-
1
-
-
29144469353
-
On data fusion fault diagnosis and simulation of hydroelectric units vibration
-
D.L. Zhao, W. Ma, and W.K. Liang On data fusion fault diagnosis and simulation of hydroelectric units vibration Proc. CSEE 25 20 2005 137 142
-
(2005)
Proc. CSEE
, vol.25
, Issue.20
, pp. 137-142
-
-
Zhao, D.L.1
Ma, W.2
Liang, W.K.3
-
2
-
-
0030085339
-
The analysis of non-stationary signals using time-frequency methods
-
J.K. Hammond, and P.R. White The analysis of non-stationary signals using time-frequency methods J. Sound Vib. 190 1996 419 447
-
(1996)
J. Sound Vib.
, vol.190
, pp. 419-447
-
-
Hammond, J.K.1
White, P.R.2
-
3
-
-
56749180547
-
Time-frequency feature representation using energy concentration: An overview of recent advances
-
E. Sejdic, I. Djurovic, and J. Jiang Time-frequency feature representation using energy concentration: an overview of recent advances Digit. Signal Process. 19 2009 153 183
-
(2009)
Digit. Signal Process.
, vol.19
, pp. 153-183
-
-
Sejdic, E.1
Djurovic, I.2
Jiang, J.3
-
4
-
-
33644583305
-
Fault diagnosis in machine tools using selective regional correlation
-
A.G. Rehorn, E. Sejdic, and J. Jiang Fault diagnosis in machine tools using selective regional correlation Mech. Syst. Signal Process. 20 5 2006 1221 1238
-
(2006)
Mech. Syst. Signal Process.
, vol.20
, Issue.5
, pp. 1221-1238
-
-
Rehorn, A.G.1
Sejdic, E.2
Jiang, J.3
-
5
-
-
79956155898
-
Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)
-
P. Konar, and P. Chattopadhyay Bearing fault detection of induction motor using wavelet and support vector machines (SVMs) Appl. Soft Comput. 11 2011 4203 4211
-
(2011)
Appl. Soft Comput.
, vol.11
, pp. 4203-4211
-
-
Konar, P.1
Chattopadhyay, P.2
-
6
-
-
5444236478
-
The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
-
N.E. Huang, Z. Shen, S.R. Long, M.L.C. Wu, H.H. Shih, Q.N. Zheng, N.C. Yen, C.C. Tung, and H.H. Liu The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis Proc. Roy. Soc. London Ser. A - Math. Phys. Eng. Sci. 454 1971 903 995
-
(1971)
Proc. Roy. Soc. London Ser. A - Math. Phys. Eng. Sci.
, vol.454
, pp. 903-995
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.L.C.4
Shih, H.H.5
Zheng, Q.N.6
Yen, N.C.7
Tung, C.C.8
Liu, H.H.9
-
7
-
-
85015535251
-
Noise reduction method for nonlinear time series based on principal manifold learning and its application to fault diagnosis
-
J.H. Yang, J.W. Xu, D.B. Yang, M. Li, Noise reduction method for nonlinear time series based on principal manifold learning and its application to fault diagnosis, in: Proceedings of the International Conference on Mechanical Engineering and Mechanics 2005, vols. 1 and 2, 2005, pp. 1087-1091.
-
(2005)
Proceedings of the International Conference on Mechanical Engineering and Mechanics 2005
, vol.1-2
, pp. 1087-1091
-
-
Yang, J.H.1
Xu, J.W.2
Yang, D.B.3
Li, M.4
-
8
-
-
34848858238
-
A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
-
Y. Yang, D.J. Yu, and J.S. Cheng A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM Measurement 40 9-10 2007 943 950
-
(2007)
Measurement
, vol.40
, Issue.910
, pp. 943-950
-
-
Yang, Y.1
Yu, D.J.2
Cheng, J.S.3
-
9
-
-
57649230902
-
Application of SVM and SVD technique based on EMD to the fault diagnosis of the rotating machinery
-
J.S. Cheng, J. Yu, J.S. Tang, and Y. Yang Application of SVM and SVD technique based on EMD to the fault diagnosis of the rotating machinery Shock Vib. 16 1 2009 89 98
-
(2009)
Shock Vib.
, vol.16
, Issue.1
, pp. 89-98
-
-
Cheng, J.S.1
Yu, J.2
Tang, J.S.3
Yang, Y.4
-
10
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D.D. Lee, and H.S. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 6755 1999 788 791
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
11
-
-
24944566806
-
Face recognition using fisher non-negative matrix factorization with sparseness constraints
-
X. Pu, Z. Yi, Z. Zheng, W. Zhou, and M. Ye Face recognition using fisher non-negative matrix factorization with sparseness constraints Lect. Notes Comput. Sci. 3497 2005 112 117
-
(2005)
Lect. Notes Comput. Sci.
, vol.3497
, pp. 112-117
-
-
Pu, X.1
Yi, Z.2
Zheng, Z.3
Zhou, W.4
Ye, M.5
-
12
-
-
2442624378
-
Non-negative matrix factorization based methods for object recognition
-
W. Liu, and N. Zheng Non-negative matrix factorization based methods for object recognition Pattern Recogn. Lett. 25 8 2004 893 897
-
(2004)
Pattern Recogn. Lett.
, vol.25
, Issue.8
, pp. 893-897
-
-
Liu, W.1
Zheng, N.2
-
13
-
-
34547198396
-
Algorithms and applications for approximate nonnegative matrix factorization
-
M.W. Berry, M. Browne, A.N. Langville, V.P. Pauca, and R.J. Plemmons Algorithms and applications for approximate nonnegative matrix factorization Comput. Stat. Data Anal. 52 1 2007 155 173
-
(2007)
Comput. Stat. Data Anal.
, vol.52
, Issue.1
, pp. 155-173
-
-
Berry, M.W.1
Browne, M.2
Langville, A.N.3
Pauca, V.P.4
Plemmons, R.J.5
-
14
-
-
79953673543
-
A new feature extraction and selection scheme for hybrid fault diagnosis of gearbox
-
B. Li, P.L. Zhang, H. Tian, S.S. Mi, D.S. Liu, and G.Q. Ren A new feature extraction and selection scheme for hybrid fault diagnosis of gearbox Exp. Syst. Appl. 38 8 2011 10000 10009
-
(2011)
Exp. Syst. Appl.
, vol.38
, Issue.8
, pp. 10000-10009
-
-
Li, B.1
Zhang, P.L.2
Tian, H.3
Mi, S.S.4
Liu, D.S.5
Ren, G.Q.6
-
15
-
-
33744949513
-
Unsupervised learning of image manifolds by semidefinite programming
-
K.Q. Weinberger, and L.K. Saul Unsupervised learning of image manifolds by semidefinite programming Int. J. Comput. Vis. 70 1 2006 77 90
-
(2006)
Int. J. Comput. Vis.
, vol.70
, Issue.1
, pp. 77-90
-
-
Weinberger, K.Q.1
Saul, L.K.2
-
16
-
-
79958145726
-
Manifold learning for face recognition under changing illumination
-
B. Tunc, and M. Gokmen Manifold learning for face recognition under changing illumination Telecommun. Syst. 47 3-4 2011 185 195
-
(2011)
Telecommun. Syst.
, vol.47
, Issue.34
, pp. 185-195
-
-
Tunc, B.1
Gokmen, M.2
-
18
-
-
84885841484
-
Manifold-preserving graph reduction for sparse semi-supervised learning
-
S.L. Sun, Z. Hussain, and J. Shawe-Taylor Manifold-preserving graph reduction for sparse semi-supervised learning Neurocomputing 124 2014 13 21
-
(2014)
Neurocomputing
, vol.124
, pp. 13-21
-
-
Sun, S.L.1
Hussain, Z.2
Shawe-Taylor, J.3
-
19
-
-
28444473249
-
Supervised nonlinear dimensionality reduction for visualization and classification
-
X. Geng, D.C. Zhan, and Z.H. Zhou Supervised nonlinear dimensionality reduction for visualization and classification IEEE Trans. Syst. Man Cybern. Part B - Cybern. 35 6 2005 1098 1107
-
(2005)
IEEE Trans. Syst. Man Cybern. Part B - Cybern.
, vol.35
, Issue.6
, pp. 1098-1107
-
-
Geng, X.1
Zhan, D.C.2
Zhou, Z.H.3
-
20
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani Manifold regularization: a geometric framework for learning from labeled and unlabeled examples J. Mach. Learn. Res. 7 2006 2399 2434
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
21
-
-
84883544649
-
Bearing running state recognition based on non-extensive wavelet feature scale entropy and support vector machine
-
S.J. Dong, B.P. Tang, and R.X. Chen Bearing running state recognition based on non-extensive wavelet feature scale entropy and support vector machine Measurement 46 10 2013 4189 4199
-
(2013)
Measurement
, vol.46
, Issue.10
, pp. 4189-4199
-
-
Dong, S.J.1
Tang, B.P.2
Chen, R.X.3
-
22
-
-
84888260875
-
Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier
-
Z.Q. Su, B.P. Tang, J.H. Ma, and L. Deng Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier Measurement 48 2014 136 148
-
(2014)
Measurement
, vol.48
, pp. 136-148
-
-
Su, Z.Q.1
Tang, B.P.2
Ma, J.H.3
Deng, L.4
-
23
-
-
84906260789
-
Supervised locally tangent space alignment for machine fault diagnosis
-
Y. Zhang, B.W. Li, W. Wang, T. Sun, X.Y. Yang, and L. Wang Supervised locally tangent space alignment for machine fault diagnosis J. Mech. Sci. Technol. 28 8 2014 2971 2977
-
(2014)
J. Mech. Sci. Technol.
, vol.28
, Issue.8
, pp. 2971-2977
-
-
Zhang, Y.1
Li, B.W.2
Wang, W.3
Sun, T.4
Yang, X.Y.5
Wang, L.6
-
24
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J.B. Tenenbaum, V. de Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2000 2319 2323
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
25
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
M. Belkin, and P. Niyogi Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 15 6 2003 1373 1396
-
(2003)
Neural Comput.
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
26
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
27
-
-
14544307975
-
Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
-
Z.Y. Zhang, and H.Y. Zha Principal manifolds and nonlinear dimensionality reduction via tangent space alignment SIAM J. Sci. Comput. 26 1 2004 313 338
-
(2004)
SIAM J. Sci. Comput.
, vol.26
, Issue.1
, pp. 313-338
-
-
Zhang, Z.Y.1
Zha, H.Y.2
-
28
-
-
85015510884
-
A simplex-method for function minimization
-
J.A. Nelder, and R. Mead A simplex-method for function minimization Comput. J. 7 4 1965 308 313
-
(1965)
Comput. J.
, vol.7
, Issue.4
, pp. 308-313
-
-
Nelder, J.A.1
Mead, R.2
-
29
-
-
79960045420
-
Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method
-
M. Zvokelj, S. Zupan, and I. Prebil Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method Mech. Syst. Signal Process. 25 2011 2631 2653
-
(2011)
Mech. Syst. Signal Process.
, vol.25
, pp. 2631-2653
-
-
Zvokelj, M.1
Zupan, S.2
Prebil, I.3
-
30
-
-
79957603673
-
Improvement of local mean approximation in empirical mode decomposition for gear fault detection
-
Y. Wang, M.J. Zuo, Y.G. Lei, and X.F. Fan Improvement of local mean approximation in empirical mode decomposition for gear fault detection Eksploatacja I Niezawodnosc-Maint. Reliab. 2 2010 59 66
-
(2010)
Eksploatacja i Niezawodnosc-Maint. Reliab.
, Issue.2
, pp. 59-66
-
-
Wang, Y.1
Zuo, M.J.2
Lei, Y.G.3
Fan, X.F.4
-
31
-
-
4143084984
-
Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves
-
M. Datig, and T. Schlurmann Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves Ocean Eng. 31 14-15 2004 1783 1834
-
(2004)
Ocean Eng.
, vol.31
, Issue.1415
, pp. 1783-1834
-
-
Datig, M.1
Schlurmann, T.2
-
32
-
-
77955178689
-
Local integral mean-based sifting for empirical mode decomposition
-
H. Hong, X.L. Wang, and Z.Y. Tao Local integral mean-based sifting for empirical mode decomposition IEEE Signal Process. Lett. 16 10 2009 841 844
-
(2009)
IEEE Signal Process. Lett.
, vol.16
, Issue.10
, pp. 841-844
-
-
Hong, H.1
Wang, X.L.2
Tao, Z.Y.3
-
33
-
-
0030303844
-
An interior trust region approach for nonlinear minimization subject to bounds
-
T.F. Coleman, and Y.Y. Li An interior trust region approach for nonlinear minimization subject to bounds SIAM J. Optim. 6 2 1996 418 445
-
(1996)
SIAM J. Optim.
, vol.6
, Issue.2
, pp. 418-445
-
-
Coleman, T.F.1
Li, Y.Y.2
-
34
-
-
84968497764
-
Conditioning of quasi-Newton methods for function minimization
-
D.F. Shanno Conditioning of quasi-Newton methods for function minimization Math. Comput. 24 111 1970 647 657
-
(1970)
Math. Comput.
, vol.24
, Issue.111
, pp. 647-657
-
-
Shanno, D.F.1
-
35
-
-
78649400333
-
Maximum likelihood estimation of intrinsic dimension
-
E. Levina, and P. Bickel Maximum likelihood estimation of intrinsic dimension Adv. Neural Inform. Process. Syst. 15 2005 777 784
-
(2005)
Adv. Neural Inform. Process. Syst.
, vol.15
, pp. 777-784
-
-
Levina, E.1
Bickel, P.2
-
36
-
-
37549018049
-
Top 10 algorithms in data mining
-
X.D. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A. Ng, B. Liu, P.S. Yu, Z.H. Zhou, M. Steinbach, D.J. Hand, and D. Steinberg Top 10 algorithms in data mining Knowl. Inform. Syst. 14 1 2008 1 37
-
(2008)
Knowl. Inform. Syst.
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.D.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
-
37
-
-
33646023117
-
An introduction to ROC analysis
-
T. Fawcett An introduction to ROC analysis Pattern Recogn. Lett. 27 8 2006 861 874
-
(2006)
Pattern Recogn. Lett.
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
38
-
-
33646682646
-
Nonnegative matrix factorization for spectral data analysis
-
V.P. Pauca, J. Piper, and R.J. Plemmons Nonnegative matrix factorization for spectral data analysis Linear Algebra Appl. 416 1 2006 29 47
-
(2006)
Linear Algebra Appl.
, vol.416
, Issue.1
, pp. 29-47
-
-
Pauca, V.P.1
Piper, J.2
Plemmons, R.J.3
-
39
-
-
0032437764
-
Randomized simplex algorithms on Klee-Minty cubes
-
B. Gartner, M. Henk, and G.M. Ziegler Randomized simplex algorithms on Klee-Minty cubes Combinatorica 18 3 1998 349 372
-
(1998)
Combinatorica
, vol.18
, Issue.3
, pp. 349-372
-
-
Gartner, B.1
Henk, M.2
Ziegler, G.M.3
-
40
-
-
4243066295
-
Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time
-
D.A. Spielman, and S.H. Teng Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time J. ACM 51 3 2004 385 463
-
(2004)
J. ACM
, vol.51
, Issue.3
, pp. 385-463
-
-
Spielman, D.A.1
Teng, S.H.2
|