-
2
-
-
33646057375
-
SCAPE: Shape completion and animation of people
-
D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. SCAPE: shape completion and animation of people. In TOG, Volume 24, pages 408-416, 2005.
-
(2005)
TOG
, vol.24
, pp. 408-416
-
-
Anguelov, D.1
Srinivasan, P.2
Koller, D.3
Thrun, S.4
Rodgers, J.5
Davis, J.6
-
4
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 7:2399-2434, 2006.
-
(2006)
JMLR
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
6
-
-
84946711523
-
Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks
-
D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and P. Vandergheynst. Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Computer Graphics Forum, 34(5):13-23, 2015.
-
(2015)
Computer Graphics Forum
, vol.34
, Issue.5
, pp. 13-23
-
-
Boscaini, D.1
Masci, J.2
Melzi, S.3
Bronstein, M.M.4
Castellani, U.5
Vandergheynst, P.6
-
7
-
-
85011287738
-
Learning shape correspondence with anisotropic convolutional neural networks
-
D. Boscaini, J. Masci, E. Rodolà, and M. M. Bronstein. Learning shape correspondence with anisotropic convolutional neural networks. In Proc. NIPS, 2016.
-
(2016)
Proc. NIPS
-
-
Boscaini, D.1
Masci, J.2
Rodolà, E.3
Bronstein, M.M.4
-
8
-
-
84971221992
-
Anisotropic diffusion descriptors
-
D. Boscaini, J. Masci, E. Rodolà, M. M. Bronstein, and D. Cremers. Anisotropic diffusion descriptors. Computer Graphics Forum, 35(2):431-441, 2016.
-
(2016)
Computer Graphics Forum
, vol.35
, Issue.2
, pp. 431-441
-
-
Boscaini, D.1
Masci, J.2
Rodolà, E.3
Bronstein, M.M.4
Cremers, D.5
-
10
-
-
85041925094
-
-
M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning: going beyond Euclidean data. arXiv:1611.08097, 2016.
-
(2016)
Geometric Deep Learning: Going Beyond Euclidean Data
-
-
Bronstein, M.M.1
Bruna, J.2
LeCun, Y.3
Szlam, A.4
Vandergheynst, P.5
-
12
-
-
84958239002
-
GraRep: Learning graph representations with global structural information
-
S. Cao, W. Lu, and Q. Xu. GraRep: Learning graph representations with global structural information. In Proc. IKM, 2015.
-
(2015)
Proc. IKM
-
-
Cao, S.1
Lu, W.2
Xu, Q.3
-
13
-
-
85019257780
-
Convolutional neural networks on graphs with fast localized spectral filtering
-
M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. In Proc. NIPS, 2016.
-
(2016)
Proc. NIPS
-
-
Defferrard, M.1
Bresson, X.2
Vandergheynst, P.3
-
14
-
-
34548748711
-
Weighted graph cuts without eigenvectors: A multilevel approach
-
I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: a multilevel approach. PAMI, 29(11):1944-1957, 2007.
-
(2007)
PAMI
, vol.29
, Issue.11
, pp. 1944-1957
-
-
Dhillon, I.S.1
Guan, Y.2
Kulis, B.3
-
15
-
-
84965159799
-
Convolutional networks on graphs for learning molecular fingerprints
-
D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints. In Proc. NIPS, 2015.
-
(2015)
Proc. NIPS
-
-
Duvenaud, D.K.1
Maclaurin, D.2
Iparraguirre, J.3
Bombarell, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
17
-
-
84984991274
-
Node2Vec: Scalable feature learning for networks
-
A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proc. KDD, 2016.
-
(2016)
Proc. KDD
-
-
Grover, A.1
Leskovec, J.2
-
19
-
-
80051913952
-
Blended intrinsic maps
-
V. Kim, Y. Lipman, and T. Funkhouser. Blended intrinsic maps. ACM Trans. Graphics, 30(4):79, 2011.
-
(2011)
ACM Trans. Graphics
, vol.30
, Issue.4
, pp. 79
-
-
Kim, V.1
Lipman, Y.2
Funkhouser, T.3
-
23
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
25
-
-
84908678178
-
Network in network
-
M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312.4400, 2013.
-
(2013)
CoRR
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
27
-
-
84902100258
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov and J. Dean. Distributed representations of words and phrases and their compositionality. Proc. NIPS, 2013.
-
(2013)
Proc. NIPS
-
-
Mikolov, T.1
Dean, J.2
-
28
-
-
84907031476
-
DeepWalk: Online learning of social representations
-
B. Perozzi, R. Al-Rfou, and S. Skiena. DeepWalk: Online learning of social representations. In Proc. KDD, 2014.
-
(2014)
Proc. KDD
-
-
Perozzi, B.1
Al-Rfou, R.2
Skiena, S.3
-
29
-
-
84986309307
-
Volumetric and multi-view CNNs for object classification on 3D data
-
C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas. Volumetric and multi-view CNNs for object classification on 3D data. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Qi, C.R.1
Su, H.2
Nießner, M.3
Dai, A.4
Yan, M.5
Guibas, L.J.6
-
30
-
-
84911398941
-
Dense non-rigid shape correspondence using random forests
-
E. Rodolà, S. Rota Bulò, T. Windheuser, M. Vestner, and D. Cremers. Dense non-rigid shape correspondence using random forests. In Proc. CVPR, 2014.
-
(2014)
Proc. CVPR
-
-
Rodolà, E.1
Rota Bulò, S.2
Windheuser, T.3
Vestner, M.4
Cremers, D.5
-
31
-
-
58649113008
-
The graph neural network model
-
F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. IEEE Trans. Neural Networks, 20(1):61-80, 2009.
-
(2009)
IEEE Trans. Neural Networks
, vol.20
, Issue.1
, pp. 61-80
-
-
Scarselli, F.1
Gori, M.2
Tsoi, A.C.3
Hagenbuchner, M.4
Monfardini, G.5
-
32
-
-
53749083869
-
Collective classification in network data
-
P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective classification in network data. AI Magazine, 29(3):93-106, 2008.
-
(2008)
AI Magazine
, vol.29
, Issue.3
, pp. 93-106
-
-
Sen, P.1
Namata, G.M.2
Bilgic, M.3
Getoor, L.4
Gallagher, B.5
Eliassi-Rad, T.6
-
33
-
-
85032751310
-
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
-
D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Proc. Magazine, 30(3):83-98, 2013.
-
(2013)
IEEE Sig. Proc. Magazine
, vol.30
, Issue.3
, pp. 83-98
-
-
Shuman, D.I.1
Narang, S.K.2
Frossard, P.3
Ortega, A.4
Vandergheynst, P.5
-
34
-
-
84953636550
-
Vertexfrequency analysis on graphs
-
D. I. Shuman, B. Ricaud, and P. Vandergheynst. Vertexfrequency analysis on graphs. App. and Comp. Harmonic Analysis, 40(2):260-291, 2016.
-
(2016)
App. and Comp. Harmonic Analysis
, vol.40
, Issue.2
, pp. 260-291
-
-
Shuman, D.I.1
Ricaud, B.2
Vandergheynst, P.3
-
35
-
-
85053836034
-
Deep learning 3D shape surfaces using geometry images
-
A. Sinha, J. Bai, and K. Ramani. Deep learning 3D shape surfaces using geometry images. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Sinha, A.1
Bai, J.2
Ramani, K.3
-
38
-
-
84968754224
-
LINE: Large-scale information network embedding
-
J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: Large-scale information network embedding. In Proc. WWW, 2015.
-
(2015)
Proc. WWW
-
-
Tang, J.1
Qu, M.2
Wang, M.3
Zhang, M.4
Yan, J.5
Mei, Q.6
-
39
-
-
80053029542
-
Unique signatures of histograms for local surface description
-
F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of histograms for local surface description. In Proc. ECCV, 2010.
-
(2010)
Proc. ECCV
-
-
Tombari, F.1
Salti, S.2
Di Stefano, L.3
-
40
-
-
85044523572
-
Product manifold filter: Non-rigid shape correspondence via kernel density estimation in the product space
-
M. Vestner, R. Litman, E. Rodolà, A. M. Bronstein, and D. Cremers. Product manifold filter: Non-rigid shape correspondence via kernel density estimation in the product space. In Proc. CVPR, 2017.
-
(2017)
Proc. CVPR
-
-
Vestner, M.1
Litman, R.2
Rodolà, E.3
Bronstein, A.M.4
Cremers, D.5
-
41
-
-
84986309327
-
Dense human body correspondences using convolutional networks
-
L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li. Dense human body correspondences using convolutional networks. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Wei, L.1
Huang, Q.2
Ceylan, D.3
Vouga, E.4
Li, H.5
-
43
-
-
84949636429
-
3D shapenets: A deep representation for volumetric shapes
-
Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D shapenets: A deep representation for volumetric shapes. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Wu, Z.1
Song, S.2
Khosla, A.3
Yu, F.4
Zhang, L.5
Tang, X.6
Xiao, J.7
-
45
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
X. Zhu, Z. Ghahramani, J. Lafferty, et al. Semi-supervised learning using gaussian fields and harmonic functions. In Proc. ICML, 2003.
-
(2003)
Proc. ICML
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|