메뉴 건너뛰기




Volumn , Issue , 2011, Pages 577-586

Efficient K-nearest neighbor graph construction for generic similarity measures

Author keywords

Arbitrary similarity measure; Iterative method; K nearest neighbor graph

Indexed keywords

COLLABORATIVE FILTERING; DATA SETS; GLOBAL INDEX; K-NEAREST NEIGHBOR GRAPHS; LARGE-SCALE APPLICATIONS; LOCAL SEARCH; SIMILARITY MEASURE; SIMILARITY SEARCH; SPACE OVERHEAD;

EID: 84862193372     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1963405.1963487     Document Type: Conference Paper
Times cited : (600)

References (23)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng., 17(6):734-749, 2005.
    • (2005) IEEE Trans. on Knowl. and Data Eng. , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 6
    • 0031571391 scopus 로고    scopus 로고
    • Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection
    • August
    • M. R. Brito, E. L. Chávez, A. J. Quiroz, and J. E. Yukich. Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection. Statistics & Probability Letters, 35(1):33-42, August 1997.
    • (1997) Statistics & Probability Letters , vol.35 , Issue.1 , pp. 33-42
    • Brito, M.R.1    Chávez, E.L.2    Quiroz, A.J.3    Yukich, J.E.4
  • 8
    • 70449440398 scopus 로고    scopus 로고
    • Fast approximate knn graph construction for high dimensional data via recursive lanczos bisection
    • J. Chen, H. ren Fang, and Y. Saad. Fast approximate knn graph construction for high dimensional data via recursive lanczos bisection. Journal of Machine Learning Research, 10:1989-2012, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 1989-2012
    • Chen, J.1    Fang, H.R.2    Saad, Y.3
  • 11
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM, 51(1):107-113, 2008.
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 18
    • 1942419246 scopus 로고    scopus 로고
    • The anchors hierarchy: Using the triangle inequality to survive high dimensional data
    • A. W. Moore. The anchors hierarchy: Using the triangle inequality to survive high dimensional data. In In Twelfth Conference on Uncertainty in Artificial Intelligence, pages 397-405, 2000.
    • (2000) Twelfth Conference on Uncertainty in Artificial Intelligence , pp. 397-405
    • Moore, A.W.1
  • 19
    • 33746084482 scopus 로고    scopus 로고
    • Practical construction of -nearest neighbor graphs in metric spaces
    • R. Paredes, E. Chávez, K. Figueroa, and G. Navarro. Practical construction of -nearest neighbor graphs in metric spaces. In WEA, pages 85-97, 2006.
    • (2006) WEA , pp. 85-97
    • Paredes, R.1    Chávez, E.2    Figueroa, K.3    Navarro, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.