekele BN, Aldape KD: MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12:116–121, 2010
-
(2010)
Neuro Oncol
, vol.12
, pp. 116-121
-
-
Rivera, A.L.1
Pelloski, C.E.2
Gilbert, M.R.3
Colman, H.4
De La Cruz, C.5
Sulman, E.P.6
Bekele, B.N.7
Aldape, K.D.8
-
9
-
-
84926244656
-
Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics
-
PID: 25410316
-
Ellingson BM: Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep 15:506, 2015
-
(2015)
Curr Neurol Neurosci Rep
, vol.15
, pp. 506
-
-
Ellingson, B.M.1
-
10
-
-
84942078834
-
Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method
-
PID: 26229673
-
Rundle-Thiele D, Day B, Stringer B et al.: Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method. J Med Radiat Sci 62:92–98, 2015
-
(2015)
J Med Radiat Sci
, vol.62
, pp. 92-98
-
-
Rundle-Thiele, D.1
Day, B.2
Stringer, B.3
-
11
-
-
70749119866
-
An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging
-
COI: 1:CAS:528:DC%2BC3cXltFGgsLY%3D, PID: 19796694
-
Drabycz S, Roldán G, de Robles P, Adler D, McIntyre JB, Magliocco AM, Cairncross JG, Mitchell JR: An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 49:1398–1405, 2010
-
(2010)
Neuroimage
, vol.49
, pp. 1398-1405
-
-
Drabycz, S.1
Roldán, G.2
de Robles, P.3
Adler, D.4
McIntyre, J.B.5
Magliocco, A.M.6
Cairncross, J.G.7
Mitchell, J.R.8
-
12
-
-
84863243619
-
Predicting MGMT Methylation Status of Glioblastomas from MRI Texture
-
Levner I, Drabycz S, Roldan G, De Robles P, Gregory Cairncross J, Mitchell R: Predicting MGMT Methylation Status of Glioblastomas from MRI Texture. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):522–530
-
(2009)
Med Image Comput Comput Assist Interv
, vol.12
, pp. 522-530
-
-
Levner, I.1
Drabycz, S.2
Roldan, G.3
De Robles, P.4
Gregory Cairncross, J.5
Mitchell, R.6
-
13
-
-
84862880290
-
Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging
-
PID: 21833736
-
Moon W-J, Choi JW, Roh HG, Lim SD, Koh Y-C: Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 54:555–563, 2012
-
(2012)
Neuroradiology
, vol.54
, pp. 555-563
-
-
Moon, W.-J.1
Choi, J.W.2
Roh, H.G.3
Lim, S.D.4
Koh, Y.-C.5
-
14
-
-
84905440015
-
Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging
-
PID: 24949678
-
Ahn SS, Shin N-Y, Chang JH, Kim SH, Kim EH, Kim DW, Lee S-K: Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg 121:367–373, 2014
-
(2014)
J Neurosurg
, vol.121
, pp. 367-373
-
-
Ahn, S.S.1
Shin, N.-Y.2
Chang, J.H.3
Kim, S.H.4
Kim, E.H.5
Kim, D.W.6
Lee, S.-K.7
-
15
-
-
84862895140
-
Continuing the search for MR imaging biomarkers for MGMT promoter methylation status: conventional and perfusion MRI revisited
-
PID: 22006425
-
Gupta A, Omuro AMP, Shah AD, Graber JJ, Shi W, Zhang Z, Young RJ: Continuing the search for MR imaging biomarkers for MGMT promoter methylation status: conventional and perfusion MRI revisited. Neuroradiology 54:641–643, 2012
-
(2012)
Neuroradiology
, vol.54
, pp. 641-643
-
-
Gupta, A.1
Omuro, A.M.P.2
Shah, A.D.3
Graber, J.J.4
Shi, W.5
Zhang, Z.6
Young, R.J.7
-
16
-
-
85008173453
-
Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma
-
PID: 28254081
-
Kanas VG, Zacharaki EI, Thomas GA, Zinn PO, Megalooikonomou V, Colen RR: Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput Methods Programs Biomed 140:249–257, 2017
-
(2017)
Comput Methods Programs Biomed
, vol.140
, pp. 249-257
-
-
Kanas, V.G.1
Zacharaki, E.I.2
Thomas, G.A.3
Zinn, P.O.4
Megalooikonomou, V.5
Colen, R.R.6
-
17
-
-
84969855998
-
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
-
COI: 1:CAS:528:DC%2BC28XnvVaqsrk%3D, PID: 27277032
-
Korfiatis P, Kline TL, Coufalova L, Lachance DH, Parney IF, Carter RE, Buckner JC, Erickson BJ: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43:2835, 2016
-
(2016)
Med Phys
, vol.43
, pp. 2835
-
-
Korfiatis, P.1
Kline, T.L.2
Coufalova, L.3
Lachance, D.H.4
Parney, I.F.5
Carter, R.E.6
Buckner, J.C.7
Erickson, B.J.8
-
18
-
-
84932649039
-
Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors
-
COI: 1:CAS:528:DC%2BC2MXhtFyrsbvO, PID: 26061753
-
Eckel-Passow JE, Lachance DH, Molinaro AM et al.: Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508, 2015
-
(2015)
N Engl J Med
, vol.372
, pp. 2499-2508
-
-
Eckel-Passow, J.E.1
Lachance, D.H.2
Molinaro, A.M.3
-
19
-
-
84968661778
-
Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique
-
Greenspan H, van Ginneken B, Summers RM: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153–1159, 2016
-
(2016)
IEEE Trans Med Imaging
, vol.35
, pp. 1153-1159
-
-
Greenspan, H.1
van Ginneken, B.2
Summers, R.M.3
-
20
-
-
84968662241
-
Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
-
PID: 26955021
-
Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35:1207–1216, 2016
-
(2016)
IEEE Trans Med Imaging
, vol.35
, pp. 1207-1216
-
-
Anthimopoulos, M.1
Christodoulidis, S.2
Ebner, L.3
Christe, A.4
Mougiakakou, S.5
-
21
-
-
85015580937
-
Using deep learning to segment breast and fibroglandular tissue in MRI volumes
-
PID: 28035663
-
Dalmış MU, Litjens G, Holland K, Setio A, Mann R, Karssemeijer N, Gubern-Mérida A: Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med Phys 44:533–546, 2017
-
(2017)
Med Phys
, vol.44
, pp. 533-546
-
-
Dalmış, M.U.1
Litjens, G.2
Holland, K.3
Setio, A.4
Mann, R.5
Karssemeijer, N.6
Gubern-Mérida, A.7
-
22
-
-
85012297277
-
A deep learning approach for the analysis of masses in mammograms with minimal user intervention
-
PID: 28171807
-
Dhungel N, Carneiro G, Bradley AP: A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 37:114–128, 2017
-
(2017)
Med Image Anal
, vol.37
, pp. 114-128
-
-
Dhungel, N.1
Carneiro, G.2
Bradley, A.P.3
-
23
-
-
84993995751
-
Deep learning for automated skeletal bone age assessment in X-ray images
-
COI: 1:STN:280:DC%2BC2snjtlCqtA%3D%3D, PID: 27816861
-
Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R: Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51, 2017
-
(2017)
Med Image Anal
, vol.36
, pp. 41-51
-
-
Spampinato, C.1
Palazzo, S.2
Giordano, D.3
Aldinucci, M.4
Leonardi, R.5
-
25
-
-
84991063753
-
High-throughput classification of radiographs using deep convolutional neural networks
-
PID: 27730417
-
Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging 30:95–101, 2017
-
(2017)
J Digit Imaging
, vol.30
, pp. 95-101
-
-
Rajkomar, A.1
Lingam, S.2
Taylor, A.G.3
Blum, M.4
Mongan, J.5
-
26
-
-
84941626053
-
MIRMAID: a content management system for medical image analysis research
-
PID: 26284301
-
Korfiatis PD, Kline TL, Blezek DJ, Langer SG, Ryan WJ, Erickson BJ: MIRMAID: a content management system for medical image analysis research. Radiographics 35:1461–1468, 2015
-
(2015)
Radiographics
, vol.35
, pp. 1461-1468
-
-
Korfiatis, P.D.1
Kline, T.L.2
Blezek, D.J.3
Langer, S.G.4
Ryan, W.J.5
Erickson, B.J.6
-
27
-
-
77953171016
-
N4ITK: improved N3 bias correction
-
PID: 20378467
-
Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC: N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320, 2010
-
(2010)
IEEE Trans Med Imaging
, vol.29
, pp. 1310-1320
-
-
Tustison, N.J.1
Avants, B.B.2
Cook, P.A.3
Zheng, Y.4
Egan, A.5
Yushkevich, P.A.6
Gee, J.C.7
-
29
-
-
85029683230
-
-
Ren S, Sun J, Deep Residual Learning for Image Recognition. arXiv [cs.CV
-
He K, Zhang X, Ren S, Sun J: Deep Residual Learning for Image Recognition. arXiv [cs.CV]. 2015. https://arxiv.org/abs/1512.03385
-
(2015)
Zhang
, vol.10
-
-
He, K.1
-
30
-
-
84990050094
-
Identity Mappings in Deep Residual Networks
-
He K, Zhang X, Ren S, Sun J: Identity Mappings in Deep Residual Networks. In: Lecture Notes in Computer Science. 2016, pp 630–645. https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38
-
(2016)
Lecture Notes in Computer Science
, pp. 630-645
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
32
-
-
84973911419
-
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 I.E
-
He K, Zhang X, Ren S, Sun J: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 I.E. International Conference on Computer Vision (ICCV), 2015. doi: 10.1109/iccv.2015.123
-
(2015)
International Conference on Computer Vision (ICCV)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
33
-
-
84943792566
-
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
-
loffe S, Szegedy C: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv [cs.LG]. 2015. https://arxiv.org/abs/1502.03167
-
(2015)
arXiv [cs.LG]
-
-
loffe, S.1
Szegedy, C.2
-
34
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
COI: 1:STN:280:DC%2BC2sjotVartA%3D%3D, PID: 9744903, 1998
-
Dietterich TG: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–1923, 1998 1998
-
(1998)
Neural Comput
, vol.10
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
36
-
-
84989286067
-
Residual Networks Behave Like Ensembles of Relatively Shallow Networks
-
Veit A, Wilber M, Belongie S: Residual Networks Behave Like Ensembles of Relatively Shallow Networks. arXiv [cs.CV]. 2016. https://arxiv.org/abs/1605.06431
-
(2016)
arXiv [cs.CV]
-
-
Veit, A.1
Wilber, M.2
Belongie, S.3
-
37
-
-
0344374438
-
On standardizing the MR image intensity scale
-
PID: 10571928
-
Nyúl LG, Udupa JK: On standardizing the MR image intensity scale. Magn Reson Med 42:1072–1081, 1999
-
(1999)
Magn Reson Med
, vol.42
, pp. 1072-1081
-
-
Nyúl, L.G.1
Udupa, J.K.2
|