메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2073-2081

Efficient Large-Scale Similarity Search Using Matrix Factorization

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; FACTORIZATION; IMAGE PROCESSING; PATTERN RECOGNITION;

EID: 84986310056     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.228     Document Type: Conference Paper
Times cited : (20)

References (32)
  • 2
    • 84908680964 scopus 로고    scopus 로고
    • Extremely low bit-rate nearest neighbor search using a set compression tree
    • R. Arandjelovíc and A. Zisserman. Extremely low bit-rate nearest neighbor search using a set compression tree. IEEE Trans. PAMI, 2014.
    • (2014) IEEE Trans. PAMI
    • Arandjelovíc, R.1    Zisserman, A.2
  • 6
    • 0036040277 scopus 로고    scopus 로고
    • Similarity estimation techniques from rounding algorithms
    • May
    • M. S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pages 380-388, May 2002.
    • (2002) STOC , pp. 380-388
    • Charikar, M.S.1
  • 8
    • 57349114053 scopus 로고    scopus 로고
    • Asymmetric distance estimation with sketches for similarity search in highdimensional spaces
    • July
    • W. Dong, M. Charikar, and K. Li. Asymmetric distance estimation with sketches for similarity search in highdimensional spaces. In SIGIR, pages 123-130, July 2008.
    • (2008) SIGIR , pp. 123-130
    • Dong, W.1    Charikar, M.2    Li, K.3
  • 9
    • 84866685721 scopus 로고    scopus 로고
    • See all by looking at a few: Sparse modeling for finding representative objects
    • E. Elhamifar, G. Sapiro, and R. Vidal. See all by looking at a few: Sparse modeling for finding representative objects. In CVPR, 2012.
    • (2012) CVPR
    • Elhamifar, E.1    Sapiro, G.2    Vidal, R.3
  • 12
    • 84887393169 scopus 로고    scopus 로고
    • Negative evidences and cooccurrences in image retrieval: The benefit of PCA and whitening
    • H. Jégou and O. Chum. Negative evidences and cooccurrences in image retrieval: The benefit of PCA and whitening. In ECCV, October 2012.
    • (2012) ECCV, October
    • Jégou, H.1    Chum, O.2
  • 13
    • 70449560133 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • October
    • H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In ECCV, October 2008.
    • (2008) ECCV
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 14
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • January
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Trans. PAMI, 33(1):117-128, January 2011.
    • (2011) IEEE Trans. PAMI , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 15
    • 77956004473 scopus 로고    scopus 로고
    • Aggregating local descriptors into a compact image representation
    • June
    • H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image representation. In CVPR, June 2010.
    • (2010) CVPR
    • Jégou, H.1    Douze, M.2    Schmid, C.3    Pérez, P.4
  • 16
    • 84913530221 scopus 로고    scopus 로고
    • Triangulation embedding and democratic kernels for image search
    • June
    • H. Jégou and A. Zisserman. Triangulation embedding and democratic kernels for image search. In CVPR, June 2014.
    • (2014) CVPR
    • Jégou, H.1    Zisserman, A.2
  • 17
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 20
    • 84906339516 scopus 로고    scopus 로고
    • Scalable nearest neighbor algorithms for high dimensional data
    • M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. PAMI, 36, 2014.
    • (2014) IEEE Trans. PAMI , vol.36
    • Muja, M.1    Lowe, D.G.2
  • 21
    • 84949928887 scopus 로고    scopus 로고
    • Dimensionality reduction of visual features using sparse projectors for content-based image retrieval
    • R. Negrel, D. Picard, and P.-H. Gosselin. Dimensionality reduction of visual features using sparse projectors for content-based image retrieval. In ICIP 2014, pages 2192-2196, 2014.
    • (2014) ICIP 2014 , pp. 2192-2196
    • Negrel, R.1    Picard, D.2    Gosselin, P.-H.3
  • 22
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • June
    • D. Nistíer and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, pages 2161-2168, June 2006.
    • (2006) CVPR , pp. 2161-2168
    • Nistíer, D.1    Stewénius, H.2
  • 23
    • 0027814133 scopus 로고
    • Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
    • Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In ASILOMAR, pages 40-44, 1993.
    • (1993) ASILOMAR , pp. 40-44
    • Pati, Y.C.1    Rezaiifar, R.2    Krishnaprasad, P.3
  • 24
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • June
    • F. Perronnin and C. R. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, June 2007.
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.R.2
  • 25
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • June
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, June 2007.
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 26
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • June
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR, June 2008.
    • (2008) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 27
    • 84913528483 scopus 로고    scopus 로고
    • A group testing framework for similarity search in high-dimensional spaces
    • November
    • M. Shi, T. Furon, and H. Jégou. A group testing framework for similarity search in high-dimensional spaces. In ACM Multimedia, November 2014.
    • (2014) ACM Multimedia
    • Shi, M.1    Furon, T.2    Jégou, H.3
  • 30
    • 85083952007 scopus 로고    scopus 로고
    • Particular object retrieval with integral max-pooling of cnn activations
    • G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval with integral max-pooling of cnn activations. ICLR, 2016.
    • (2016) ICLR
    • Tolias, G.1    Sicre, R.2    Jégou, H.3
  • 31
    • 0012951952 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
    • R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In VLDB, pages 194-205, 1998.
    • (1998) VLDB , pp. 194-205
    • Weber, R.1    Schek, H.-J.2    Blott, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.