메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages 1-38

Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models

Author keywords

Expectation propagation; Gaussian latent variable model; Laplace approximation; Leave one out cross validation; Predictive performance

Indexed keywords

BAYESIAN NETWORKS; CASE BASED REASONING; GAUSSIAN DISTRIBUTION; INTELLIGENT SYSTEMS; LAPLACE TRANSFORMS; MARKOV PROCESSES; STATISTICAL METHODS;

EID: 84988932233     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (61)

References (57)
  • 1
    • 0001582531 scopus 로고    scopus 로고
    • Logconcavity versus logconvexity: A complete characterization
    • Mark Yuying An. Logconcavity versus logconvexity: a complete characterization. Journal of Economic Theory, 80(2):350-369, 1998.
    • (1998) Journal of Economic Theory , vol.80 , Issue.2 , pp. 350-369
    • An, M.Y.1
  • 3
    • 84885597827 scopus 로고    scopus 로고
    • Gaussian Kullback-Leibler approximate inference
    • Edward Challis and David Barber. Gaussian Kullback-Leibler approximate inference. Journal of Machine Learning Research, 14:2239-2286, 2013.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 2239-2286
    • Challis, E.1    Barber, D.2
  • 4
    • 79952745784 scopus 로고    scopus 로고
    • Approximate marginals in latent Gaussian models
    • 2
    • Botond Cseke and Tom Heskes. Approximate marginals in latent Gaussian models. Journal of Machine Learning Research, 12:417-454, 2 2011. ISSN 1532-4435.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 417-454
    • Cseke, B.1    Heskes, T.2
  • 5
    • 84859838775 scopus 로고    scopus 로고
    • Case-deletion importance sampling estimators: Central limit theorems and related results
    • Ilenia Epifani, Steven N MacEachern, and Mario Peruggia. Case-deletion importance sampling estimators: Central limit theorems and related results. Electronic Journal of Statistics, 2:774-806, 2008.
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 774-806
    • Epifani, I.1    MacEachern, S.N.2    Peruggia, M.3
  • 7
    • 0001803816 scopus 로고    scopus 로고
    • Model determination using sampling-based methods
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Chapman & Hall
    • Alan E. Gelfand. Model determination using sampling-based methods. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, pages 145-162. Chapman & Hall, 1996.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 145-162
    • Gelfand, A.E.1
  • 8
    • 0000079228 scopus 로고
    • Model determination using predictive distributions with implementation via sampling-based methods (with discussion)
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Oxford University Press
    • Alan E. Gelfand, D. K. Dey, and H. Chang. Model determination using predictive distributions with implementation via sampling-based methods (with discussion). In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 4, pages 147-167. Oxford University Press, 1992.
    • (1992) Bayesian Statistics , vol.4 , pp. 147-167
    • Gelfand, A.E.1    Dey, D.K.2    Chang, H.3
  • 10
    • 84916213666 scopus 로고    scopus 로고
    • Understanding predictive information criteria for Bayesian models
    • Andrew Gelman, Jessica Hwang, and Aki Vehtari. Understanding predictive information criteria for Bayesian models. Statistics and Computing, 24(6):997-1016, 2014.
    • (2014) Statistics and Computing , vol.24 , Issue.6 , pp. 997-1016
    • Gelman, A.1    Hwang, J.2    Vehtari, A.3
  • 13
    • 79955479019 scopus 로고    scopus 로고
    • Posterior and cross-validatory predictive checks: A comparison of MCMC and INLA
    • Thomas Kneib and Gerhard Tutz, editors, Springer
    • Leonhard Held, Birgit Schrödle, and Håvard Rue. Posterior and cross-validatory predictive checks: A comparison of MCMC and INLA. In Thomas Kneib and Gerhard Tutz, editors, Statistical Modelling and Regression Structures, pages 91-110. Springer, 2010.
    • (2010) Statistical Modelling and Regression Structures , pp. 91-110
    • Held, L.1    Schrödle, B.2    Rue, H.3
  • 15
    • 85161971986 scopus 로고    scopus 로고
    • Regulator discovery from gene expression time series of malaria parasites: A hierarchical approach
    • J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors
    • José M. Hernández-Lobato, Tjeerd Dijkstra, and Tom Heskes. Regulator discovery from gene expression time series of malaria parasites: a hierarchical approach. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 649-656, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 , pp. 649-656
    • Hernández-Lobato, J.M.1    Dijkstra, T.2    Heskes, T.3
  • 20
    • 63149119676 scopus 로고    scopus 로고
    • Testing the assumptions behind importance sampling
    • Siem Jan Koopman, Neil Shephard, and Drew Creal. Testing the assumptions behind importance sampling. Journal of Econometrics, 149(1):2-11, 2009.
    • (2009) Journal of Econometrics , vol.149 , Issue.1 , pp. 2-11
    • Koopman, S.J.1    Shephard, N.2    Creal, D.3
  • 23
    • 0037687725 scopus 로고    scopus 로고
    • Approximate cross-validatory predictive checks in disease mapping models
    • E. C. Marshall and D. J. Spiegelhalter. Approximate cross-validatory predictive checks in disease mapping models. Statistics in Medicine, 22(10):1649-1660, 2003.
    • (2003) Statistics in Medicine , vol.22 , Issue.10 , pp. 1649-1660
    • Marshall, E.C.1    Spiegelhalter, D.J.2
  • 26
    • 85162070336 scopus 로고    scopus 로고
    • Slice sampling covariance hyperparameters of latent Gaussian models
    • J. Lafferty, C. K. I. Williams, R. Zemel, J. Shawe-Taylor, and A. Culotta, editors
    • Iain Murray and Ryan Prescott Adams. Slice sampling covariance hyperparameters of latent Gaussian models. In J. Lafferty, C. K. I. Williams, R. Zemel, J. Shawe-Taylor, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1732-1740, 2010.
    • (2010) Advances in Neural Information Processing Systems 23 , pp. 1732-1740
    • Murray, I.1    Adams, R.P.2
  • 28
    • 56349122110 scopus 로고    scopus 로고
    • Approximations for binary Gaussian process classification
    • October
    • Hannes Nickisch and Carl Edward Rasmussen. Approximations for binary Gaussian process classification. Journal of Machine Learning Research, 9:2035-2078, October 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2035-2078
    • Nickisch, H.1    Rasmussen, C.E.2
  • 29
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: Mean-field algorithms
    • Manfred Opper and Ole Winther. Gaussian processes for classification: Mean-field algorithms. Neural Computation, 12(11):2655-2684, 2000.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 30
    • 0031500277 scopus 로고    scopus 로고
    • On the variability of case-deletion importance sampling weights in the Bayesian linear model
    • Mario Peruggia. On the variability of case-deletion importance sampling weights in the Bayesian linear model. Journal of the American Statistical Association, 92(437):199-207, 1997.
    • (1997) Journal of the American Statistical Association , vol.92 , Issue.437 , pp. 199-207
    • Peruggia, M.1
  • 31
    • 84964030922 scopus 로고    scopus 로고
    • Comparison of Bayesian predictive methods for model selection
    • Online first
    • Juho Piironen and Aki Vehtari. Comparison of Bayesian predictive methods for model selection. Statistics and Computing, 2016. Online first: DOI:10.1007/s11222-016-9649-y.
    • (2016) Statistics and Computing
    • Piironen, J.1    Vehtari, A.2
  • 32
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6(3):1939-1959, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , Issue.3 , pp. 1939-1959
    • Quiñonero-Candela, J.1    Rasmussen, C.E.2
  • 37
    • 84901481264 scopus 로고    scopus 로고
    • Laplace approximation for logistic Gaussian process density estimation and regression
    • Jaakko Riihimäki and Aki Vehtari. Laplace approximation for logistic Gaussian process density estimation and regression. Bayesian analysis, 9(2):425-448, 2014.
    • (2014) Bayesian Analysis , vol.9 , Issue.2 , pp. 425-448
    • Riihimäki, J.1    Vehtari, A.2
  • 38
    • 84873476296 scopus 로고    scopus 로고
    • Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood
    • Jaakko Riihimäki, Pasi Jylänki, and Aki Vehtari. Nested expectation propagation for Gaussian process classification with a multinomial probit likelihood. Journal of Machine Learning Research, 14:75-109, 2013.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 75-109
    • Riihimäki, J.1    Jylänki, P.2    Vehtari, A.3
  • 39
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Håvard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal statistical Society B, 71(2):1-35, 2009.
    • (2009) Journal of the Royal Statistical Society B , vol.71 , Issue.2 , pp. 1-35
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 40
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • Matthias Seeger. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 759-813
    • Seeger, M.1
  • 41
    • 0035344742 scopus 로고    scopus 로고
    • Predictive approaches for choosing hyperparameters in Gaussian processes
    • May
    • S. Sundararajan and S. S. Keerthi. Predictive approaches for choosing hyperparameters in Gaussian processes. Neural Computation, 13(5):1103-1118, May 2001.
    • (2001) Neural Computation , vol.13 , Issue.5 , pp. 1103-1118
    • Sundararajan, S.1    Keerthi, S.S.2
  • 42
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Luke Tierney and Joseph B. Kadane. Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393):82-86, 1986.
    • (1986) Journal of the American Statistical Association , vol.81 , Issue.393 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 44
    • 78049353036 scopus 로고    scopus 로고
    • Bayesian source localization with the multivariate Laplace prior
    • Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Marcel van Gerven, Botond Cseke, Robert Oostenveld, and Tom Heskes. Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems, pages 1901-1909, 2009.
    • (2009) Advances in Neural Information Processing Systems , pp. 1901-1909
    • Van Gerven, M.1    Cseke, B.2    Oostenveld, R.3    Heskes, T.4
  • 45
    • 77953754085 scopus 로고    scopus 로고
    • Modelling local and global phenomena with sparse Gaussian processes
    • David A. McAllester and Petri Myllymäki, editors
    • Jarno Vanhatalo and Aki Vehtari. Modelling local and global phenomena with sparse Gaussian processes. In David A. McAllester and Petri Myllymäki, editors, Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, pages 571-578, 2008.
    • (2008) Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence , pp. 571-578
    • Vanhatalo, J.1    Vehtari, A.2
  • 47
    • 84855393080 scopus 로고    scopus 로고
    • Gaussian process regression with Student-t likelihood
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Jarno Vanhatalo, Pasi Jylänki, and Aki Vehtari. Gaussian process regression with Student-t likelihood. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1910-1918, 2009.
    • (2009) Advances in Neural Information Processing Systems 22 , pp. 1910-1918
    • Vanhatalo, J.1    Jylänki, P.2    Vehtari, A.3
  • 48
    • 77953768713 scopus 로고    scopus 로고
    • Approximate inference for disease mapping with sparse Gaussian processes
    • Jarno Vanhatalo, Ville Pietiläinen, and Aki Vehtari. Approximate inference for disease mapping with sparse Gaussian processes. Statistics in Medicine, 29(15):1580-1607, 2010.
    • (2010) Statistics in Medicine , vol.29 , Issue.15 , pp. 1580-1607
    • Vanhatalo, J.1    Pietiläinen, V.2    Vehtari, A.3
  • 52
    • 0036781790 scopus 로고    scopus 로고
    • Bayesian model assessment and comparison using cross-validation predictive densities
    • Aki Vehtari and Jouko Lampinen. Bayesian model assessment and comparison using cross-validation predictive densities. Neural Computation, 14(10):2439-2468, 2002.
    • (2002) Neural Computation , vol.14 , Issue.10 , pp. 2439-2468
    • Vehtari, A.1    Lampinen, J.2
  • 53
    • 84874387472 scopus 로고    scopus 로고
    • A survey of Bayesian predictive methods for model assessment, selection and comparison
    • Aki Vehtari and Janne Ojanen. A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228, 2012.
    • (2012) Statistics Surveys , vol.6 , pp. 142-228
    • Vehtari, A.1    Ojanen, J.2
  • 55
    • 70649087949 scopus 로고    scopus 로고
    • Equations of states in singular statistical estimation
    • Sumio Watanabe. Equations of states in singular statistical estimation. Neural Networks, 23 (1):20-34, 2010a.
    • (2010) Neural Networks , vol.23 , Issue.1 , pp. 20-34
    • Watanabe, S.1
  • 56
    • 79551500649 scopus 로고    scopus 로고
    • Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory
    • Sumio Watanabe. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11:3571-3594, 2010b.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3571-3594
    • Watanabe, S.1
  • 57
    • 69249150497 scopus 로고    scopus 로고
    • A new and efficient estimation method for the generalized Pareto distribution
    • Jin Zhang and Michael A Stephens. A new and efficient estimation method for the generalized Pareto distribution. Technometrics, 51(3):316-325, 2009.
    • (2009) Technometrics , vol.51 , Issue.3 , pp. 316-325
    • Zhang, J.1    Stephens, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.