메뉴 건너뛰기




Volumn 70, Issue , 2015, Pages 188-202

Non-negative EMD manifold for feature extraction in machinery fault diagnosis

Author keywords

Empirical mode decomposition (EMD); Machinery fault diagnosis; Non negative EMD manifold (NEM); Non negative matrix factorization (NMF); Optimization

Indexed keywords

ALGORITHMS; BEARINGS (MACHINE PARTS); EXTRACTION; FACTORIZATION; FEATURE EXTRACTION; MACHINERY; MATRIX ALGEBRA; OPTIMIZATION; PATTERN RECOGNITION; SIGNAL PROCESSING;

EID: 84928394433     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2015.04.006     Document Type: Article
Times cited : (39)

References (40)
  • 1
    • 29144469353 scopus 로고    scopus 로고
    • On data fusion fault diagnosis and simulation of hydroelectric units vibration
    • D.L. Zhao, W. Ma, and W.K. Liang On data fusion fault diagnosis and simulation of hydroelectric units vibration Proc. CSEE 25 20 2005 137 142
    • (2005) Proc. CSEE , vol.25 , Issue.20 , pp. 137-142
    • Zhao, D.L.1    Ma, W.2    Liang, W.K.3
  • 2
    • 0030085339 scopus 로고    scopus 로고
    • The analysis of non-stationary signals using time-frequency methods
    • J.K. Hammond, and P.R. White The analysis of non-stationary signals using time-frequency methods J. Sound Vib. 190 1996 419 447
    • (1996) J. Sound Vib. , vol.190 , pp. 419-447
    • Hammond, J.K.1    White, P.R.2
  • 3
    • 56749180547 scopus 로고    scopus 로고
    • Time-frequency feature representation using energy concentration: An overview of recent advances
    • E. Sejdic, I. Djurovic, and J. Jiang Time-frequency feature representation using energy concentration: an overview of recent advances Digit. Signal Process. 19 2009 153 183
    • (2009) Digit. Signal Process. , vol.19 , pp. 153-183
    • Sejdic, E.1    Djurovic, I.2    Jiang, J.3
  • 4
    • 33644583305 scopus 로고    scopus 로고
    • Fault diagnosis in machine tools using selective regional correlation
    • A.G. Rehorn, E. Sejdic, and J. Jiang Fault diagnosis in machine tools using selective regional correlation Mech. Syst. Signal Process. 20 5 2006 1221 1238
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.5 , pp. 1221-1238
    • Rehorn, A.G.1    Sejdic, E.2    Jiang, J.3
  • 5
    • 79956155898 scopus 로고    scopus 로고
    • Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)
    • P. Konar, and P. Chattopadhyay Bearing fault detection of induction motor using wavelet and support vector machines (SVMs) Appl. Soft Comput. 11 2011 4203 4211
    • (2011) Appl. Soft Comput. , vol.11 , pp. 4203-4211
    • Konar, P.1    Chattopadhyay, P.2
  • 8
    • 34848858238 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
    • Y. Yang, D.J. Yu, and J.S. Cheng A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM Measurement 40 9-10 2007 943 950
    • (2007) Measurement , vol.40 , Issue.910 , pp. 943-950
    • Yang, Y.1    Yu, D.J.2    Cheng, J.S.3
  • 9
    • 57649230902 scopus 로고    scopus 로고
    • Application of SVM and SVD technique based on EMD to the fault diagnosis of the rotating machinery
    • J.S. Cheng, J. Yu, J.S. Tang, and Y. Yang Application of SVM and SVD technique based on EMD to the fault diagnosis of the rotating machinery Shock Vib. 16 1 2009 89 98
    • (2009) Shock Vib. , vol.16 , Issue.1 , pp. 89-98
    • Cheng, J.S.1    Yu, J.2    Tang, J.S.3    Yang, Y.4
  • 10
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee, and H.S. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 6755 1999 788 791
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 11
    • 24944566806 scopus 로고    scopus 로고
    • Face recognition using fisher non-negative matrix factorization with sparseness constraints
    • X. Pu, Z. Yi, Z. Zheng, W. Zhou, and M. Ye Face recognition using fisher non-negative matrix factorization with sparseness constraints Lect. Notes Comput. Sci. 3497 2005 112 117
    • (2005) Lect. Notes Comput. Sci. , vol.3497 , pp. 112-117
    • Pu, X.1    Yi, Z.2    Zheng, Z.3    Zhou, W.4    Ye, M.5
  • 12
    • 2442624378 scopus 로고    scopus 로고
    • Non-negative matrix factorization based methods for object recognition
    • W. Liu, and N. Zheng Non-negative matrix factorization based methods for object recognition Pattern Recogn. Lett. 25 8 2004 893 897
    • (2004) Pattern Recogn. Lett. , vol.25 , Issue.8 , pp. 893-897
    • Liu, W.1    Zheng, N.2
  • 14
    • 79953673543 scopus 로고    scopus 로고
    • A new feature extraction and selection scheme for hybrid fault diagnosis of gearbox
    • B. Li, P.L. Zhang, H. Tian, S.S. Mi, D.S. Liu, and G.Q. Ren A new feature extraction and selection scheme for hybrid fault diagnosis of gearbox Exp. Syst. Appl. 38 8 2011 10000 10009
    • (2011) Exp. Syst. Appl. , vol.38 , Issue.8 , pp. 10000-10009
    • Li, B.1    Zhang, P.L.2    Tian, H.3    Mi, S.S.4    Liu, D.S.5    Ren, G.Q.6
  • 15
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • K.Q. Weinberger, and L.K. Saul Unsupervised learning of image manifolds by semidefinite programming Int. J. Comput. Vis. 70 1 2006 77 90
    • (2006) Int. J. Comput. Vis. , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.Q.1    Saul, L.K.2
  • 16
    • 79958145726 scopus 로고    scopus 로고
    • Manifold learning for face recognition under changing illumination
    • B. Tunc, and M. Gokmen Manifold learning for face recognition under changing illumination Telecommun. Syst. 47 3-4 2011 185 195
    • (2011) Telecommun. Syst. , vol.47 , Issue.34 , pp. 185-195
    • Tunc, B.1    Gokmen, M.2
  • 18
    • 84885841484 scopus 로고    scopus 로고
    • Manifold-preserving graph reduction for sparse semi-supervised learning
    • S.L. Sun, Z. Hussain, and J. Shawe-Taylor Manifold-preserving graph reduction for sparse semi-supervised learning Neurocomputing 124 2014 13 21
    • (2014) Neurocomputing , vol.124 , pp. 13-21
    • Sun, S.L.1    Hussain, Z.2    Shawe-Taylor, J.3
  • 19
    • 28444473249 scopus 로고    scopus 로고
    • Supervised nonlinear dimensionality reduction for visualization and classification
    • X. Geng, D.C. Zhan, and Z.H. Zhou Supervised nonlinear dimensionality reduction for visualization and classification IEEE Trans. Syst. Man Cybern. Part B - Cybern. 35 6 2005 1098 1107
    • (2005) IEEE Trans. Syst. Man Cybern. Part B - Cybern. , vol.35 , Issue.6 , pp. 1098-1107
    • Geng, X.1    Zhan, D.C.2    Zhou, Z.H.3
  • 20
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani Manifold regularization: a geometric framework for learning from labeled and unlabeled examples J. Mach. Learn. Res. 7 2006 2399 2434
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 21
    • 84883544649 scopus 로고    scopus 로고
    • Bearing running state recognition based on non-extensive wavelet feature scale entropy and support vector machine
    • S.J. Dong, B.P. Tang, and R.X. Chen Bearing running state recognition based on non-extensive wavelet feature scale entropy and support vector machine Measurement 46 10 2013 4189 4199
    • (2013) Measurement , vol.46 , Issue.10 , pp. 4189-4199
    • Dong, S.J.1    Tang, B.P.2    Chen, R.X.3
  • 22
    • 84888260875 scopus 로고    scopus 로고
    • Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier
    • Z.Q. Su, B.P. Tang, J.H. Ma, and L. Deng Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier Measurement 48 2014 136 148
    • (2014) Measurement , vol.48 , pp. 136-148
    • Su, Z.Q.1    Tang, B.P.2    Ma, J.H.3    Deng, L.4
  • 23
    • 84906260789 scopus 로고    scopus 로고
    • Supervised locally tangent space alignment for machine fault diagnosis
    • Y. Zhang, B.W. Li, W. Wang, T. Sun, X.Y. Yang, and L. Wang Supervised locally tangent space alignment for machine fault diagnosis J. Mech. Sci. Technol. 28 8 2014 2971 2977
    • (2014) J. Mech. Sci. Technol. , vol.28 , Issue.8 , pp. 2971-2977
    • Zhang, Y.1    Li, B.W.2    Wang, W.3    Sun, T.4    Yang, X.Y.5    Wang, L.6
  • 24
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2000 2319 2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 25
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin, and P. Niyogi Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 15 6 2003 1373 1396
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 26
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 27
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    • Z.Y. Zhang, and H.Y. Zha Principal manifolds and nonlinear dimensionality reduction via tangent space alignment SIAM J. Sci. Comput. 26 1 2004 313 338
    • (2004) SIAM J. Sci. Comput. , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.Y.1    Zha, H.Y.2
  • 28
    • 85015510884 scopus 로고
    • A simplex-method for function minimization
    • J.A. Nelder, and R. Mead A simplex-method for function minimization Comput. J. 7 4 1965 308 313
    • (1965) Comput. J. , vol.7 , Issue.4 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 29
    • 79960045420 scopus 로고    scopus 로고
    • Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method
    • M. Zvokelj, S. Zupan, and I. Prebil Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method Mech. Syst. Signal Process. 25 2011 2631 2653
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 2631-2653
    • Zvokelj, M.1    Zupan, S.2    Prebil, I.3
  • 30
    • 79957603673 scopus 로고    scopus 로고
    • Improvement of local mean approximation in empirical mode decomposition for gear fault detection
    • Y. Wang, M.J. Zuo, Y.G. Lei, and X.F. Fan Improvement of local mean approximation in empirical mode decomposition for gear fault detection Eksploatacja I Niezawodnosc-Maint. Reliab. 2 2010 59 66
    • (2010) Eksploatacja i Niezawodnosc-Maint. Reliab. , Issue.2 , pp. 59-66
    • Wang, Y.1    Zuo, M.J.2    Lei, Y.G.3    Fan, X.F.4
  • 31
    • 4143084984 scopus 로고    scopus 로고
    • Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves
    • M. Datig, and T. Schlurmann Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves Ocean Eng. 31 14-15 2004 1783 1834
    • (2004) Ocean Eng. , vol.31 , Issue.1415 , pp. 1783-1834
    • Datig, M.1    Schlurmann, T.2
  • 32
    • 77955178689 scopus 로고    scopus 로고
    • Local integral mean-based sifting for empirical mode decomposition
    • H. Hong, X.L. Wang, and Z.Y. Tao Local integral mean-based sifting for empirical mode decomposition IEEE Signal Process. Lett. 16 10 2009 841 844
    • (2009) IEEE Signal Process. Lett. , vol.16 , Issue.10 , pp. 841-844
    • Hong, H.1    Wang, X.L.2    Tao, Z.Y.3
  • 33
    • 0030303844 scopus 로고    scopus 로고
    • An interior trust region approach for nonlinear minimization subject to bounds
    • T.F. Coleman, and Y.Y. Li An interior trust region approach for nonlinear minimization subject to bounds SIAM J. Optim. 6 2 1996 418 445
    • (1996) SIAM J. Optim. , vol.6 , Issue.2 , pp. 418-445
    • Coleman, T.F.1    Li, Y.Y.2
  • 34
    • 84968497764 scopus 로고
    • Conditioning of quasi-Newton methods for function minimization
    • D.F. Shanno Conditioning of quasi-Newton methods for function minimization Math. Comput. 24 111 1970 647 657
    • (1970) Math. Comput. , vol.24 , Issue.111 , pp. 647-657
    • Shanno, D.F.1
  • 35
    • 78649400333 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • E. Levina, and P. Bickel Maximum likelihood estimation of intrinsic dimension Adv. Neural Inform. Process. Syst. 15 2005 777 784
    • (2005) Adv. Neural Inform. Process. Syst. , vol.15 , pp. 777-784
    • Levina, E.1    Bickel, P.2
  • 37
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett An introduction to ROC analysis Pattern Recogn. Lett. 27 8 2006 861 874
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 38
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • V.P. Pauca, J. Piper, and R.J. Plemmons Nonnegative matrix factorization for spectral data analysis Linear Algebra Appl. 416 1 2006 29 47
    • (2006) Linear Algebra Appl. , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 39
    • 0032437764 scopus 로고    scopus 로고
    • Randomized simplex algorithms on Klee-Minty cubes
    • B. Gartner, M. Henk, and G.M. Ziegler Randomized simplex algorithms on Klee-Minty cubes Combinatorica 18 3 1998 349 372
    • (1998) Combinatorica , vol.18 , Issue.3 , pp. 349-372
    • Gartner, B.1    Henk, M.2    Ziegler, G.M.3
  • 40
    • 4243066295 scopus 로고    scopus 로고
    • Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time
    • D.A. Spielman, and S.H. Teng Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time J. ACM 51 3 2004 385 463
    • (2004) J. ACM , vol.51 , Issue.3 , pp. 385-463
    • Spielman, D.A.1    Teng, S.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.