메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2790-2797

Learning optimal seeds for diffusion-based salient object detection

Author keywords

diffusion; salient object; seed

Indexed keywords

DIFFUSION; OBJECT RECOGNITION; OPTIMIZATION; SEED; SUPERPIXELS;

EID: 84911405020     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.357     Document Type: Conference Paper
Times cited : (133)

References (41)
  • 1
    • 70450186191 scopus 로고    scopus 로고
    • Frequency-tuned salient region detection
    • IEEE
    • R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, pages 1597-1604. IEEE, 2009.
    • (2009) CVPR , pp. 1597-1604
    • Achanta, R.1    Hemami, S.2    Estrada, F.3    Susstrunk, S.4
  • 3
  • 4
    • 34948898079 scopus 로고    scopus 로고
    • Image segmentation by probabilistic bottom-up aggregation and cue integration
    • IEEE
    • S. Alpert, M. Galun, R. Basri, and A. Brandt. Image segmentation by probabilistic bottom-up aggregation and cue integration. In CVPR, pages 1-8. IEEE, 2007.
    • (2007) CVPR , pp. 1-8
    • Alpert, S.1    Galun, M.2    Basri, R.3    Brandt, A.4
  • 5
    • 0030832881 scopus 로고    scopus 로고
    • The independent components of natural scenes are edge filters
    • A. J. Bell and T. J. Sejnowski. The independent components of natural scenes are edge filters. Vision research, 37(23):3327-3338, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 6
    • 84866687480 scopus 로고    scopus 로고
    • Exploiting local and global patch rarities for saliency detection
    • IEEE
    • A. Borji and L. Itti. Exploiting local and global patch rarities for saliency detection. In CVPR, pages 478-485. IEEE, 2012.
    • (2012) CVPR , pp. 478-485
    • Borji, A.1    Itti, L.2
  • 8
    • 84867866405 scopus 로고    scopus 로고
    • Salient object detection: A benchmark
    • Springer
    • A. Borji, D. N. Sihite, and L. Itti. Salient object detection: A benchmark. In ECCV, pages 414-429. Springer, 2012.
    • (2012) ECCV , pp. 414-429
    • Borji, A.1    Sihite, D.N.2    Itti, L.3
  • 10
    • 84863014339 scopus 로고    scopus 로고
    • Fusing generic objectness and visual saliency for salient object detection
    • IEEE
    • K.-Y. Chang, T.-L. Liu, H.-T. Chen, and S.-H. Lai. Fusing generic objectness and visual saliency for salient object detection. In ICCV, pages 914-921. IEEE, 2011.
    • (2011) ICCV , pp. 914-921
    • Chang, K.-Y.1    Liu, T.-L.2    Chen, H.-T.3    Lai, S.-H.4
  • 11
    • 80052948224 scopus 로고    scopus 로고
    • Global contrast based salient region detection
    • IEEE
    • M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.M. Hu. Global contrast based salient region detection. In CVPR, pages 409-416. IEEE, 2011.
    • (2011) CVPR , pp. 409-416
    • Cheng, M.-M.1    Zhang, G.-X.2    Mitra, N.J.3    Huang, X.4    Hu, S.M.5
  • 12
    • 84887394778 scopus 로고    scopus 로고
    • Diffusion processes for retrieval revisited
    • M. Donoser and H. Bischof. Diffusion processes for retrieval revisited. In CVPR, 2013.
    • (2013) CVPR
    • Donoser, M.1    Bischof, H.2
  • 14
    • 65549107078 scopus 로고    scopus 로고
    • Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition
    • D. Gao, S. Han, and N. Vasconcelos. Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(6):989-1005, 2009.
    • (2009) Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.31 , Issue.6 , pp. 989-1005
    • Gao, D.1    Han, S.2    Vasconcelos, N.3
  • 15
    • 50649108122 scopus 로고    scopus 로고
    • Bottom-up saliency is a discriminant process
    • IEEE
    • D. Gao and N. Vasconcelos. Bottom-up saliency is a discriminant process. In ICCV, pages 1-6. IEEE, 2007.
    • (2007) ICCV , pp. 1-6
    • Gao, D.1    Vasconcelos, N.2
  • 16
    • 59149084015 scopus 로고    scopus 로고
    • Decision-theoretic saliency: Computational principles, biological plausibility, and im-plications for neurophysiology and psychophysics
    • D. Gao and N. Vasconcelos. Decision-theoretic saliency: Computational principles, biological plausibility, and im-plications for neurophysiology and psychophysics. Neural Computation, 21(1):239-271, 2009.
    • (2009) Neural Computation , vol.21 , Issue.1 , pp. 239-271
    • Gao, D.1    Vasconcelos, N.2
  • 18
    • 70450199650 scopus 로고    scopus 로고
    • Random walks on graphs to model saliency in images
    • IEEE
    • V. Gopalakrishnan, Y. Hu, and D. Rajan. Random walks on graphs to model saliency in images. In CVPR, pages 1698-1705. IEEE, 2009.
    • (2009) CVPR , pp. 1698-1705
    • Gopalakrishnan, V.1    Hu, Y.2    Rajan, D.3
  • 19
  • 22
    • 35148814949 scopus 로고    scopus 로고
    • Saliency detection: A spectral residual approach
    • IEEE
    • X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, pages 1-8. IEEE, 2007.
    • (2007) CVPR , pp. 1-8
    • Hou, X.1    Zhang, L.2
  • 23
  • 25
    • 84898491541 scopus 로고    scopus 로고
    • Automatic salient object segmentation based on context and shape prior
    • H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li. Automatic salient object segmentation based on context and shape prior. In BMVC, volume 3, page 7, 2011.
    • (2011) BMVC , vol.3 , pp. 7
    • Jiang, H.1    Wang, J.2    Yuan, Z.3    Liu, T.4    Zheng, N.5    Li, S.6
  • 26
    • 84887392014 scopus 로고    scopus 로고
    • Salient object detection: A discriminative regional feature integration approach
    • H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li. Salient object detection: A discriminative regional feature integration approach. In CVPR, 2013.
    • (2013) CVPR
    • Jiang, H.1    Wang, J.2    Yuan, Z.3    Wu, Y.4    Zheng, N.5    Li, S.6
  • 27
    • 77953205576 scopus 로고    scopus 로고
    • Learning to predict where humans look
    • IEEE
    • T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to predict where humans look. In ICCV, pages 2106-2113. IEEE, 2009.
    • (2009) ICCV , pp. 2106-2113
    • Judd, T.1    Ehinger, K.2    Durand, F.3    Torralba, A.4
  • 29
    • 0035358496 scopus 로고    scopus 로고
    • Representing and recognizing the visual appearance of materials using three-dimensional textons
    • T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, 43(1):29-44, 2001.
    • (2001) International Journal of Computer Vision , vol.43 , Issue.1 , pp. 29-44
    • Leung, T.1    Malik, J.2
  • 30
    • 84911407388 scopus 로고    scopus 로고
    • Xiaoou atang shum. Learning to detect a salient object
    • T. Liu, J. Sun, and H.-Y. Tang, Xiaoou aTang Shum. Learning to detect a salient object. In CVPR. IEEE, 2007.
    • (2007) CVPR. IEEE
    • Liu, T.1    Sun, J.2    Tang, H.-Y.3
  • 31
    • 84887368846 scopus 로고    scopus 로고
    • Saliency aggregation: A data-driven approach
    • L. Mai, Y. Niu, and F. Liu. Saliency aggregation: A data-driven approach. In CVPR, 2013.
    • (2013) CVPR
    • Mai, L.1    Niu, Y.2    Liu, F.3
  • 33
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • IEEE
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, volume 2, pages 416-423. IEEE, 2001.
    • (2001) ICCV , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 34
    • 84866667038 scopus 로고    scopus 로고
    • Saliency filters: Contrast based filtering for salient region detection
    • IEEE
    • F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In CVPR, pages 733-740. IEEE, 2012.
    • (2012) CVPR , pp. 733-740
    • Perazzi, F.1    Krahenbuhl, P.2    Pritch, Y.3    Hornung, A.4
  • 35
    • 84856655925 scopus 로고    scopus 로고
    • Learning a category independent object detection cascade
    • IEEE
    • E. Rahtu, J. Kannala, and M. Blaschko. Learning a category independent object detection cascade. In ICCV, pages 1052-1059. IEEE, 2011.
    • (2011) ICCV , pp. 1052-1059
    • Rahtu, E.1    Kannala, J.2    Blaschko, M.3
  • 38
    • 84887357058 scopus 로고    scopus 로고
    • Saliency detection via graph-based manifold ranking
    • C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency detection via graph-based manifold ranking. In CVPR, 2013.
    • (2013) CVPR
    • Yang, C.1    Zhang, L.2    Lu, H.3    Ruan, X.4    Yang, M.-H.5
  • 39
    • 84887396648 scopus 로고    scopus 로고
    • Studying relationships between human gaze, description, and computer vision
    • IEEE
    • K. Yun, Y. Peng, D. Samaras, G. J. Zelinsky, and T. L. Berg. Studying relationships between human gaze, description, and computer vision. In CVPR, pages 739-746. IEEE, 2013.
    • (2013) CVPR , pp. 739-746
    • Yun, K.1    Peng, Y.2    Samaras, D.3    Zelinsky, G.J.4    Berg, T.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.