메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 5425-5434

Geometric deep learning on graphs and manifolds using mixture model CNNs

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER GRAPHICS; COMPUTER VISION; NATURAL LANGUAGE PROCESSING SYSTEMS; NETWORK ARCHITECTURE; NEURAL NETWORKS; OBJECT DETECTION; OBJECT RECOGNITION; SPEECH RECOGNITION;

EID: 85024494220     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.576     Document Type: Conference Paper
Times cited : (1669)

References (45)
  • 4
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 7:2399-2434, 2006.
    • (2006) JMLR , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 5
    • 84911376918 scopus 로고    scopus 로고
    • FAUST: Dataset and evaluation for 3D mesh registration
    • F. Bogo, J. Romero, M. Loper, and M. J. Black. FAUST: Dataset and evaluation for 3D mesh registration. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Bogo, F.1    Romero, J.2    Loper, M.3    Black, M.J.4
  • 6
    • 84946711523 scopus 로고    scopus 로고
    • Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks
    • D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and P. Vandergheynst. Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Computer Graphics Forum, 34(5):13-23, 2015.
    • (2015) Computer Graphics Forum , vol.34 , Issue.5 , pp. 13-23
    • Boscaini, D.1    Masci, J.2    Melzi, S.3    Bronstein, M.M.4    Castellani, U.5    Vandergheynst, P.6
  • 7
    • 85011287738 scopus 로고    scopus 로고
    • Learning shape correspondence with anisotropic convolutional neural networks
    • D. Boscaini, J. Masci, E. Rodolà, and M. M. Bronstein. Learning shape correspondence with anisotropic convolutional neural networks. In Proc. NIPS, 2016.
    • (2016) Proc. NIPS
    • Boscaini, D.1    Masci, J.2    Rodolà, E.3    Bronstein, M.M.4
  • 11
    • 84965157495 scopus 로고    scopus 로고
    • Spectral networks and locally connected networks on graphs
    • J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on graphs. Proc. ICLR, 2013.
    • (2013) Proc. ICLR
    • Bruna, J.1    Zaremba, W.2    Szlam, A.3    LeCun, Y.4
  • 12
    • 84958239002 scopus 로고    scopus 로고
    • GraRep: Learning graph representations with global structural information
    • S. Cao, W. Lu, and Q. Xu. GraRep: Learning graph representations with global structural information. In Proc. IKM, 2015.
    • (2015) Proc. IKM
    • Cao, S.1    Lu, W.2    Xu, Q.3
  • 13
    • 85019257780 scopus 로고    scopus 로고
    • Convolutional neural networks on graphs with fast localized spectral filtering
    • M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. In Proc. NIPS, 2016.
    • (2016) Proc. NIPS
    • Defferrard, M.1    Bresson, X.2    Vandergheynst, P.3
  • 14
    • 34548748711 scopus 로고    scopus 로고
    • Weighted graph cuts without eigenvectors: A multilevel approach
    • I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: a multilevel approach. PAMI, 29(11):1944-1957, 2007.
    • (2007) PAMI , vol.29 , Issue.11 , pp. 1944-1957
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 17
    • 84984991274 scopus 로고    scopus 로고
    • Node2Vec: Scalable feature learning for networks
    • A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proc. KDD, 2016.
    • (2016) Proc. KDD
    • Grover, A.1    Leskovec, J.2
  • 23
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11):2278-2324, 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 25
    • 84908678178 scopus 로고    scopus 로고
    • Network in network
    • M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312.4400, 2013.
    • (2013) CoRR
    • Lin, M.1    Chen, Q.2    Yan, S.3
  • 27
    • 84902100258 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov and J. Dean. Distributed representations of words and phrases and their compositionality. Proc. NIPS, 2013.
    • (2013) Proc. NIPS
    • Mikolov, T.1    Dean, J.2
  • 28
    • 84907031476 scopus 로고    scopus 로고
    • DeepWalk: Online learning of social representations
    • B. Perozzi, R. Al-Rfou, and S. Skiena. DeepWalk: Online learning of social representations. In Proc. KDD, 2014.
    • (2014) Proc. KDD
    • Perozzi, B.1    Al-Rfou, R.2    Skiena, S.3
  • 29
  • 33
    • 85032751310 scopus 로고    scopus 로고
    • The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
    • D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Proc. Magazine, 30(3):83-98, 2013.
    • (2013) IEEE Sig. Proc. Magazine , vol.30 , Issue.3 , pp. 83-98
    • Shuman, D.I.1    Narang, S.K.2    Frossard, P.3    Ortega, A.4    Vandergheynst, P.5
  • 35
    • 85053836034 scopus 로고    scopus 로고
    • Deep learning 3D shape surfaces using geometry images
    • A. Sinha, J. Bai, and K. Ramani. Deep learning 3D shape surfaces using geometry images. In Proc. ECCV, 2016.
    • (2016) Proc. ECCV
    • Sinha, A.1    Bai, J.2    Ramani, K.3
  • 36
  • 39
    • 80053029542 scopus 로고    scopus 로고
    • Unique signatures of histograms for local surface description
    • F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of histograms for local surface description. In Proc. ECCV, 2010.
    • (2010) Proc. ECCV
    • Tombari, F.1    Salti, S.2    Di Stefano, L.3
  • 40
    • 85044523572 scopus 로고    scopus 로고
    • Product manifold filter: Non-rigid shape correspondence via kernel density estimation in the product space
    • M. Vestner, R. Litman, E. Rodolà, A. M. Bronstein, and D. Cremers. Product manifold filter: Non-rigid shape correspondence via kernel density estimation in the product space. In Proc. CVPR, 2017.
    • (2017) Proc. CVPR
    • Vestner, M.1    Litman, R.2    Rodolà, E.3    Bronstein, A.M.4    Cremers, D.5
  • 41
    • 84986309327 scopus 로고    scopus 로고
    • Dense human body correspondences using convolutional networks
    • L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li. Dense human body correspondences using convolutional networks. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • Wei, L.1    Huang, Q.2    Ceylan, D.3    Vouga, E.4    Li, H.5
  • 45
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, J. Lafferty, et al. Semi-supervised learning using gaussian fields and harmonic functions. In Proc. ICML, 2003.
    • (2003) Proc. ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.