메뉴 건너뛰기




Volumn 33, Issue 1, 2017, Pages 35-41

IRSpot-EL: Identify recombination spots with an ensemble learning approach

Author keywords

[No Author keywords available]

Indexed keywords

CHROMOSOME; DNA SEQUENCE; GENETIC RECOMBINATION; GENETICS; GENOMICS; MEIOSIS; PROCEDURES; SOFTWARE; YEAST;

EID: 85014869605     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw539     Document Type: Article
Times cited : (284)

References (46)
  • 1
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • Akay,M.F. (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Exp. Syst. Appl., 36, 3240-3247.
    • (2009) Exp. Syst. Appl. , vol.36 , pp. 3240-3247
    • Akay, M.F.1
  • 2
    • 84875576158 scopus 로고    scopus 로고
    • Propy: A tool to generate various modes of Chou's PseAAC
    • Cao,D.S. et al. (2013) propy: a tool to generate various modes of Chou's PseAAC. Bioinformatics, 29, 960-962.
    • (2013) Bioinformatics , vol.29 , pp. 960-962
    • Cao, D.S.1
  • 4
    • 34548301416 scopus 로고    scopus 로고
    • Prediction of linear B-cell epitopes using amino acid pair antigenicity scale
    • Chen,J. et al. (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids, 33, 423-428.
    • (2007) Amino Acids , vol.33 , pp. 423-428
    • Chen, J.1
  • 5
    • 84876053736 scopus 로고    scopus 로고
    • IRSpot-PseDNC: Identify recombination spots with pseudo dinucleotide composition
    • Chen,W. et al. (2013) iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 41, e68.
    • (2013) Nucleic Acids Res. , vol.41 , pp. e68
    • Chen, W.1
  • 6
    • 84900463301 scopus 로고    scopus 로고
    • PseKNC: A flexible web-server for generating pseudo K-tuple nucleotide composition
    • Chen,W. et al. (2014) PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition. Anal. Biochem., 456, 53-60.
    • (2014) Anal. Biochem. , vol.456 , pp. 53-60
    • Chen, W.1
  • 7
    • 84941783146 scopus 로고    scopus 로고
    • Pseudo nucleotide composition or PseKNC: An effective formulation for analyzing genomic sequences
    • Chen,W. et al. (2015a) Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol. BioSyst., 11, 2620-2634.
    • (2015) Mol. BioSyst. , vol.11 , pp. 2620-2634
    • Chen, W.1
  • 8
    • 84868128310 scopus 로고    scopus 로고
    • INuc-PhysChem: A sequence-based predictor for identifying nucleosomes via physicochemical properties
    • Chen,W. et al. (2012) iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties. PLoS One, 7, e47843.
    • (2012) PLoS One , vol.7 , pp. e47843
    • Chen, W.1
  • 9
    • 84922387565 scopus 로고    scopus 로고
    • PseKNC-General: A cross-platform package for generating various modes of pseudo nucleotide compositions
    • Chen,W. et al. (2015b) PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics, 31, 119-120.
    • (2015) Bioinformatics , vol.31 , pp. 119-120
    • Chen, W.1
  • 10
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo amino acid composition
    • Chou,K.C. (2001) Prediction of protein cellular attributes using pseudo amino acid composition. Proteins, 43, 246-255.
    • (2001) Proteins , vol.43 , pp. 246-255
    • Chou, K.C.1
  • 11
    • 12744279642 scopus 로고    scopus 로고
    • Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
    • Chou,K.C. (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 21, 10-19.
    • (2005) Bioinformatics , vol.21 , pp. 10-19
    • Chou, K.C.1
  • 12
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review)
    • Chou,K.C. (2011) Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J. Theor. Biol., 273, 236-247.
    • (2011) J. Theor. Biol. , vol.273 , pp. 236-247
    • Chou, K.C.1
  • 13
    • 84926619444 scopus 로고    scopus 로고
    • Impacts of bioinformatics to medicinal chemistry
    • Chou,K.C. (2015) Impacts of bioinformatics to medicinal chemistry. Med. Chem., 11, 218-234.
    • (2015) Med. Chem. , vol.11 , pp. 218-234
    • Chou, K.C.1
  • 14
    • 34447095147 scopus 로고    scopus 로고
    • MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM
    • Chou,K.C. and Shen,H.B. (2007a) MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem. Biophys. Res. Comm., 360, 339-345.
    • (2007) Biochem. Biophys. Res. Comm. , vol.360 , pp. 339-345
    • Chou, K.C.1    Shen, H.B.2
  • 15
    • 34548606295 scopus 로고    scopus 로고
    • Review: Recent progresses in protein subcellular location prediction
    • Chou,K.C. and Shen,H.B. (2007b) Review: Recent progresses in protein subcellular location prediction. Anal. Biochem., 370, 1-16.
    • (2007) Anal. Biochem. , vol.370 , pp. 1-16
    • Chou, K.C.1    Shen, H.B.2
  • 16
    • 39449105071 scopus 로고    scopus 로고
    • Cell-PLoc: A package of Web servers for predicting subcellular localization of proteins in various organisms
    • Chou,K.C. and Shen,H.B. (2008) Cell-PLoc: A package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc., 3, 153-162.
    • (2008) Nat. Protoc. , vol.3 , pp. 153-162
    • Chou, K.C.1    Shen, H.B.2
  • 17
    • 0029157083 scopus 로고
    • Review: Prediction of protein structural classes
    • Chou,K.C. and Zhang,C.T. (1995) Review: prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol., 30, 275-349.
    • (1995) Crit. Rev. Biochem. Mol. Biol. , vol.30 , pp. 275-349
    • Chou, K.C.1    Zhang, C.T.2
  • 20
    • 84895429516 scopus 로고    scopus 로고
    • PseAAC-General: Fast building various modes of general form of Chou's pseudo amino acid composition for large-scale protein datasets
    • Du,P. et al. (2014) PseAAC-General: Fast building various modes of general form of Chou's pseudo amino acid composition for large-scale protein datasets. Int. J. Mol. Sci., 15, 3495-3506.
    • (2014) Int. J. Mol. Sci. , vol.15 , pp. 3495-3506
    • Du, P.1
  • 21
    • 84859932176 scopus 로고    scopus 로고
    • PseAAC-Builder: Across-platform stand-alone program for generating various special Chou's pseudo amino acid compositions
    • Du,P. et al. (2012) PseAAC-Builder: across-platform stand-alone program for generating various special Chou's pseudo amino acid compositions. Anal. Biochem., 425, 117-119.
    • (2012) Anal. Biochem. , vol.425 , pp. 117-119
    • Du, P.1
  • 22
    • 33646023117 scopus 로고    scopus 로고
    • An Introduction to ROC Analysis
    • Fawcett,J.A. (2005) An Introduction to ROC Analysis. Patt. Recog. Lett., 27, 861-874.
    • (2005) Patt. Recog. Lett. , vol.27 , pp. 861-874
    • Fawcett, J.A.1
  • 23
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey,B.J. and Dueck,D. (2007) Clustering by passing messages between data points. Science, 315, 972-976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 24
    • 58149196205 scopus 로고    scopus 로고
    • DiProDB: A database for dinucleotide properties
    • Friedel,M. et al. (2009) DiProDB: a database for dinucleotide properties. Nucleic Acids Res., 37, D37-D40.
    • (2009) Nucleic Acids Res. , vol.37 , pp. D37-D40
    • Friedel, M.1
  • 25
    • 0034633494 scopus 로고    scopus 로고
    • Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae
    • Gerton,J.L. et al. (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 97, 11383-11390.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 11383-11390
    • Gerton, J.L.1
  • 26
    • 84896463976 scopus 로고    scopus 로고
    • INuc-PseKNC: A sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition
    • Guo,S.H. et al. (2014) iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics, 30, 1522-1529.
    • (2014) Bioinformatics , vol.30 , pp. 1522-1529
    • Guo, S.H.1
  • 27
    • 84995377061 scopus 로고    scopus 로고
    • PSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC
    • Jia,J. et al. (2016) pSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, doi: 10.1093/bioinformatics/btw387.
    • (2016) Bioinformatics
    • Jia, J.1
  • 28
    • 79953261109 scopus 로고    scopus 로고
    • High recombination rates and hotspots in a Plasmodium falciparum genetic cross
    • Jiang,H. et al. (2011) High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol., 12, R33.
    • (2011) Genome Biol. , vol.12 , pp. R33
    • Jiang, H.1
  • 29
    • 34547567090 scopus 로고    scopus 로고
    • RF-DYMHC: Detecting the yeast meiotic recombination hotspots and coldspots by random forest model using gapped dinucleotide composition features
    • Jiang,P. et al. (2007) RF-DYMHC: detecting the yeast meiotic recombination hotspots and coldspots by random forest model using gapped dinucleotide composition features. Nucleic Acids Res., 35, W47-W51.
    • (2007) Nucleic Acids Res. , vol.35 , pp. W47-W51
    • Jiang, P.1
  • 30
    • 0035072551 scopus 로고    scopus 로고
    • Clustering of highly homologous sequences to reduce the size of large protein databases
    • Li,W. et al. (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics, 17, 282-283.
    • (2001) Bioinformatics , vol.17 , pp. 282-283
    • Li, W.1
  • 31
    • 84941040066 scopus 로고    scopus 로고
    • IPro54-PseKNC: A sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
    • Lin,H. et al. (2014) iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 42, 12961-12972.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 12961-12972
    • Lin, H.1
  • 32
    • 84962263478 scopus 로고    scopus 로고
    • IEnhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition
    • Liu,B. et al. (2016a) iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 32, 362-389.
    • (2016) Bioinformatics , vol.32 , pp. 362-389
    • Liu, B.1
  • 33
    • 84927712367 scopus 로고    scopus 로고
    • RepDNA: A Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects
    • Liu,B. et al. (2015a) repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics, 31, 1307-1309.
    • (2015) Bioinformatics , vol.31 , pp. 1307-1309
    • Liu, B.1
  • 34
    • 84956620000 scopus 로고    scopus 로고
    • RepRNA: A web server for generating various feature vectors of RNA sequences
    • Liu,B. et al. (2016b) repRNA: a web server for generating various feature vectors of RNA sequences. Mol. Genet. Genomics, 291, 473-481.
    • (2016) Mol. Genet. Genomics , vol.291 , pp. 473-481
    • Liu, B.1
  • 35
    • 84979865452 scopus 로고    scopus 로고
    • Pse-in-One: A web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
    • Liu,B. et al. (2015b) Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 43, W65-W71.
    • (2015) Nucleic Acids Res. , vol.43 , pp. W65-W71
    • Liu, B.1
  • 36
    • 84983353017 scopus 로고    scopus 로고
    • IDHS-EL: Identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework
    • Liu,B. et al. (2016c) iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformaitcs, 32, 2411-2418.
    • (2016) Bioinformaitcs , vol.32 , pp. 2411-2418
    • Liu, B.1
  • 37
    • 80054694427 scopus 로고    scopus 로고
    • Sequence-dependent prediction of recombination hotspots in Saccharomyces cerevisiae
    • Liu,G. et al. (2012) Sequence-dependent prediction of recombination hotspots in Saccharomyces cerevisiae. J. Theor. Biol., 293, 49-54.
    • (2012) J. Theor. Biol. , vol.293 , pp. 49-54
    • Liu, G.1
  • 38
    • 47949108144 scopus 로고    scopus 로고
    • High-resolution mapping of meiotic crossovers and non-crossovers in yeast
    • Mancera,E. et al. (2008) High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature, 454, 479-485.
    • (2008) Nature , vol.454 , pp. 479-485
    • Mancera, E.1
  • 39
    • 84995428311 scopus 로고    scopus 로고
    • IPTM-mLys: Identifying multiple lysine PTM sites and their different types
    • Qiu,W.R. et al. (2016a) iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics, doi: 10.1093/bioinformatics/btw380.
    • (2016) Bioinformatics
    • Qiu, W.R.1
  • 40
    • 84892958175 scopus 로고    scopus 로고
    • IRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components
    • Qiu,W.R. et al. (2014) iRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci., 15, 1746-1766.
    • (2014) Int. J. Mol. Sci. , vol.15 , pp. 1746-1766
    • Qiu, W.R.1
  • 41
    • 84978664062 scopus 로고    scopus 로고
    • IPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier
    • Qiu,W.R. et al. (2016b) iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget., 7, 51270-51283.
    • (2016) Oncotarget. , vol.7 , pp. 51270-51283
    • Qiu, W.R.1
  • 42
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • Shen,H.B. and Chou,K.C. (2006) Ensemble classifier for protein fold pattern recognition. Bioinformatics, 22, 1717-1722.
    • (2006) Bioinformatics , vol.22 , pp. 1717-1722
    • Shen, H.B.1    Chou, K.C.2
  • 43
    • 34748902270 scopus 로고    scopus 로고
    • Signal-3L: A 3-layer approach for predicting signal peptide
    • Shen,H.B. and Chou,K.C. (2007a) Signal-3L: a 3-layer approach for predicting signal peptide. Biochem. Biophys. Res. Comm., 363, 297-303.
    • (2007) Biochem. Biophys. Res. Comm. , vol.363 , pp. 297-303
    • Shen, H.B.1    Chou, K.C.2
  • 44
    • 35348973511 scopus 로고    scopus 로고
    • EzyPred: A top-down approach for predicting enzyme functional classes and subclasses
    • Shen,H.B. and Chou,K.C. (2007b) EzyPred: A top-down approach for predicting enzyme functional classes and subclasses. Biochem. Biophys. Res. Comm., 364, 53-59.
    • (2007) Biochem. Biophys. Res. Comm. , vol.364 , pp. 53-59
    • Shen, H.B.1    Chou, K.C.2
  • 45
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens,J.A. and Vandewalle,J. (1999) Least squares support vector machine classifiers. Neural Process. Lett., 9, 293-300.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 46
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik,V.N. (1999) An overview of statistical learning theory. IEEE Trans. Neural Netw., 10, 988-999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 988-999
    • Vapnik, V.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.