메뉴 건너뛰기




Volumn , Issue , 2016, Pages 3197-3205

Learning shape correspondence with anisotropic convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ANISOTROPY; BENCHMARKING; COMPUTER GRAPHICS; GEOMETRY; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 85011287738     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (609)

References (28)
  • 2
    • 84857819132 scopus 로고    scopus 로고
    • Theano: A CPU and GPU math expression compiler
    • June
    • J. Bergstra et al. Theano: a CPU and GPU math expression compiler. In Proc. SciPy, June 2010.
    • (2010) Proc. SciPy
    • Bergstra, J.1
  • 3
    • 84911376918 scopus 로고    scopus 로고
    • FAUST: Dataset and evaluation for 3D mesh registration
    • F. Bogo, J. Romero, M. Loper, and M. J. Black. FAUST: Dataset and evaluation for 3D mesh registration. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Bogo, F.1    Romero, J.2    Loper, M.3    Black, M.J.4
  • 4
    • 84946711523 scopus 로고    scopus 로고
    • Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks
    • D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and P. Vandergheynst. Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Computer Graphics Forum, 34(5): 13-23, 2015.
    • (2015) Computer Graphics Forum , vol.34 , Issue.5 , pp. 13-23
    • Boscaini, D.1    Masci, J.2    Melzi, S.3    Bronstein, M.M.4    Castellani, U.5    Vandergheynst, P.6
  • 6
    • 84976211641 scopus 로고    scopus 로고
    • Spectral networks and locally connected networks on graphs
    • J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on graphs. In Proc. ICLR, 2014.
    • (2014) Proc. ICLR
    • Bruna, J.1    Zaremba, W.2    Szlam, A.3    LeCun, Y.4
  • 8
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4): 193-202, 1980.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 9
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proc. ICML, pages 448-456, 2015.
    • (2015) Proc. ICML , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 10
    • 80051913952 scopus 로고    scopus 로고
    • Blended intrinsic maps
    • V. G. Kim, Y. Lipman, and T. Funkhouser. Blended intrinsic maps. TOG, 30(4): 79, 2011.
    • (2011) TOG , vol.30 , Issue.4 , pp. 79
    • Kim, V.G.1    Lipman, Y.2    Funkhouser, T.3
  • 11
    • 85083951076 scopus 로고    scopus 로고
    • ADAM: A method for stochastic optimization
    • D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.P.1    Ba, J.2
  • 13
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proc. NIPS, 2012.
    • (2012) Proc. NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
    • 84890362928 scopus 로고    scopus 로고
    • Learning spectral descriptors for deformable shape correspondence
    • R. Litman and A. M. Bronstein. Learning spectral descriptors for deformable shape correspondence. PAMI, 36(1): 170-180, 2014.
    • (2014) PAMI , vol.36 , Issue.1 , pp. 170-180
    • Litman, R.1    Bronstein, A.M.2
  • 17
    • 79959806773 scopus 로고    scopus 로고
    • Gromov-wasserstein distances and the metric approach to object matching
    • F. Mémoli. Gromov-Wasserstein Distances and the Metric Approach to Object Matching. Foundations of Computational Mathematics, pages 1-71, 2011.
    • (2011) Foundations of Computational Mathematics , pp. 1-71
    • Mémoli, F.1
  • 18
    • 84870219115 scopus 로고    scopus 로고
    • Functional maps: A flexible representation of maps between shapes
    • M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas. Functional maps: a flexible representation of maps between shapes. TOG, 31(4): 1-11, 2012.
    • (2012) TOG , vol.31 , Issue.4 , pp. 1-11
    • Ovsjanikov, M.1    Ben-Chen, M.2    Solomon, J.3    Butscher, A.4    Guibas, L.5
  • 21
    • 84901939360 scopus 로고    scopus 로고
    • SHOT: Unique signatures of histograms for surface and texture description
    • S. Salti, F. Tombari, and L. Di Stefano. SHOT: unique signatures of histograms for surface and texture description. CVIU, 125: 251-264, 2014.
    • (2014) CVIU , vol.125 , pp. 251-264
    • Salti, S.1    Tombari, F.2    Di Stefano, L.3
  • 24
    • 84973882748 scopus 로고    scopus 로고
    • Multi-view convolutional neural networks for 3D shape recognition
    • H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional neural networks for 3D shape recognition. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Su, H.1    Maji, S.2    Kalogerakis, E.3    Learned-Miller, E.4
  • 26
    • 84986309327 scopus 로고    scopus 로고
    • Dense human body correspondences using convolutional networks
    • L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li. Dense human body correspondences using convolutional networks. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • Wei, L.1    Huang, Q.2    Ceylan, D.3    Vouga, E.4    Li, H.5
  • 28
    • 84949636429 scopus 로고    scopus 로고
    • 3D ShapeNets: A deep representation for volumetric shapes
    • Z. Wu, S. Song, A. Khosla, et al. 3D ShapeNets: A deep representation for volumetric shapes. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Wu, Z.1    Song, S.2    Khosla, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.