메뉴 건너뛰기




Volumn 11, Issue 3, 2015, Pages

INSTRE: A new benchmark for instance-level object retrieval and recognition

Author keywords

Annotation; Dataset; Evaluation; Instance level; Multiple object; Object recognition; Object retrieval

Indexed keywords

COMPUTER VISION; SEARCH ENGINES;

EID: 84923340591     PISSN: 15516857     EISSN: 15516865     Source Type: Journal    
DOI: 10.1145/2700292     Document Type: Article
Times cited : (88)

References (42)
  • 6
    • 84860648679 scopus 로고    scopus 로고
    • Efficient match kernel between sets of features for visual recognition
    • L. Bo and C. Sminchisescu. 2009. Efficient match kernel between sets of features for visual recognition. In Neural Information Processing Systems, 1730-1731.
    • (2009) Neural Information Processing Systems , pp. 1730-1731
    • Bo, L.1    Sminchisescu, C.2
  • 7
    • 84888389689 scopus 로고    scopus 로고
    • Robust spatial consistency graph model for partial duplicate image retrieval
    • L. Chu, S. Jiang, S. Wang, Y. Zhang, and Q. Huang. 2013. Robust spatial consistency graph model for partial duplicate image retrieval. IEEE Trans. Multimedia.
    • (2013) IEEE Trans. Multimedia
    • Chu, L.1    Jiang, S.2    Wang, S.3    Zhang, Y.4    Huang, Q.5
  • 11
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm formodel fitting with applications to image analysis and automated cartography
    • M. A Fischler and R. C Bolles. 1981. Random sample consensus: A paradigm formodel fitting with applications to image analysis and automated cartography. Commun. ACM 24, 6, 381-395.
    • (1981) Commun. ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 14
    • 84455168944 scopus 로고    scopus 로고
    • Asymmetric hamming embedding: Taking the best of our bits for large scale image search
    • ACM
    • M. Jain, H. Jégou, and P. Gros. 2011. Asymmetric hamming embedding: Taking the best of our bits for large scale image search. In Proceedings of the ACM Multimedia Conference. ACM, 1441-1444.
    • (2011) Proceedings of the ACM Multimedia Conference , pp. 1441-1444
    • Jain, M.1    Jégou, H.2    Gros, P.3
  • 21
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 2, 91-110.
    • (2004) Int. J. Comput. Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 28
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • N. Pinto, D. D. Cox, and J. J. DiCarlo. 2008. Why is real-world visual object recognition hard? PLoS Computa. Biol. 4, 1, e27.
    • (2008) PLoS Computa. Biol. , vol.4 , Issue.1 , pp. e27
    • Pinto, N.1    Cox, D.D.2    DiCarlo, J.J.3
  • 41
    • 84874848071 scopus 로고    scopus 로고
    • SIFT match verification by geometric coding for large-scale partialduplicate web image search
    • W. Zhou, H. Li, Y. Lu, and Q. Tian. 2013. SIFT match verification by geometric coding for large-scale partialduplicate web image search. ACM Trans. Multimedia Comput. Commun. Appl. 9, 1, 4.
    • (2013) ACM Trans. Multimedia Comput. Commun. Appl. , vol.9 , Issue.1 , pp. 4
    • Zhou, W.1    Li, H.2    Lu, Y.3    Tian, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.