-
1
-
-
84959880535
-
Diabetes complications in childhood and adolescent onset type 2 diabetes – a review
-
Amutha, A., Mohan, V., Diabetes complications in childhood and adolescent onset type 2 diabetes – a review. J. Diabetes Complicat., 2016, 10.1016/j.jdiacomp.2016.02.009.
-
(2016)
J. Diabetes Complicat.
-
-
Amutha, A.1
Mohan, V.2
-
2
-
-
84954350008
-
Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications
-
Domingueti, C.P., Dusse, L.M.S., das Graças Carvalho, M., de Sousa, L.P., Gomes, K.B., Fernandes, A.P., Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J. Diabetes Complicat. 30:4 (2016), 738–745, 10.1016/j.jdiacomp.2015.12.018.
-
(2016)
J. Diabetes Complicat.
, vol.30
, Issue.4
, pp. 738-745
-
-
Domingueti, C.P.1
Dusse, L.M.S.2
das Graças Carvalho, M.3
de Sousa, L.P.4
Gomes, K.B.5
Fernandes, A.P.6
-
3
-
-
85046866952
-
-
Statistics on Diabetes. Available at: (accessed 10.09.16).
-
World Health Organization, Statistics on Diabetes. Available at: http://www.who.int/mediacentre/factsheets/fs312/en/ (accessed 10.09.16).
-
-
-
World Health Organization1
-
4
-
-
0034922742
-
Machine learning for medical diagnosis: history, state of the art and perspective
-
Kononenko, I., Machine learning for medical diagnosis: history, state of the art and perspective. Artif. Intell. Med. 23:1 (2001), 89–109, 10.1016/S0933-3657(01)00077-X.
-
(2001)
Artif. Intell. Med.
, vol.23
, Issue.1
, pp. 89-109
-
-
Kononenko, I.1
-
5
-
-
0003413187
-
Neural Networks: a Comprehensive Foundation, vol. 2
-
Pearson Education
-
Haykin, S., Neural Networks: a Comprehensive Foundation, vol. 2. 1994, Pearson Education.
-
(1994)
-
-
Haykin, S.1
-
6
-
-
34248666540
-
Fuzzy sets
-
Zadeh, L.A., Fuzzy sets. Inf. Control 8:3 (1965), 338–353, 10.1016/S0019-9958(65)90241-X.
-
(1965)
Inf. Control
, vol.8
, Issue.3
, pp. 338-353
-
-
Zadeh, L.A.1
-
7
-
-
70849132518
-
Classification rule discovery with ant colony optimization
-
Liu, B., Abbass, H.A., McKay, B., Classification rule discovery with ant colony optimization. IAT, vol. 3, 2003, 83.
-
(2003)
IAT, vol. 3
, pp. 83
-
-
Liu, B.1
Abbass, H.A.2
McKay, B.3
-
8
-
-
34948865765
-
Classification with ant colony optimization
-
Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B., Classification with ant colony optimization. IEEE Trans. Evol. Comput. 11:5 (2007), 651–665, 10.1109/TEVC.2006.890229.
-
(2007)
IEEE Trans. Evol. Comput.
, vol.11
, Issue.5
, pp. 651-665
-
-
Martens, D.1
De Backer, M.2
Haesen, R.3
Vanthienen, J.4
Snoeck, M.5
Baesens, B.6
-
9
-
-
84902553754
-
A PSO-based rule extractor for medical diagnosis
-
Hsieh, Y.-Z., Su, M.-C., Wang, P.-C., A PSO-based rule extractor for medical diagnosis. J. Biomed. Inform. 49 (2014), 53–60, 10.1016/j.jbi.2014.05.001.
-
(2014)
J. Biomed. Inform.
, vol.49
, pp. 53-60
-
-
Hsieh, Y.-Z.1
Su, M.-C.2
Wang, P.-C.3
-
10
-
-
84867873146
-
Fuzzy difaconn-miner: a novel approach for fuzzy rule extraction from neural networks
-
Kulluk, S., Özbakır, L., Baykasoğlu, A., Fuzzy difaconn-miner: a novel approach for fuzzy rule extraction from neural networks. Expert Syst. Appl. 40:3 (2013), 938–946.
-
(2013)
Expert Syst. Appl.
, vol.40
, Issue.3
, pp. 938-946
-
-
Kulluk, S.1
Özbakır, L.2
Baykasoğlu, A.3
-
11
-
-
84941913933
-
GPFIS-class. A genetic fuzzy system based on genetic programming for classification problems
-
Koshiyama, A.S., Vellasco, M.M., Tanscheit, R., GPFIS-class. A genetic fuzzy system based on genetic programming for classification problems. Appl. Soft Comput. 37 (2015), 561–571.
-
(2015)
Appl. Soft Comput.
, vol.37
, pp. 561-571
-
-
Koshiyama, A.S.1
Vellasco, M.M.2
Tanscheit, R.3
-
12
-
-
85018532773
-
An improved genetic-fuzzy system for classification and data analysis
-
Adel, L., Woo, S., Chaw, An improved genetic-fuzzy system for classification and data analysis. Expert Syst. Appl., 2017, 10.1016/j.eswa.2017.04.022.
-
(2017)
Expert Syst. Appl.
-
-
Adel, L.1
Woo, S.2
Chaw3
-
13
-
-
38349177924
-
Data mining with a simulated annealing based fuzzy classification system
-
Mohamadi, H., Habibi, J., Abadeh, M.S., Saadi, H., Data mining with a simulated annealing based fuzzy classification system. Pattern Recognit. 41:5 (2008), 1824–1833, 10.1016/j.patcog.2007.11.002.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.5
, pp. 1824-1833
-
-
Mohamadi, H.1
Habibi, J.2
Abadeh, M.S.3
Saadi, H.4
-
14
-
-
26844490172
-
FCACO: fuzzy classification rules mining algorithm with ant colony optimization
-
Springer
-
Alatas, B., Akin, E., FCACO: fuzzy classification rules mining algorithm with ant colony optimization. International Conference on Natural Computation, 2005, Springer, 787–797, 10.1007/11539902_97.
-
(2005)
International Conference on Natural Computation
, pp. 787-797
-
-
Alatas, B.1
Akin, E.2
-
15
-
-
77954962173
-
Using fuzzy ant colony optimization for diagnosis of diabetes disease
-
IEEE
-
Ganji, M.F., Abadeh, M.S., Using fuzzy ant colony optimization for diagnosis of diabetes disease. 2010 18th Iranian Conference on Electrical Engineering, 2010, IEEE, 501–505, 10.1109/IRANIANCEE.2010.5507019.
-
(2010)
2010 18th Iranian Conference on Electrical Engineering
, pp. 501-505
-
-
Ganji, M.F.1
Abadeh, M.S.2
-
16
-
-
80052035439
-
A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis
-
Ganji, M.F., Abadeh, M.S., A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis. Expert Syst. Appl. 38:12 (2011), 14650–14659, 10.1016/j.eswa.2011.05.018.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.12
, pp. 14650-14659
-
-
Ganji, M.F.1
Abadeh, M.S.2
-
17
-
-
85032124394
-
A fuzzy discrete particle swarm optimization classifier for rule classification
-
Chen, M., Ludwig, S.A., A fuzzy discrete particle swarm optimization classifier for rule classification. Int. J. Hybrid Intel. Syst. 11:3 (2014), 145–156, 10.3233/HIS-140190.
-
(2014)
Int. J. Hybrid Intel. Syst.
, vol.11
, Issue.3
, pp. 145-156
-
-
Chen, M.1
Ludwig, S.A.2
-
18
-
-
85007181321
-
A fuzzy classifier based on modified particle swarm optimization for diabetes disease diagnosis
-
Sahebi, H.R., Ebrahimi, S., Ashtian, I., A fuzzy classifier based on modified particle swarm optimization for diabetes disease diagnosis. Adv. Comput. Sci. Int. J. 4:3 (2015), 11–17.
-
(2015)
Adv. Comput. Sci. Int. J.
, vol.4
, Issue.3
, pp. 11-17
-
-
Sahebi, H.R.1
Ebrahimi, S.2
Ashtian, I.3
-
19
-
-
33645986432
-
Mining fuzzy classification rules using an artificial immune system with boosting
-
Springer
-
Alatas, B., Akin, E., Mining fuzzy classification rules using an artificial immune system with boosting. East European Conference on Advances in Databases and Information Systems, 2005, Springer, 283–293, 10.1007/11547686_21.
-
(2005)
East European Conference on Advances in Databases and Information Systems
, pp. 283-293
-
-
Alatas, B.1
Akin, E.2
-
20
-
-
84973154937
-
DECO 3 R: a differential evolution-based algorithm for generating compact fuzzy rule-based classification systems
-
Tsakiridis, N.L., Theocharis, J.B., Zalidis, G.C., DECO 3 R: a differential evolution-based algorithm for generating compact fuzzy rule-based classification systems. Knowl. Based Syst. 105 (2016), 160–174, 10.1016/j.knosys.2016.05.013.
-
(2016)
Knowl. Based Syst.
, vol.105
, pp. 160-174
-
-
Tsakiridis, N.L.1
Theocharis, J.B.2
Zalidis, G.C.3
-
21
-
-
84883746011
-
Design of fuzzy classifier for diabetes disease using modified artificial bee colony algorithm
-
Beloufa, F., Chikh, M., Design of fuzzy classifier for diabetes disease using modified artificial bee colony algorithm. Comput. Methods Programs Biomed. 112:1 (2013), 92–103, 10.1016/j.cmpb.2013.07.009.
-
(2013)
Comput. Methods Programs Biomed.
, vol.112
, Issue.1
, pp. 92-103
-
-
Beloufa, F.1
Chikh, M.2
-
22
-
-
84956862424
-
Rough set based rule induction in decision making using credible classification and preference from medical application perspective
-
Tseng, T.-L.B., Huang, C.-C., Fraser, K., Ting, H.-W., Rough set based rule induction in decision making using credible classification and preference from medical application perspective. Comput. Methods Programs Biomed. 127 (2016), 273–289.
-
(2016)
Comput. Methods Programs Biomed.
, vol.127
, pp. 273-289
-
-
Tseng, T.-L.B.1
Huang, C.-C.2
Fraser, K.3
Ting, H.-W.4
-
23
-
-
85016061526
-
Minimal decision cost reduct in fuzzy decision-theoretic rough set model
-
Song, J., Tsang, E.C., Chen, D., Yang, X., Minimal decision cost reduct in fuzzy decision-theoretic rough set model. Knowl. Based Syst. 126 (2017), 104–112.
-
(2017)
Knowl. Based Syst.
, vol.126
, pp. 104-112
-
-
Song, J.1
Tsang, E.C.2
Chen, D.3
Yang, X.4
-
24
-
-
84878164388
-
A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease
-
Kaya, Y., Uyar, M., A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease. Appl. Soft Comput. 13:8 (2013), 3429–3438.
-
(2013)
Appl. Soft Comput.
, vol.13
, Issue.8
, pp. 3429-3438
-
-
Kaya, Y.1
Uyar, M.2
-
25
-
-
84946493375
-
A new method for constructing granular neural networks based on rule extraction and extreme learning machine
-
Xu, X., Wang, G., Ding, S., Jiang, X., Zhao, Z., A new method for constructing granular neural networks based on rule extraction and extreme learning machine. Pattern Recognit. Lett. 67 (2015), 138–144.
-
(2015)
Pattern Recognit. Lett.
, vol.67
, pp. 138-144
-
-
Xu, X.1
Wang, G.2
Ding, S.3
Jiang, X.4
Zhao, Z.5
-
26
-
-
80051702868
-
Rule extraction based on rough fuzzy sets in fuzzy information systems
-
Springer
-
Lee, M.-C., Chang, T., Rule extraction based on rough fuzzy sets in fuzzy information systems. Transactions on Computational Collective Intelligence III, 2011, Springer, 115–127.
-
(2011)
Transactions on Computational Collective Intelligence III
, pp. 115-127
-
-
Lee, M.-C.1
Chang, T.2
-
28
-
-
0003397496
-
Rough Sets: Theoretical Aspects of Reasoning About Data, vol. 9
-
Springer Science & Business Media
-
Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning About Data, vol. 9. 2012, Springer Science & Business Media.
-
(2012)
-
-
Pawlak, Z.1
-
29
-
-
0003546556
-
Rough Sets: Mathematical Foundations
-
Physica-verlag Heidelberg
-
Polkowski, L., Rough Sets: Mathematical Foundations. 2002, Physica-verlag, Heidelberg.
-
(2002)
-
-
Polkowski, L.1
-
30
-
-
84899388090
-
Rough set based feature selection: a review
-
Jensen, R., Shen, Q., Rough set based feature selection: a review. Rough Computing: Theories, Technologies and Applications, 2007, 70–107.
-
(2007)
Rough Computing: Theories, Technologies and Applications
, pp. 70-107
-
-
Jensen, R.1
Shen, Q.2
-
31
-
-
0034207737
-
A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems
-
Shen, Q., Chouchoulas, A., A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems. Eng. Appl. Artif. Intel. 13:3 (2000), 263–278, 10.1016/S0952-1976(00)00010-5.
-
(2000)
Eng. Appl. Artif. Intel.
, vol.13
, Issue.3
, pp. 263-278
-
-
Shen, Q.1
Chouchoulas, A.2
-
32
-
-
0242322799
-
Rough set-aided keyword reduction for text categorization
-
Chouchoulas, A., Shen, Q., Rough set-aided keyword reduction for text categorization. Appl. Artif. Intel. 15:9 (2001), 843–873.
-
(2001)
Appl. Artif. Intel.
, vol.15
, Issue.9
, pp. 843-873
-
-
Chouchoulas, A.1
Shen, Q.2
-
33
-
-
57049180269
-
Feature selection based on the rough set theory and expectation-maximization clustering algorithm
-
Springer
-
Fazayeli, F., Wang, L., Mandziuk, J., Feature selection based on the rough set theory and expectation-maximization clustering algorithm. International Conference on Rough Sets and Current Trends in Computing, 2008, Springer, 272–282, 10.1007/978-3-540-88425-5_28.
-
(2008)
International Conference on Rough Sets and Current Trends in Computing
, pp. 272-282
-
-
Fazayeli, F.1
Wang, L.2
Mandziuk, J.3
-
34
-
-
0242322799
-
Rough set-aided keyword reduction for text categorization
-
Chouchoulas, A., Shen, Q., Rough set-aided keyword reduction for text categorization. Appl. Artif. Intel. 15:9 (2001), 843–873.
-
(2001)
Appl. Artif. Intel.
, vol.15
, Issue.9
, pp. 843-873
-
-
Chouchoulas, A.1
Shen, Q.2
-
35
-
-
84906861442
-
Implementing algorithms of rough set theory and fuzzy rough set theory in the R package “roughsets”
-
Riza, L.S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Śle, D., Benítez, J.M., et al. Implementing algorithms of rough set theory and fuzzy rough set theory in the R package “roughsets”. Inf. Sci. 287 (2014), 68–89, 10.1016/j.ins.2014.07.029.
-
(2014)
Inf. Sci.
, vol.287
, pp. 68-89
-
-
Riza, L.S.1
Janusz, A.2
Bergmeir, C.3
Cornelis, C.4
Herrera, F.5
Śle, D.6
Benítez, J.M.7
-
36
-
-
85018744114
-
Diabetes classification using radial basis function network by combining cluster validity index and bat optimization with novel fitness function
-
Ramalingaswamy, C., Damodarreddy, E., Venkaranareshbabu, K., Diabetes classification using radial basis function network by combining cluster validity index and bat optimization with novel fitness function. Int. J. Comput. Intel. Syst. 10 (2017), 247–265.
-
(2017)
Int. J. Comput. Intel. Syst.
, vol.10
, pp. 247-265
-
-
Ramalingaswamy, C.1
Damodarreddy, E.2
Venkaranareshbabu, K.3
-
37
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Freund, Y., Schapire, R.E., et al. Experiments with a new boosting algorithm. ICML, vol. 96, 1996, 148–156.
-
(1996)
ICML, vol. 96
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
38
-
-
85046834285
-
-
UCI Machine Learning Datasets Repository. Available at: (accessed 10.09.16).
-
UCI Machine Learning Datasets Repository. Available at: https://archive.ics.uci.edu/ml/datasets.html (accessed 10.09.16).
-
-
-
-
39
-
-
0042656300
-
Dynamic reducts as a tool for extracting laws from decisions tables
-
Springer
-
Bazan, J.G., Skowron, A., Synak, P., Dynamic reducts as a tool for extracting laws from decisions tables. International Symposium on Methodologies for Intelligent Systems, 1994, Springer, 346–355.
-
(1994)
International Symposium on Methodologies for Intelligent Systems
, pp. 346-355
-
-
Bazan, J.G.1
Skowron, A.2
Synak, P.3
-
40
-
-
9444282077
-
Feature subset selection based on relative dependency between attributes
-
Springer
-
Han, J., Hu, X., Lin, T., Feature subset selection based on relative dependency between attributes. Rough Sets and Current Trends in Computing, 2004, Springer, 176–185.
-
(2004)
Rough Sets and Current Trends in Computing
, pp. 176-185
-
-
Han, J.1
Hu, X.2
Lin, T.3
-
41
-
-
0003858954
-
Discernibility and Rough Sets in Medicine: Tools and Applications
-
Department of Computer and Information Science, Norwegian University of Science and Technology Trondheim, Norway NTNU Report 1999: 133, IDI Report 1999: 14, Tech. rep., (Ph.D. thesis)
-
Ohrn, A., Discernibility and Rough Sets in Medicine: Tools and Applications., 1999, Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway, 239 NTNU Report 1999: 133, IDI Report 1999: 14, Tech. rep., ISBN 82-7984-014-1 (Ph.D. thesis).
-
(1999)
, pp. 239
-
-
Ohrn, A.1
-
42
-
-
33645966220
-
Finding rough set reducts with sat
-
Jensen, R., Shen, Q., Tuson, A., Finding rough set reducts with sat. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 2005, 194–203.
-
(2005)
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing
, pp. 194-203
-
-
Jensen, R.1
Shen, Q.2
Tuson, A.3
-
43
-
-
84990941766
-
Data Mining: Concepts and Techniques
-
Elsevier
-
Han, J., Pei, J., Kamber, M., Data Mining: Concepts and Techniques. 2011, Elsevier.
-
(2011)
-
-
Han, J.1
Pei, J.2
Kamber, M.3
-
44
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Kohavi, R., et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, vol. 14, 1995, 1137–1145.
-
(1995)
IJCAI, vol. 14
, pp. 1137-1145
-
-
Kohavi, R.1
-
45
-
-
84885394719
-
Recognition of diabetes disease using a new hybrid learning algorithm for nefclass
-
IEEE
-
Daho, M.E.H., Settouti, N., Lazouni, M.E.A., Chikh, M.A., Recognition of diabetes disease using a new hybrid learning algorithm for nefclass. 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA), 2013, IEEE, 239–243.
-
(2013)
8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)
, pp. 239-243
-
-
Daho, M.E.H.1
Settouti, N.2
Lazouni, M.E.A.3
Chikh, M.A.4
-
46
-
-
84997755146
-
Interpretable and accurate medical data classification – a multi-objective genetic-fuzzy optimization approach
-
Gorzałczany, M.B., Rudziński, F., Interpretable and accurate medical data classification – a multi-objective genetic-fuzzy optimization approach. Expert Syst. Appl., 2017, 10.1016/j.eswa.2016.11.017.
-
(2017)
Expert Syst. Appl.
-
-
Gorzałczany, M.B.1
Rudziński, F.2
-
47
-
-
84960398827
-
Genetic generation of fuzzy systems with rule extraction using formal concept analysis
-
Cintra, M., Camargo, H., Monard, M., Genetic generation of fuzzy systems with rule extraction using formal concept analysis. Inf. Sci. 349 (2016), 199–215, 10.1016/j.ins.2016.02.026.
-
(2016)
Inf. Sci.
, vol.349
, pp. 199-215
-
-
Cintra, M.1
Camargo, H.2
Monard, M.3
-
48
-
-
33645964460
-
Data Mining: A Heuristic Approach
-
IGI Global
-
Abbass, H.A., Data Mining: A Heuristic Approach. 2001, IGI Global.
-
(2001)
-
-
Abbass, H.A.1
-
49
-
-
33645986432
-
Mining fuzzy classification rules using an artificial immune system with boosting
-
Springer
-
Alatas, B., Akin, E., Mining fuzzy classification rules using an artificial immune system with boosting. East European Conference on Advances in Databases and Information Systems, 2005, Springer, 283–293.
-
(2005)
East European Conference on Advances in Databases and Information Systems
, pp. 283-293
-
-
Alatas, B.1
Akin, E.2
-
50
-
-
38349177924
-
Data mining with a simulated annealing based fuzzy classification system
-
Mohamadi, H., Habibi, J., Abadeh, M.S., Saadi, H., Data mining with a simulated annealing based fuzzy classification system. Pattern Recognit. 41:5 (2008), 1824–1833, 10.1016/j.patcog.2007.11.002.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.5
, pp. 1824-1833
-
-
Mohamadi, H.1
Habibi, J.2
Abadeh, M.S.3
Saadi, H.4
-
51
-
-
84899989207
-
An intelligent temporal pattern classification system using fuzzy temporal rules and particle swarm optimization
-
Ganapathy, S., Sethukkarasi, R., Yogesh, P., Vijayakumar, P., Kannan, A., An intelligent temporal pattern classification system using fuzzy temporal rules and particle swarm optimization. Sadhana 39:2 (2014), 283–302, 10.1007/s12046-014-0236-7.
-
(2014)
Sadhana
, vol.39
, Issue.2
, pp. 283-302
-
-
Ganapathy, S.1
Sethukkarasi, R.2
Yogesh, P.3
Vijayakumar, P.4
Kannan, A.5
-
52
-
-
84953376454
-
A hybrid model of fuzzy artmap and genetic algorithm for data classification and rule extraction
-
Pourpanah, F., Lim, C.P., Saleh, J.M., A hybrid model of fuzzy artmap and genetic algorithm for data classification and rule extraction. Expert Syst. Appl. 49 (2016), 74–85, 10.1016/j.eswa.2015.11.009.
-
(2016)
Expert Syst. Appl.
, vol.49
, pp. 74-85
-
-
Pourpanah, F.1
Lim, C.P.2
Saleh, J.M.3
-
53
-
-
84959017411
-
COABCMINER: an algorithm for cooperative rule classification system based on artificial bee colony
-
Celik, M., Koylu, F., Karaboga, D., COABCMINER: an algorithm for cooperative rule classification system based on artificial bee colony. Int. J. Artif. Intel. Syst., 25(01), 2016, 1550028, 10.1142/S0218213015500281.
-
(2016)
Int. J. Artif. Intel. Syst.
, vol.25
, Issue.1
, pp. 1550028
-
-
Celik, M.1
Koylu, F.2
Karaboga, D.3
-
54
-
-
0344466786
-
A fuzzy-genetic approach to breast cancer diagnosis
-
Pena-Reyes, C.A., Sipper, M., A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17:2 (1999), 131–155.
-
(1999)
Artif. Intell. Med.
, vol.17
, Issue.2
, pp. 131-155
-
-
Pena-Reyes, C.A.1
Sipper, M.2
-
55
-
-
0037507277
-
Flexible neuro-fuzzy systems
-
Rutkowski, L., Cpalka, K., Flexible neuro-fuzzy systems. IEEE Trans. Neural Netw. 14:3 (2003), 554–574.
-
(2003)
IEEE Trans. Neural Netw.
, vol.14
, Issue.3
, pp. 554-574
-
-
Rutkowski, L.1
Cpalka, K.2
-
56
-
-
85017150802
-
Designing rule-based fuzzy systems for classification in medicine
-
Pota, M., Esposito, M., De Pietro, G., Designing rule-based fuzzy systems for classification in medicine. Knowl. Based Syst. 124 (2017), 105–132, 10.1016/j.knosys.2017.03.006.
-
(2017)
Knowl. Based Syst.
, vol.124
, pp. 105-132
-
-
Pota, M.1
Esposito, M.2
De Pietro, G.3
-
57
-
-
78649820012
-
A hybrid PSO/ACO algorithm for discovering classification rules in data mining
-
Holden, N., Freitas, A.A., A hybrid PSO/ACO algorithm for discovering classification rules in data mining. J. Artif. Evol. Appl. 2008 (2008), 1–11, 10.1155/2008/316145.
-
(2008)
J. Artif. Evol. Appl.
, vol.2008
, pp. 1-11
-
-
Holden, N.1
Freitas, A.A.2
-
58
-
-
85046853442
-
-
Cyclomatic Complexity. (accessed 13.04.17).
-
Cyclomatic Complexity. https://en.wikipedia.org/wiki/Cyclomatic_complexity (accessed 13.04.17).
-
-
-
-
59
-
-
33646254145
-
Design of PSO-based fuzzy classification systems
-
Chen, C.-C., Design of PSO-based fuzzy classification systems. Tamkang J. Sci. Eng. 9:1 (2006), 63–70, 10.6180/jase.2006.9.1.07.
-
(2006)
Tamkang J. Sci. Eng.
, vol.9
, Issue.1
, pp. 63-70
-
-
Chen, C.-C.1
-
60
-
-
84944191660
-
Induction of fuzzy classification systems using evolutionary ACO-based algorithms
-
IEEE
-
Abadeh, M.S., Habibi, J., Soroush, E., Induction of fuzzy classification systems using evolutionary ACO-based algorithms. First Asia International Conference on Modelling & Simulation. AMS'07, 2007, IEEE, 346–351.
-
(2007)
First Asia International Conference on Modelling & Simulation. AMS'07
, pp. 346-351
-
-
Abadeh, M.S.1
Habibi, J.2
Soroush, E.3
-
61
-
-
77955916329
-
Classification rule discovery with ant colony optimization and improved quick reduct algorithm
-
Jaganathan, P., Thangavel, K., Pethalakshmi, A., Karnan, M., Classification rule discovery with ant colony optimization and improved quick reduct algorithm. IAENG Int. J. Comput. Sci. 33:1 (2007), 50–55.
-
(2007)
IAENG Int. J. Comput. Sci.
, vol.33
, Issue.1
, pp. 50-55
-
-
Jaganathan, P.1
Thangavel, K.2
Pethalakshmi, A.3
Karnan, M.4
-
62
-
-
84956582716
-
A cost-sensitive classification algorithm: bee-miner
-
Tapkan, P., Özbakır, L., Kulluk, S., Baykasoğlu, A., A cost-sensitive classification algorithm: bee-miner. Knowl. Based Syst. 95 (2016), 99–113, 10.1016/j.knosys.2015.12.010.
-
(2016)
Knowl. Based Syst.
, vol.95
, pp. 99-113
-
-
Tapkan, P.1
Özbakır, L.2
Kulluk, S.3
Baykasoğlu, A.4
|