메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 926-935

Efficient diffusion on region manifolds: Recovering small objects with compact CNN representations

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; DIFFUSION; IMAGE ENHANCEMENT; LINEAR SYSTEMS;

EID: 85021832357     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.105     Document Type: Conference Paper
Times cited : (198)

References (64)
  • 1
    • 84986296991 scopus 로고    scopus 로고
    • NetVLAD: CNN architecture for weakly supervised place recognition
    • In, 1, 7
    • R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD: CNN architecture for weakly supervised place recognition. In CVPR, 2016. 1, 7
    • (2016) CVPR
    • Arandjelović, R.1    Gronat, P.2    Torii, A.3    Pajdla, T.4    Sivic, J.5
  • 2
    • 84866678025 scopus 로고    scopus 로고
    • Three things everyone should know to improve object retrieval
    • June 2
    • R. Arandjelovic and A. Zisserman. Three things everyone should know to improve object retrieval. In CVPR, June 2012. 2
    • (2012) CVPR
    • Arandjelovic, R.1    Zisserman, A.2
  • 4
    • 84973908877 scopus 로고    scopus 로고
    • Aggregating deep convolutional features for image retrieval
    • 1, 4
    • A. Babenko and V. Lempitsky. Aggregating deep convolutional features for image retrieval. In ICCV, 2015. 1, 4
    • (2015) ICCV
    • Babenko, A.1    Lempitsky, V.2
  • 5
    • 84986247157 scopus 로고    scopus 로고
    • Efficient indexing of billion-scale datasets of deep descriptors
    • In, 1, 4, 6
    • A. Babenko and V. Lempitsky. Efficient indexing of billion-scale datasets of deep descriptors. In CVPR, 2016. 1, 4, 6
    • (2016) CVPR
    • Babenko, A.1    Lempitsky, V.2
  • 6
    • 84994805560 scopus 로고    scopus 로고
    • Discriminative saliency propagation with sink points
    • 2
    • S. Chen, L. Zheng, X. Hu, and P. Zhou. Discriminative saliency propagation with sink points. Pattern recognition, 60:2-12, 2016. 2
    • (2016) Pattern Recognition , vol.60 , pp. 2-12
    • Chen, S.1    Zheng, L.2    Hu, X.3    Zhou, P.4
  • 7
    • 80052908130 scopus 로고    scopus 로고
    • Total recall II: Query expansion revisited
    • June 2
    • O. Chum, A. Mikulik, M. Perdoch, and J. Matas. Total recall II: Query expansion revisited. In CVPR, June 2011. 2
    • (2011) CVPR
    • Chum, O.1    Mikulik, A.2    Perdoch, M.3    Matas, J.4
  • 8
    • 50649105215 scopus 로고    scopus 로고
    • Total recall: Automatic query expansion with a generative feature model for object retrieval
    • October 1, 2, 7, 8
    • O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Automatic query expansion with a generative feature model for object retrieval. In ICCV, October 2007. 1, 2, 7, 8
    • (2007) ICCV
    • Chum, O.1    Philbin, J.2    Sivic, J.3    Isard, M.4    Zisserman, A.5
  • 9
    • 0003882879 scopus 로고    scopus 로고
    • American Mathematical Soc, 3
    • F. R. Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997. 3
    • (1997) Spectral Graph Theory , vol.92
    • Chung, F.R.1
  • 10
    • 84906900116 scopus 로고    scopus 로고
    • Image retrieval with reciprocal and shared nearest neighbors
    • In, 2
    • A. Delvinioti, H. Jégou, L. Amsaleg, and M. Houle. Image retrieval with reciprocal and shared nearest neighbors. In VISAPP, 2014. 2
    • (2014) VISAPP
    • Delvinioti, A.1    Jégou, H.2    Amsaleg, L.3    Houle, M.4
  • 11
    • 84862193372 scopus 로고    scopus 로고
    • Efficient k-nearest neighbor graph construction for generic similarity measures
    • March, 5, 7
    • W. Dong, M. Charikar, and K. Li. Efficient k-nearest neighbor graph construction for generic similarity measures. In WWW, March 2011. 5, 7
    • (2011) WWW
    • Dong, W.1    Charikar, M.2    Li, K.3
  • 12
    • 84898461668 scopus 로고    scopus 로고
    • Replicator graph clustering
    • 2
    • M. Donoser. Replicator graph clustering. In BMVC, 2013. 2
    • (2013) BMVC
    • Donoser, M.1
  • 13
    • 84887394778 scopus 로고    scopus 로고
    • Diffusion processes for retrieval revisited
    • 2, 3, 5
    • M. Donoser and H. Bischof. Diffusion processes for retrieval revisited. In CVPR, 2013. 2, 3, 5
    • (2013) CVPR
    • Donoser, M.1    Bischof, H.2
  • 14
    • 77951292198 scopus 로고    scopus 로고
    • Improving shape retrieval by spectral matching and meta similarity
    • 2
    • A. Egozi, Y. Keller, and H. Guterman. Improving shape retrieval by spectral matching and meta similarity. IEEE Transactions on Image Processing, 19(5):1319-1327, 2010. 2
    • (2010) IEEE Transactions on Image Processing , vol.19 , Issue.5 , pp. 1319-1327
    • Egozi, A.1    Keller, Y.2    Guterman, H.3
  • 15
    • 84962383047 scopus 로고    scopus 로고
    • Diffusion-on-manifold aggregation of local features for shape-based 3d model retrieval
    • 2
    • T. Furuya and R. Ohbuchi. Diffusion-on-manifold aggregation of local features for shape-based 3d model retrieval. In ICMR, 2015. 2
    • (2015) ICMR
    • Furuya, T.1    Ohbuchi, R.2
  • 16
    • 84979528664 scopus 로고    scopus 로고
    • Democratic diffusion aggregation for image retrieval
    • 2
    • Z. Gao, J. Xue, W. Zhou, S. Pang, and Q. Tian. Democratic diffusion aggregation for image retrieval. IEEE Trans. on Multimedia, 18:1661 - 1674, 2016. 2
    • (2016) IEEE Trans. on Multimedia , vol.18 , pp. 1661-1674
    • Gao, Z.1    Xue, J.2    Zhou, W.3    Pang, S.4    Tian, Q.5
  • 17
    • 84938217896 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • 4
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, 2014. 4
    • (2014) ECCV
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 18
    • 84989918975 scopus 로고    scopus 로고
    • Deep image retrieval: Learning global representations for image search
    • 1, 8
    • A. Gordo, J. Almazan, J. Revaud, and D. Larlus. Deep image retrieval: Learning global representations for image search. ECCV, 2016. 1, 8
    • (2016) ECCV
    • Gordo, A.1    Almazan, J.2    Revaud, J.3    Larlus, D.4
  • 19
    • 85044440361 scopus 로고    scopus 로고
    • End-to-end learning of deep visual representations for image retrieval
    • 1, 6, 7
    • A. Gordo, J. Almazan, J. Revaud, and D. Larlus. End-to-end learning of deep visual representations for image retrieval. In arXiv, 2016. 1, 6, 7
    • (2016) arXiv
    • Gordo, A.1    Almazan, J.2    Revaud, J.3    Larlus, D.4
  • 20
    • 33846207510 scopus 로고    scopus 로고
    • Random walks for image segmentation
    • 2, 3, 4, 5
    • L. Grady. Random walks for image segmentation. IEEE Trans. PAMI, 28(11):1768-1783, 2006. 2, 3, 4, 5
    • (2006) IEEE Trans. PAMI , vol.28 , Issue.11 , pp. 1768-1783
    • Grady, L.1
  • 22
    • 84973906827 scopus 로고    scopus 로고
    • Reconstructing the world* in six days*(as captured by the yahoo 100 million image dataset)
    • 1
    • J. Heinly, J. L. Schonberger, E. Dunn, and J.-M. Frahm. Reconstructing the world* in six days*(as captured by the yahoo 100 million image dataset). In CVPR, 2015. 1
    • (2015) CVPR
    • Heinly, J.1    Schonberger, J.L.2    Dunn, E.3    Frahm, J.-M.4
  • 24
    • 84986310056 scopus 로고    scopus 로고
    • Efficient large-scale similarity search using matrix factorization
    • In, 6
    • A. Iscen, M. Rabbat, and T. Furon. Efficient large-scale similarity search using matrix factorization. In CVPR, 2016. 6
    • (2016) CVPR
    • Iscen, A.1    Rabbat, M.2    Furon, T.3
  • 25
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • January 1, 6
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Trans. PAMI, 33(1):117-128, January 2011. 1, 6
    • (2011) IEEE Trans. PAMI , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 26
    • 77956004473 scopus 로고    scopus 로고
    • Aggregating local descriptors into a compact image representation
    • June, 1
    • H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image representation. In CVPR, June 2010. 1
    • (2010) CVPR
    • Jégou, H.1    Douze, M.2    Schmid, C.3    Pérez, P.4
  • 27
    • 34948895043 scopus 로고    scopus 로고
    • A contextual dissimilarity measure for accurate and efficient image search
    • 2
    • H. Jégou, H. Harzallah, and C. Schmid. A contextual dissimilarity measure for accurate and efficient image search. In CVPR, 2007. 2
    • (2007) CVPR
    • Jégou, H.1    Harzallah, H.2    Schmid, C.3
  • 28
    • 54849392900 scopus 로고    scopus 로고
    • Visualrank: Applying pagerank to large-scale image search
    • 2
    • Y. Jing and S. Baluja. Visualrank: Applying pagerank to large-scale image search. IEEE Trans. PAMI, 30(11):1877-1890, 2008. 2
    • (2008) IEEE Trans. PAMI , vol.30 , Issue.11 , pp. 1877-1890
    • Jing, Y.1    Baluja, S.2
  • 29
    • 84911451951 scopus 로고    scopus 로고
    • Locally optimized product quantization for approximate nearest neighbor search
    • In, 1, 6
    • Y. Kalantidis and Y. Avrithis. Locally optimized product quantization for approximate nearest neighbor search. In CVPR, 2014. 1, 6
    • (2014) CVPR
    • Kalantidis, Y.1    Avrithis, Y.2
  • 30
    • 85034827903 scopus 로고    scopus 로고
    • Cross-dimensional weighting for aggregated deep convolutional features
    • 1, 4, 7, 8
    • Y. Kalantidis, C. Mellina, and S. Osindero. Cross-dimensional weighting for aggregated deep convolutional features. In ECCVW, 2016. 1, 4, 7, 8
    • (2016) ECCVW
    • Kalantidis, Y.1    Mellina, C.2    Osindero, S.3
  • 31
    • 78649927523 scopus 로고    scopus 로고
    • Beyond pairwise shape similarity analysis
    • In, 3
    • P. Kontschieder, M. Donoser, and H. Bischof. Beyond pairwise shape similarity analysis. In ACCV, 2009. 3
    • (2009) ACCV
    • Kontschieder, P.1    Donoser, M.2    Bischof, H.3
  • 33
    • 84911405020 scopus 로고    scopus 로고
    • Learning optimal seeds for diffusion-based salient object detection
    • In, 2
    • S. Lu, V. Mahadevan, and N. Vasconcelos. Learning optimal seeds for diffusion-based salient object detection. In CVPR, 2014. 2
    • (2014) CVPR
    • Lu, S.1    Mahadevan, V.2    Vasconcelos, N.3
  • 35
    • 84951921981 scopus 로고    scopus 로고
    • Object level deep feature pooling for compact image representation
    • 1
    • K. R. Mopuri and R. V. Babu. Object level deep feature pooling for compact image representation. CVPRW, 2015. 1
    • (2015) CVPRW
    • Mopuri, K.R.1    Babu, R.V.2
  • 36
    • 84906339516 scopus 로고    scopus 로고
    • Scalable nearest neighbor algorithms for high dimensional data
    • 1, 6
    • M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. PAMI, 36, 2014. 1, 6
    • (2014) IEEE Trans. PAMI , vol.36
    • Muja, M.1    Lowe, D.G.2
  • 37
    • 84911365370 scopus 로고    scopus 로고
    • Generalized max-pooling
    • June, 4
    • N. Murray and F. Perronnin. Generalized max-pooling. In CVPR, June 2014. 4
    • (2014) CVPR
    • Murray, N.1    Perronnin, F.2
  • 40
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • June, 4, 5
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, June 2007. 4, 5
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 41
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • June, 5
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR, June 2008. 5
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 42
    • 80052905439 scopus 로고    scopus 로고
    • Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors
    • In, 2, 7, 8
    • D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors. In CVPR, 2011. 2, 7, 8
    • (2011) CVPR
    • Qin, D.1    Gammeter, S.2    Bossard, L.3    Quack, T.4    Van Gool, L.5
  • 43
    • 84989887848 scopus 로고    scopus 로고
    • CNN image retrieval learns from BoW: Unsupervised fine-tuning with hard examples
    • 4, 6, 7
    • F. Radenović, G. Tolias, and O. Chum. CNN image retrieval learns from BoW: Unsupervised fine-tuning with hard examples. ECCV, 2016. 4, 6, 7
    • (2016) ECCV
    • Radenović, F.1    Tolias, G.2    Chum, O.3
  • 45
    • 0038546788 scopus 로고    scopus 로고
    • The intelligent surfer: Probabilistic combination of link and content information in pagerank
    • In, 2
    • M. Richardson and P. M. Domingos. The intelligent surfer: Probabilistic combination of link and content information in pagerank. In NIPS, 2001. 2
    • (2001) NIPS
    • Richardson, M.1    Domingos, P.M.2
  • 46
    • 84898494019 scopus 로고    scopus 로고
    • Image retrieval for image-based localization revisited
    • In, 1
    • T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image retrieval for image-based localization revisited. In BMVC, 2012. 1
    • (2012) BMVC
    • Sattler, T.1    Weyand, T.2    Leibe, B.3    Kobbelt, L.4
  • 48
    • 84901854077 scopus 로고    scopus 로고
    • Spatially-constrained similarity measure for large-scale object retrieval
    • 2, 7, 8
    • X. Shen, Z. Lin, J. Brandt, and Y. Wu. Spatially-constrained similarity measure for large-scale object retrieval. IEEE Trans. PAMI, 36(6):1229-1241, 2014. 2, 7, 8
    • (2014) IEEE Trans. PAMI , vol.36 , Issue.6 , pp. 1229-1241
    • Shen, X.1    Lin, Z.2    Brandt, J.3    Wu, Y.4
  • 49
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • In, 2, 4
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In ICCV, 2003. 2, 4
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 50
    • 84898829999 scopus 로고    scopus 로고
    • To aggregate or not to aggregate: Selective match kernels for image search
    • December, 6
    • G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not to aggregate: Selective match kernels for image search. In ICCV, December 2013. 6
    • (2013) ICCV
    • Tolias, G.1    Avrithis, Y.2    Jégou, H.3
  • 51
    • 84902375912 scopus 로고    scopus 로고
    • Visual query expansion with or without geometry: Refining local descriptors by feature aggregation
    • 2, 7, 8
    • G. Tolias and H. Jégou. Visual query expansion with or without geometry: refining local descriptors by feature aggregation. Pattern recognition, 47(10):3466-3476, 2014. 2, 7, 8
    • (2014) Pattern Recognition , vol.47 , Issue.10 , pp. 3466-3476
    • Tolias, G.1    Jégou, H.2
  • 52
    • 85083952007 scopus 로고    scopus 로고
    • Particular object retrieval with integral max-pooling of cnn activations
    • 1, 4, 6, 7, 8
    • G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval with integral max-pooling of cnn activations. ICLR, 2016. 1, 4, 6, 7, 8
    • (2016) ICLR
    • Tolias, G.1    Sicre, R.2    Jégou, H.3
  • 53
    • 0004554167 scopus 로고    scopus 로고
    • Numerical linear algebra
    • 5
    • L. N. Trefethen and D. Bau III. Numerical linear algebra. SIAM, 1997. 5
    • (1997) SIAM
    • Trefethen, L.N.1    Bau, D.2
  • 54
    • 84883820777 scopus 로고    scopus 로고
    • Laplacian solvers and their algorithmic applications
    • 5
    • N. K. Vishnoi. Laplacian solvers and their algorithmic applications. Theoretical Computer Science, 8(1-2):1-141, 2012. 5
    • (2012) Theoretical Computer Science , vol.8 , Issue.1-2 , pp. 1-141
    • Vishnoi, N.K.1
  • 56
    • 84856661230 scopus 로고    scopus 로고
    • Discovering favorite views of popular places with iconoid shift
    • In, 1
    • T. Weyand and B. Leibe. Discovering favorite views of popular places with iconoid shift. In ICCV, 2011. 1
    • (2011) ICCV
    • Weyand, T.1    Leibe, B.2
  • 57
    • 84962469251 scopus 로고    scopus 로고
    • Image classification and retrieval are one
    • In, 1
    • L. Xie, R. Hong, B. Zhang, and Q. Tian. Image classification and retrieval are one. In ICMR, 2015. 1
    • (2015) ICMR
    • Xie, L.1    Hong, R.2    Zhang, B.3    Tian, Q.4
  • 58
    • 84901924464 scopus 로고    scopus 로고
    • Fast and accurate near-duplicate image search with affinity propagation on the imageweb
    • 2
    • L. Xie, Q. Tian, W. Zhou, and B. Zhang. Fast and accurate near-duplicate image search with affinity propagation on the imageweb. CVIU, 124, 2014. 2
    • (2014) CVIU , vol.124
    • Xie, L.1    Tian, Q.2    Zhou, W.3    Zhang, B.4
  • 59
    • 84925400399 scopus 로고    scopus 로고
    • Re-ranking by multi-feature fusion with diffusion for image retrieval
    • In, 2
    • F. Yang, B. Matei, and L. S. Davis. Re-ranking by multi-feature fusion with diffusion for image retrieval. In WACV, 2015. 2
    • (2015) WACV
    • Yang, F.1    Matei, B.2    Davis, L.S.3
  • 60
    • 70450182083 scopus 로고    scopus 로고
    • Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval
    • X. Yang, S. Koknar-Tezel, and L. J. Latecki. Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In CVPR, 2009. 2
    • (2009) CVPR
    • Yang, X.1    Koknar-Tezel, S.2    Latecki, L.J.3
  • 61


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.