-
1
-
-
0001582531
-
Logconcavity versus logconvexity: A complete characterization
-
Mark Yuying An. Logconcavity versus logconvexity: a complete characterization. Journal of Economic Theory, 80(2):350-369, 1998.
-
(1998)
Journal of Economic Theory
, vol.80
, Issue.2
, pp. 350-369
-
-
An, M.Y.1
-
4
-
-
79952745784
-
Approximate marginals in latent Gaussian models
-
2
-
Botond Cseke and Tom Heskes. Approximate marginals in latent Gaussian models. Journal of Machine Learning Research, 12:417-454, 2 2011. ISSN 1532-4435.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 417-454
-
-
Cseke, B.1
Heskes, T.2
-
5
-
-
84859838775
-
Case-deletion importance sampling estimators: Central limit theorems and related results
-
Ilenia Epifani, Steven N MacEachern, and Mario Peruggia. Case-deletion importance sampling estimators: Central limit theorems and related results. Electronic Journal of Statistics, 2:774-806, 2008.
-
(2008)
Electronic Journal of Statistics
, vol.2
, pp. 774-806
-
-
Epifani, I.1
MacEachern, S.N.2
Peruggia, M.3
-
7
-
-
0001803816
-
Model determination using sampling-based methods
-
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Chapman & Hall
-
Alan E. Gelfand. Model determination using sampling-based methods. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, pages 145-162. Chapman & Hall, 1996.
-
(1996)
Markov Chain Monte Carlo in Practice
, pp. 145-162
-
-
Gelfand, A.E.1
-
8
-
-
0000079228
-
Model determination using predictive distributions with implementation via sampling-based methods (with discussion)
-
J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Oxford University Press
-
Alan E. Gelfand, D. K. Dey, and H. Chang. Model determination using predictive distributions with implementation via sampling-based methods (with discussion). In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 4, pages 147-167. Oxford University Press, 1992.
-
(1992)
Bayesian Statistics
, vol.4
, pp. 147-167
-
-
Gelfand, A.E.1
Dey, D.K.2
Chang, H.3
-
9
-
-
85053970271
-
-
Chapman & Hall/CRC, third edition
-
Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. Bayesian Data Analysis. Chapman & Hall/CRC, third edition, 2013.
-
(2013)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Dunson, D.B.4
Vehtari, A.5
Rubin, D.B.6
-
10
-
-
84916213666
-
Understanding predictive information criteria for Bayesian models
-
Andrew Gelman, Jessica Hwang, and Aki Vehtari. Understanding predictive information criteria for Bayesian models. Statistics and Computing, 24(6):997-1016, 2014.
-
(2014)
Statistics and Computing
, vol.24
, Issue.6
, pp. 997-1016
-
-
Gelman, A.1
Hwang, J.2
Vehtari, A.3
-
11
-
-
33947274775
-
Strictly proper scoring rules, prediction, and estimation
-
Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of American Statistical Association, 102:359-379, 2007.
-
(2007)
Journal of American Statistical Association
, vol.102
, pp. 359-379
-
-
Gneiting, T.1
Raftery, A.E.2
-
12
-
-
33847399672
-
Probabilistic forecasts, calibration and sharpness
-
Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):243-268, 2007.
-
(2007)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.69
, Issue.2
, pp. 243-268
-
-
Gneiting, T.1
Balabdaoui, F.2
Raftery, A.E.3
-
13
-
-
79955479019
-
Posterior and cross-validatory predictive checks: A comparison of MCMC and INLA
-
Thomas Kneib and Gerhard Tutz, editors, Springer
-
Leonhard Held, Birgit Schrödle, and Håvard Rue. Posterior and cross-validatory predictive checks: A comparison of MCMC and INLA. In Thomas Kneib and Gerhard Tutz, editors, Statistical Modelling and Regression Structures, pages 91-110. Springer, 2010.
-
(2010)
Statistical Modelling and Regression Structures
, pp. 91-110
-
-
Held, L.1
Schrödle, B.2
Rue, H.3
-
14
-
-
77955558195
-
Expectation propagation for microarray data classification
-
Daniel Hernáandez-Lobato, José M. Hernández-Lobato, and Alberto Suárez. Expectation propagation for microarray data classification. Pattern Recognition Letters, 31(12):1618-1626, 2010.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.12
, pp. 1618-1626
-
-
Hernáandez-Lobato, D.1
Hernández-Lobato, J.M.2
Suárez, A.3
-
15
-
-
85161971986
-
Regulator discovery from gene expression time series of malaria parasites: A hierarchical approach
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors
-
José M. Hernández-Lobato, Tjeerd Dijkstra, and Tom Heskes. Regulator discovery from gene expression time series of malaria parasites: a hierarchical approach. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 649-656, 2008.
-
(2008)
Advances in Neural Information Processing Systems 20
, pp. 649-656
-
-
Hernández-Lobato, J.M.1
Dijkstra, T.2
Heskes, T.3
-
19
-
-
84950943564
-
Sequential imputations and Bayesian missing data problems
-
Augustine Kong, Jun S. Liu, and Wing Hung Wong. Sequential imputations and Bayesian missing data problems. Journal of the American Statistical Association, 89(425):278-288, 1994.
-
(1994)
Journal of the American Statistical Association
, vol.89
, Issue.425
, pp. 278-288
-
-
Kong, A.1
Liu, J.S.2
Wong, W.H.3
-
20
-
-
63149119676
-
Testing the assumptions behind importance sampling
-
Siem Jan Koopman, Neil Shephard, and Drew Creal. Testing the assumptions behind importance sampling. Journal of Econometrics, 149(1):2-11, 2009.
-
(2009)
Journal of Econometrics
, vol.149
, Issue.1
, pp. 2-11
-
-
Koopman, S.J.1
Shephard, N.2
Creal, D.3
-
23
-
-
0037687725
-
Approximate cross-validatory predictive checks in disease mapping models
-
E. C. Marshall and D. J. Spiegelhalter. Approximate cross-validatory predictive checks in disease mapping models. Statistics in Medicine, 22(10):1649-1660, 2003.
-
(2003)
Statistics in Medicine
, vol.22
, Issue.10
, pp. 1649-1660
-
-
Marshall, E.C.1
Spiegelhalter, D.J.2
-
24
-
-
84878373364
-
Bayesian computing with INLA: New features
-
Thiago G Martins, Daniel Simpson, Finn Lindgren, and Håvard Rue. Bayesian computing with INLA: new features. Computational Statistics & Data Analysis, 67:68-83, 2013.
-
(2013)
Computational Statistics & Data Analysis
, vol.67
, pp. 68-83
-
-
Martins, T.G.1
Simpson, D.2
Lindgren, F.3
Rue, H.4
-
26
-
-
85162070336
-
Slice sampling covariance hyperparameters of latent Gaussian models
-
J. Lafferty, C. K. I. Williams, R. Zemel, J. Shawe-Taylor, and A. Culotta, editors
-
Iain Murray and Ryan Prescott Adams. Slice sampling covariance hyperparameters of latent Gaussian models. In J. Lafferty, C. K. I. Williams, R. Zemel, J. Shawe-Taylor, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1732-1740, 2010.
-
(2010)
Advances in Neural Information Processing Systems 23
, pp. 1732-1740
-
-
Murray, I.1
Adams, R.P.2
-
28
-
-
56349122110
-
Approximations for binary Gaussian process classification
-
October
-
Hannes Nickisch and Carl Edward Rasmussen. Approximations for binary Gaussian process classification. Journal of Machine Learning Research, 9:2035-2078, October 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2035-2078
-
-
Nickisch, H.1
Rasmussen, C.E.2
-
29
-
-
0034320350
-
Gaussian processes for classification: Mean-field algorithms
-
Manfred Opper and Ole Winther. Gaussian processes for classification: Mean-field algorithms. Neural Computation, 12(11):2655-2684, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.11
, pp. 2655-2684
-
-
Opper, M.1
Winther, O.2
-
30
-
-
0031500277
-
On the variability of case-deletion importance sampling weights in the Bayesian linear model
-
Mario Peruggia. On the variability of case-deletion importance sampling weights in the Bayesian linear model. Journal of the American Statistical Association, 92(437):199-207, 1997.
-
(1997)
Journal of the American Statistical Association
, vol.92
, Issue.437
, pp. 199-207
-
-
Peruggia, M.1
-
31
-
-
84964030922
-
Comparison of Bayesian predictive methods for model selection
-
Online first
-
Juho Piironen and Aki Vehtari. Comparison of Bayesian predictive methods for model selection. Statistics and Computing, 2016. Online first: DOI:10.1007/s11222-016-9649-y.
-
(2016)
Statistics and Computing
-
-
Piironen, J.1
Vehtari, A.2
-
32
-
-
29144453489
-
A unifying view of sparse approximate Gaussian process regression
-
Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6(3):1939-1959, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, Issue.3
, pp. 1939-1959
-
-
Quiñonero-Candela, J.1
Rasmussen, C.E.2
-
37
-
-
84901481264
-
Laplace approximation for logistic Gaussian process density estimation and regression
-
Jaakko Riihimäki and Aki Vehtari. Laplace approximation for logistic Gaussian process density estimation and regression. Bayesian analysis, 9(2):425-448, 2014.
-
(2014)
Bayesian Analysis
, vol.9
, Issue.2
, pp. 425-448
-
-
Riihimäki, J.1
Vehtari, A.2
-
38
-
-
84873476296
-
Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood
-
Jaakko Riihimäki, Pasi Jylänki, and Aki Vehtari. Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood. Journal of Machine Learning Research, 14:75-109, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 75-109
-
-
Riihimäki, J.1
Jylänki, P.2
Vehtari, A.3
-
39
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
-
Håvard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal statistical Society B, 71(2):1-35, 2009.
-
(2009)
Journal of the Royal Statistical Society B
, vol.71
, Issue.2
, pp. 1-35
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
40
-
-
44649181578
-
Bayesian inference and optimal design for the sparse linear model
-
Matthias Seeger. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 759-813
-
-
Seeger, M.1
-
41
-
-
0035344742
-
Predictive approaches for choosing hyperparameters in Gaussian processes
-
May
-
S. Sundararajan and S. S. Keerthi. Predictive approaches for choosing hyperparameters in Gaussian processes. Neural Computation, 13(5):1103-1118, May 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.5
, pp. 1103-1118
-
-
Sundararajan, S.1
Keerthi, S.S.2
-
42
-
-
84950871099
-
Accurate approximations for posterior moments and marginal densities
-
Luke Tierney and Joseph B. Kadane. Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393):82-86, 1986.
-
(1986)
Journal of the American Statistical Association
, vol.81
, Issue.393
, pp. 82-86
-
-
Tierney, L.1
Kadane, J.B.2
-
44
-
-
78049353036
-
Bayesian source localization with the multivariate Laplace prior
-
Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors
-
Marcel van Gerven, Botond Cseke, Robert Oostenveld, and Tom Heskes. Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems, pages 1901-1909, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 1901-1909
-
-
Van Gerven, M.1
Cseke, B.2
Oostenveld, R.3
Heskes, T.4
-
47
-
-
84855393080
-
Gaussian process regression with Student-t likelihood
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
-
Jarno Vanhatalo, Pasi Jylänki, and Aki Vehtari. Gaussian process regression with Student-t likelihood. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1910-1918, 2009.
-
(2009)
Advances in Neural Information Processing Systems 22
, pp. 1910-1918
-
-
Vanhatalo, J.1
Jylänki, P.2
Vehtari, A.3
-
48
-
-
77953768713
-
Approximate inference for disease mapping with sparse Gaussian processes
-
Jarno Vanhatalo, Ville Pietiläinen, and Aki Vehtari. Approximate inference for disease mapping with sparse Gaussian processes. Statistics in Medicine, 29(15):1580-1607, 2010.
-
(2010)
Statistics in Medicine
, vol.29
, Issue.15
, pp. 1580-1607
-
-
Vanhatalo, J.1
Pietiläinen, V.2
Vehtari, A.3
-
49
-
-
84877621994
-
GPstuff: Bayesian modeling with Gaussian processes
-
Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville Tolvanen, and Aki Vehtari. GPstuff: Bayesian modeling with Gaussian processes. Journal of Machine Learning Research, 14:1175-1179, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1175-1179
-
-
Vanhatalo, J.1
Riihimäki, J.2
Hartikainen, J.3
Jylänki, P.4
Tolvanen, V.5
Vehtari, A.6
-
52
-
-
0036781790
-
Bayesian model assessment and comparison using cross-validation predictive densities
-
Aki Vehtari and Jouko Lampinen. Bayesian model assessment and comparison using cross-validation predictive densities. Neural Computation, 14(10):2439-2468, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.10
, pp. 2439-2468
-
-
Vehtari, A.1
Lampinen, J.2
-
53
-
-
84874387472
-
A survey of Bayesian predictive methods for model assessment, selection and comparison
-
Aki Vehtari and Janne Ojanen. A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228, 2012.
-
(2012)
Statistics Surveys
, vol.6
, pp. 142-228
-
-
Vehtari, A.1
Ojanen, J.2
-
55
-
-
70649087949
-
Equations of states in singular statistical estimation
-
Sumio Watanabe. Equations of states in singular statistical estimation. Neural Networks, 23 (1):20-34, 2010a.
-
(2010)
Neural Networks
, vol.23
, Issue.1
, pp. 20-34
-
-
Watanabe, S.1
-
56
-
-
79551500649
-
Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory
-
Sumio Watanabe. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11:3571-3594, 2010b.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3571-3594
-
-
Watanabe, S.1
-
57
-
-
69249150497
-
A new and efficient estimation method for the generalized Pareto distribution
-
Jin Zhang and Michael A Stephens. A new and efficient estimation method for the generalized Pareto distribution. Technometrics, 51(3):316-325, 2009.
-
(2009)
Technometrics
, vol.51
, Issue.3
, pp. 316-325
-
-
Zhang, J.1
Stephens, M.A.2
|