-
3
-
-
55449104028
-
Towards a theoretical foundation for laplacian-based manifold methods
-
M. Belkin and P. Niyogi. Towards a Theoretical Foundation for Laplacian-based Manifold Methods. Journal of Computer and System Sciences, 74(8): 1289-1308, 2008.
-
(2008)
Journal of Computer and System Sciences
, vol.74
, Issue.8
, pp. 1289-1308
-
-
Belkin, M.1
Niyogi, P.2
-
5
-
-
0000301477
-
Finding good approximate vertex and edge partitions is NP-hard
-
T.N. Bui and C. Jones. Finding Good Approximate Vertex and Edge Partitions is NP-hard. Information Processing Letters, 42(3): 153-159, 1992.
-
(1992)
Information Processing Letters
, vol.42
, Issue.3
, pp. 153-159
-
-
Bui, T.N.1
Jones, C.2
-
6
-
-
0003882879
-
-
American Mathematical Society
-
F. R. K. Chung. Spectral Graph Theory, Volume 92. American Mathematical Society, 1997.
-
(1997)
Spectral Graph Theory
, vol.92
-
-
Chung, F.R.K.1
-
9
-
-
34548748711
-
Weighted graph cuts without eigenvectors: A multilevel approach
-
I. Dhillon, Y. Guan, and B. Kulis. Weighted Graph Cuts Without Eigenvectors: A Multilevel Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 29(11): 1944-1957, 2007.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
, vol.29
, Issue.11
, pp. 1944-1957
-
-
Dhillon, I.1
Guan, Y.2
Kulis, B.3
-
10
-
-
77956556554
-
Multiscale wavelets on trees, graphs and high dimensional data: Theory and applications to semi supervised learning
-
M. Gavish, B. Nadler, and R. Coifman. Multiscale Wavelets on Trees, Graphs and High Dimensional Data: Theory and Applications to Semi Supervised Learning. In International Conference on Machine Learning (ICML), pages 367-374, 2010.
-
(2010)
International Conference on Machine Learning (ICML)
, pp. 367-374
-
-
Gavish, M.1
Nadler, B.2
Coifman, R.3
-
12
-
-
78751582295
-
Wavelets on graphs via spectral graph theory
-
D. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on Graphs via Spectral Graph Theory. Applied and Computational Harmonic Analysis, 30(2): 129-150, 2011.
-
(2011)
Applied and Computational Harmonic Analysis
, vol.30
, Issue.2
, pp. 129-150
-
-
Hammond, D.1
Vandergheynst, P.2
Gribonval, R.3
-
16
-
-
0032131147
-
A fast and high quality multilevel scheme for partitioning irregular graphs
-
G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing (SISC), 20(1): 359-392, 1998.
-
(1998)
SIAM Journal on Scientific Computing (SISC)
, vol.20
, Issue.1
, pp. 359-392
-
-
Karypis, G.1
Kumar, V.2
-
18
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature, 521(7553): 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
19
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document Recognition. In Proceedings of the IEEE, 86(11), pages 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
21
-
-
34548583274
-
A tutorial on spectral clustering
-
U. Von Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing, 17(4): 395-416, 2007.
-
(2007)
Statistics and Computing
, vol.17
, Issue.4
, pp. 395-416
-
-
Von Luxburg, U.1
-
23
-
-
84971226905
-
Geodesic convolutional neural networks on riemannian manifolds
-
Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic convolutional neural networks on riemannian manifolds. In Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 37-45, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision Workshops
, pp. 37-45
-
-
Masci, J.1
Boscaini, D.2
Bronstein, M.3
Vandergheynst, P.4
-
25
-
-
84963974309
-
Toward an uncertainty principle for weighted graphs
-
B. Pasdeloup, R. Alami, V. Gripon, and M. Rabbat. Toward an Uncertainty Principle for Weighted Graphs. In Signal Processing Conference (EUSIPCO), pages 1496-1500, 2015.
-
(2015)
Signal Processing Conference (EUSIPCO)
, pp. 1496-1500
-
-
Pasdeloup, B.1
Alami, R.2
Gripon, V.3
Rabbat, M.4
-
27
-
-
80051723858
-
Generalized tree-based wavelet transform
-
I. Ram, M. Elad, and I. Cohen. Generalized Tree-based Wavelet Transform. IEEE Transactions on Signal Processing, 59(9): 4199-4209, 2011.
-
(2011)
IEEE Transactions on Signal Processing
, vol.59
, Issue.9
, pp. 4199-4209
-
-
Ram, I.1
Elad, M.2
Cohen, I.3
-
29
-
-
58649113008
-
-
F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The Graph Neural Network Model. 20(1): 61-80.
-
The Graph Neural Network Model
, vol.20
, Issue.1
, pp. 61-80
-
-
Scarselli, F.1
Gori, M.2
Tsoi, A.C.3
Hagenbuchner, M.4
Monfardini, G.5
-
31
-
-
85032751310
-
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
-
D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and other Irregular Domains. IEEE Signal Processing Magazine, 30(3): 83-98, 2013.
-
(2013)
IEEE Signal Processing Magazine
, vol.30
, Issue.3
, pp. 83-98
-
-
Shuman, D.1
Narang, S.2
Frossard, P.3
Ortega, A.4
Vandergheynst, P.5
-
32
-
-
84963622932
-
A multiscale pyramid transform for graph signals
-
D.I. Shuman, M.J. Faraji, and P. Vandergheynst. A Multiscale Pyramid Transform for Graph Signals. IEEE Transactions on Signal Processing, 64(8): 2119-2134, 2016.
-
(2016)
IEEE Transactions on Signal Processing
, vol.64
, Issue.8
, pp. 2119-2134
-
-
Shuman, D.I.1
Faraji, M.J.2
Vandergheynst, P.3
|