메뉴 건너뛰기




Volumn 14, Issue 1, 2015, Pages 123-133

imDC: An ensemble learning method for imbalanced classification with miRNA data

Author keywords

Bioinformatics; Ensemble learning; Imbalances; Machine learning; miRNA

Indexed keywords

MESSENGER RNA; MICRORNA;

EID: 84921263022     PISSN: None     EISSN: 16765680     Source Type: Journal    
DOI: 10.4238/2015.January.15.15     Document Type: Article
Times cited : (39)

References (14)
  • 5
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • MIT Press, Cambridge
    • Krogh A, et al. (1995). Neural network ensembles, cross validation, and active learning. In: Advances in neural information processing systems. MIT Press, Cambridge, 231-238.
    • (1995) Advances in neural information processing systems , pp. 231-238
    • Krogh, A.1
  • 6
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat M, Holte RC and Matwin S (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30: 195-215.
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 7
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data
    • Lee Y, Lin Y and Wahba G (2004). Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association 99: 67-81.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 8
    • 84874240374 scopus 로고    scopus 로고
    • Hierarchical classification of protein folds using a novel ensemble classifier
    • Lin C, Zou Y, Qin J, Liu X, et al. (2013). Hierarchical classification of protein folds using a novel ensemble classifier. PLoS One 8: e56499.
    • (2013) PLoS One , vol.8 , pp. e56499
    • Lin, C.1    Zou, Y.2    Qin, J.3    Liu, X.4
  • 9
    • 84885838906 scopus 로고    scopus 로고
    • LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy
    • Lin C, Chen W, Qiu C, Wu Y, et al. (2014). LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123: 424-435.
    • (2014) Neurocomputing , vol.123 , pp. 424-435
    • Lin, C.1    Chen, W.2    Qiu, C.3    Wu, Y.4
  • 10
    • 77956472993 scopus 로고    scopus 로고
    • A cascade-based classification method for class-imbalanced data
    • Liu XY, Wu JX and Zhou ZH (2006). A cascade-based classification method for class-imbalanced data. J. Nanjing Univ. (Natural Sci.). 42: 148-155.
    • (2006) J. Nanjing Univ. (Natural Sci.) , vol.42 , pp. 148-155
    • Liu, X.Y.1    Wu, J.X.2    Zhou, Z.H.3
  • 11
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire RE (1990). The strength of weak learnability. Machine Learning 5: 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 12
    • 84907013321 scopus 로고    scopus 로고
    • nDNA-prot: Identification of DNA-binding proteins based on unbalanced classification
    • Song L, Li D, Zeng X, Wu Y, et al. (2014). nDNA-prot: identification of DNA-binding proteins based on unbalanced classification. BMC Bioinformatics 15: 298.
    • (2014) BMC Bioinformatics , vol.15 , pp. 298
    • Song, L.1    Li, D.2    Zeng, X.3    Wu, Y.4
  • 13
    • 77956460761 scopus 로고    scopus 로고
    • A classification method for class-imbalanced data and its application on bioinformatics
    • Quan Z, Maozu G, Yang L and Jun W (2010). A classification method for class-imbalanced data and its application on bioinformatics. J. Computer Research and Development 47:1407-1414.
    • (2010) J. Computer Research and Development , vol.47 , pp. 1407-1414
    • Quan, Z.1    Maozu, G.2    Yang, L.3    Jun, W.4
  • 14
    • 30344447264 scopus 로고    scopus 로고
    • Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine
    • Xue CG, Fei L, Tao H, Liu GP, et al. (2005). Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics, 6: 310
    • (2005) BMC Bioinformatics , vol.6 , pp. 310
    • Xue, C.G.1    Fei, L.2    Tao, H.3    Liu, G.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.