메뉴 건너뛰기




Volumn 67, Issue , 2018, Pages 764-780

RST-BatMiner: A fuzzy rule miner integrating rough set feature selection and Bat optimization for detection of diabetes disease

Author keywords

Bat optimization; Diabetes diagnosis; Fuzzy classification rules; Optimal ruleset; Rough Set Theory

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; DECISION SUPPORT SYSTEMS; DECISION THEORY; DIAGNOSIS; DISEASES; FUZZY INFERENCE; FUZZY RULES; FUZZY SYSTEMS; MINERS; OPTIMIZATION; SET THEORY; WINE;

EID: 85021830725     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2017.06.032     Document Type: Article
Times cited : (49)

References (62)
  • 1
    • 84959880535 scopus 로고    scopus 로고
    • Diabetes complications in childhood and adolescent onset type 2 diabetes – a review
    • Amutha, A., Mohan, V., Diabetes complications in childhood and adolescent onset type 2 diabetes – a review. J. Diabetes Complicat., 2016, 10.1016/j.jdiacomp.2016.02.009.
    • (2016) J. Diabetes Complicat.
    • Amutha, A.1    Mohan, V.2
  • 2
    • 84954350008 scopus 로고    scopus 로고
    • Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications
    • Domingueti, C.P., Dusse, L.M.S., das Graças Carvalho, M., de Sousa, L.P., Gomes, K.B., Fernandes, A.P., Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J. Diabetes Complicat. 30:4 (2016), 738–745, 10.1016/j.jdiacomp.2015.12.018.
    • (2016) J. Diabetes Complicat. , vol.30 , Issue.4 , pp. 738-745
    • Domingueti, C.P.1    Dusse, L.M.S.2    das Graças Carvalho, M.3    de Sousa, L.P.4    Gomes, K.B.5    Fernandes, A.P.6
  • 3
    • 85046866952 scopus 로고    scopus 로고
    • Statistics on Diabetes. Available at: (accessed 10.09.16).
    • World Health Organization, Statistics on Diabetes. Available at: http://www.who.int/mediacentre/factsheets/fs312/en/ (accessed 10.09.16).
    • World Health Organization1
  • 4
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: history, state of the art and perspective
    • Kononenko, I., Machine learning for medical diagnosis: history, state of the art and perspective. Artif. Intell. Med. 23:1 (2001), 89–109, 10.1016/S0933-3657(01)00077-X.
    • (2001) Artif. Intell. Med. , vol.23 , Issue.1 , pp. 89-109
    • Kononenko, I.1
  • 5
    • 0003413187 scopus 로고
    • Neural Networks: a Comprehensive Foundation, vol. 2
    • Pearson Education
    • Haykin, S., Neural Networks: a Comprehensive Foundation, vol. 2. 1994, Pearson Education.
    • (1994)
    • Haykin, S.1
  • 6
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh, L.A., Fuzzy sets. Inf. Control 8:3 (1965), 338–353, 10.1016/S0019-9958(65)90241-X.
    • (1965) Inf. Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 7
    • 70849132518 scopus 로고    scopus 로고
    • Classification rule discovery with ant colony optimization
    • Liu, B., Abbass, H.A., McKay, B., Classification rule discovery with ant colony optimization. IAT, vol. 3, 2003, 83.
    • (2003) IAT, vol. 3 , pp. 83
    • Liu, B.1    Abbass, H.A.2    McKay, B.3
  • 9
    • 84902553754 scopus 로고    scopus 로고
    • A PSO-based rule extractor for medical diagnosis
    • Hsieh, Y.-Z., Su, M.-C., Wang, P.-C., A PSO-based rule extractor for medical diagnosis. J. Biomed. Inform. 49 (2014), 53–60, 10.1016/j.jbi.2014.05.001.
    • (2014) J. Biomed. Inform. , vol.49 , pp. 53-60
    • Hsieh, Y.-Z.1    Su, M.-C.2    Wang, P.-C.3
  • 10
    • 84867873146 scopus 로고    scopus 로고
    • Fuzzy difaconn-miner: a novel approach for fuzzy rule extraction from neural networks
    • Kulluk, S., Özbakır, L., Baykasoğlu, A., Fuzzy difaconn-miner: a novel approach for fuzzy rule extraction from neural networks. Expert Syst. Appl. 40:3 (2013), 938–946.
    • (2013) Expert Syst. Appl. , vol.40 , Issue.3 , pp. 938-946
    • Kulluk, S.1    Özbakır, L.2    Baykasoğlu, A.3
  • 11
    • 84941913933 scopus 로고    scopus 로고
    • GPFIS-class. A genetic fuzzy system based on genetic programming for classification problems
    • Koshiyama, A.S., Vellasco, M.M., Tanscheit, R., GPFIS-class. A genetic fuzzy system based on genetic programming for classification problems. Appl. Soft Comput. 37 (2015), 561–571.
    • (2015) Appl. Soft Comput. , vol.37 , pp. 561-571
    • Koshiyama, A.S.1    Vellasco, M.M.2    Tanscheit, R.3
  • 12
    • 85018532773 scopus 로고    scopus 로고
    • An improved genetic-fuzzy system for classification and data analysis
    • Adel, L., Woo, S., Chaw, An improved genetic-fuzzy system for classification and data analysis. Expert Syst. Appl., 2017, 10.1016/j.eswa.2017.04.022.
    • (2017) Expert Syst. Appl.
    • Adel, L.1    Woo, S.2    Chaw3
  • 13
    • 38349177924 scopus 로고    scopus 로고
    • Data mining with a simulated annealing based fuzzy classification system
    • Mohamadi, H., Habibi, J., Abadeh, M.S., Saadi, H., Data mining with a simulated annealing based fuzzy classification system. Pattern Recognit. 41:5 (2008), 1824–1833, 10.1016/j.patcog.2007.11.002.
    • (2008) Pattern Recognit. , vol.41 , Issue.5 , pp. 1824-1833
    • Mohamadi, H.1    Habibi, J.2    Abadeh, M.S.3    Saadi, H.4
  • 14
    • 26844490172 scopus 로고    scopus 로고
    • FCACO: fuzzy classification rules mining algorithm with ant colony optimization
    • Springer
    • Alatas, B., Akin, E., FCACO: fuzzy classification rules mining algorithm with ant colony optimization. International Conference on Natural Computation, 2005, Springer, 787–797, 10.1007/11539902_97.
    • (2005) International Conference on Natural Computation , pp. 787-797
    • Alatas, B.1    Akin, E.2
  • 15
    • 77954962173 scopus 로고    scopus 로고
    • Using fuzzy ant colony optimization for diagnosis of diabetes disease
    • IEEE
    • Ganji, M.F., Abadeh, M.S., Using fuzzy ant colony optimization for diagnosis of diabetes disease. 2010 18th Iranian Conference on Electrical Engineering, 2010, IEEE, 501–505, 10.1109/IRANIANCEE.2010.5507019.
    • (2010) 2010 18th Iranian Conference on Electrical Engineering , pp. 501-505
    • Ganji, M.F.1    Abadeh, M.S.2
  • 16
    • 80052035439 scopus 로고    scopus 로고
    • A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis
    • Ganji, M.F., Abadeh, M.S., A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis. Expert Syst. Appl. 38:12 (2011), 14650–14659, 10.1016/j.eswa.2011.05.018.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.12 , pp. 14650-14659
    • Ganji, M.F.1    Abadeh, M.S.2
  • 17
    • 85032124394 scopus 로고    scopus 로고
    • A fuzzy discrete particle swarm optimization classifier for rule classification
    • Chen, M., Ludwig, S.A., A fuzzy discrete particle swarm optimization classifier for rule classification. Int. J. Hybrid Intel. Syst. 11:3 (2014), 145–156, 10.3233/HIS-140190.
    • (2014) Int. J. Hybrid Intel. Syst. , vol.11 , Issue.3 , pp. 145-156
    • Chen, M.1    Ludwig, S.A.2
  • 18
    • 85007181321 scopus 로고    scopus 로고
    • A fuzzy classifier based on modified particle swarm optimization for diabetes disease diagnosis
    • Sahebi, H.R., Ebrahimi, S., Ashtian, I., A fuzzy classifier based on modified particle swarm optimization for diabetes disease diagnosis. Adv. Comput. Sci. Int. J. 4:3 (2015), 11–17.
    • (2015) Adv. Comput. Sci. Int. J. , vol.4 , Issue.3 , pp. 11-17
    • Sahebi, H.R.1    Ebrahimi, S.2    Ashtian, I.3
  • 20
    • 84973154937 scopus 로고    scopus 로고
    • DECO 3 R: a differential evolution-based algorithm for generating compact fuzzy rule-based classification systems
    • Tsakiridis, N.L., Theocharis, J.B., Zalidis, G.C., DECO 3 R: a differential evolution-based algorithm for generating compact fuzzy rule-based classification systems. Knowl. Based Syst. 105 (2016), 160–174, 10.1016/j.knosys.2016.05.013.
    • (2016) Knowl. Based Syst. , vol.105 , pp. 160-174
    • Tsakiridis, N.L.1    Theocharis, J.B.2    Zalidis, G.C.3
  • 21
    • 84883746011 scopus 로고    scopus 로고
    • Design of fuzzy classifier for diabetes disease using modified artificial bee colony algorithm
    • Beloufa, F., Chikh, M., Design of fuzzy classifier for diabetes disease using modified artificial bee colony algorithm. Comput. Methods Programs Biomed. 112:1 (2013), 92–103, 10.1016/j.cmpb.2013.07.009.
    • (2013) Comput. Methods Programs Biomed. , vol.112 , Issue.1 , pp. 92-103
    • Beloufa, F.1    Chikh, M.2
  • 22
    • 84956862424 scopus 로고    scopus 로고
    • Rough set based rule induction in decision making using credible classification and preference from medical application perspective
    • Tseng, T.-L.B., Huang, C.-C., Fraser, K., Ting, H.-W., Rough set based rule induction in decision making using credible classification and preference from medical application perspective. Comput. Methods Programs Biomed. 127 (2016), 273–289.
    • (2016) Comput. Methods Programs Biomed. , vol.127 , pp. 273-289
    • Tseng, T.-L.B.1    Huang, C.-C.2    Fraser, K.3    Ting, H.-W.4
  • 23
    • 85016061526 scopus 로고    scopus 로고
    • Minimal decision cost reduct in fuzzy decision-theoretic rough set model
    • Song, J., Tsang, E.C., Chen, D., Yang, X., Minimal decision cost reduct in fuzzy decision-theoretic rough set model. Knowl. Based Syst. 126 (2017), 104–112.
    • (2017) Knowl. Based Syst. , vol.126 , pp. 104-112
    • Song, J.1    Tsang, E.C.2    Chen, D.3    Yang, X.4
  • 24
    • 84878164388 scopus 로고    scopus 로고
    • A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease
    • Kaya, Y., Uyar, M., A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease. Appl. Soft Comput. 13:8 (2013), 3429–3438.
    • (2013) Appl. Soft Comput. , vol.13 , Issue.8 , pp. 3429-3438
    • Kaya, Y.1    Uyar, M.2
  • 25
    • 84946493375 scopus 로고    scopus 로고
    • A new method for constructing granular neural networks based on rule extraction and extreme learning machine
    • Xu, X., Wang, G., Ding, S., Jiang, X., Zhao, Z., A new method for constructing granular neural networks based on rule extraction and extreme learning machine. Pattern Recognit. Lett. 67 (2015), 138–144.
    • (2015) Pattern Recognit. Lett. , vol.67 , pp. 138-144
    • Xu, X.1    Wang, G.2    Ding, S.3    Jiang, X.4    Zhao, Z.5
  • 28
    • 0003397496 scopus 로고    scopus 로고
    • Rough Sets: Theoretical Aspects of Reasoning About Data, vol. 9
    • Springer Science & Business Media
    • Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning About Data, vol. 9. 2012, Springer Science & Business Media.
    • (2012)
    • Pawlak, Z.1
  • 29
    • 0003546556 scopus 로고    scopus 로고
    • Rough Sets: Mathematical Foundations
    • Physica-verlag Heidelberg
    • Polkowski, L., Rough Sets: Mathematical Foundations. 2002, Physica-verlag, Heidelberg.
    • (2002)
    • Polkowski, L.1
  • 31
    • 0034207737 scopus 로고    scopus 로고
    • A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems
    • Shen, Q., Chouchoulas, A., A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems. Eng. Appl. Artif. Intel. 13:3 (2000), 263–278, 10.1016/S0952-1976(00)00010-5.
    • (2000) Eng. Appl. Artif. Intel. , vol.13 , Issue.3 , pp. 263-278
    • Shen, Q.1    Chouchoulas, A.2
  • 32
    • 0242322799 scopus 로고    scopus 로고
    • Rough set-aided keyword reduction for text categorization
    • Chouchoulas, A., Shen, Q., Rough set-aided keyword reduction for text categorization. Appl. Artif. Intel. 15:9 (2001), 843–873.
    • (2001) Appl. Artif. Intel. , vol.15 , Issue.9 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 33
  • 34
    • 0242322799 scopus 로고    scopus 로고
    • Rough set-aided keyword reduction for text categorization
    • Chouchoulas, A., Shen, Q., Rough set-aided keyword reduction for text categorization. Appl. Artif. Intel. 15:9 (2001), 843–873.
    • (2001) Appl. Artif. Intel. , vol.15 , Issue.9 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 35
    • 84906861442 scopus 로고    scopus 로고
    • Implementing algorithms of rough set theory and fuzzy rough set theory in the R package “roughsets”
    • Riza, L.S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Śle, D., Benítez, J.M., et al. Implementing algorithms of rough set theory and fuzzy rough set theory in the R package “roughsets”. Inf. Sci. 287 (2014), 68–89, 10.1016/j.ins.2014.07.029.
    • (2014) Inf. Sci. , vol.287 , pp. 68-89
    • Riza, L.S.1    Janusz, A.2    Bergmeir, C.3    Cornelis, C.4    Herrera, F.5    Śle, D.6    Benítez, J.M.7
  • 36
    • 85018744114 scopus 로고    scopus 로고
    • Diabetes classification using radial basis function network by combining cluster validity index and bat optimization with novel fitness function
    • Ramalingaswamy, C., Damodarreddy, E., Venkaranareshbabu, K., Diabetes classification using radial basis function network by combining cluster validity index and bat optimization with novel fitness function. Int. J. Comput. Intel. Syst. 10 (2017), 247–265.
    • (2017) Int. J. Comput. Intel. Syst. , vol.10 , pp. 247-265
    • Ramalingaswamy, C.1    Damodarreddy, E.2    Venkaranareshbabu, K.3
  • 37
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Freund, Y., Schapire, R.E., et al. Experiments with a new boosting algorithm. ICML, vol. 96, 1996, 148–156.
    • (1996) ICML, vol. 96 , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 38
    • 85046834285 scopus 로고    scopus 로고
    • UCI Machine Learning Datasets Repository. Available at: (accessed 10.09.16).
    • UCI Machine Learning Datasets Repository. Available at: https://archive.ics.uci.edu/ml/datasets.html (accessed 10.09.16).
  • 40
    • 9444282077 scopus 로고    scopus 로고
    • Feature subset selection based on relative dependency between attributes
    • Springer
    • Han, J., Hu, X., Lin, T., Feature subset selection based on relative dependency between attributes. Rough Sets and Current Trends in Computing, 2004, Springer, 176–185.
    • (2004) Rough Sets and Current Trends in Computing , pp. 176-185
    • Han, J.1    Hu, X.2    Lin, T.3
  • 41
    • 0003858954 scopus 로고    scopus 로고
    • Discernibility and Rough Sets in Medicine: Tools and Applications
    • Department of Computer and Information Science, Norwegian University of Science and Technology Trondheim, Norway NTNU Report 1999: 133, IDI Report 1999: 14, Tech. rep., (Ph.D. thesis)
    • Ohrn, A., Discernibility and Rough Sets in Medicine: Tools and Applications., 1999, Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway, 239 NTNU Report 1999: 133, IDI Report 1999: 14, Tech. rep., ISBN 82-7984-014-1 (Ph.D. thesis).
    • (1999) , pp. 239
    • Ohrn, A.1
  • 43
    • 84990941766 scopus 로고    scopus 로고
    • Data Mining: Concepts and Techniques
    • Elsevier
    • Han, J., Pei, J., Kamber, M., Data Mining: Concepts and Techniques. 2011, Elsevier.
    • (2011)
    • Han, J.1    Pei, J.2    Kamber, M.3
  • 44
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi, R., et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, vol. 14, 1995, 1137–1145.
    • (1995) IJCAI, vol. 14 , pp. 1137-1145
    • Kohavi, R.1
  • 46
    • 84997755146 scopus 로고    scopus 로고
    • Interpretable and accurate medical data classification – a multi-objective genetic-fuzzy optimization approach
    • Gorzałczany, M.B., Rudziński, F., Interpretable and accurate medical data classification – a multi-objective genetic-fuzzy optimization approach. Expert Syst. Appl., 2017, 10.1016/j.eswa.2016.11.017.
    • (2017) Expert Syst. Appl.
    • Gorzałczany, M.B.1    Rudziński, F.2
  • 47
    • 84960398827 scopus 로고    scopus 로고
    • Genetic generation of fuzzy systems with rule extraction using formal concept analysis
    • Cintra, M., Camargo, H., Monard, M., Genetic generation of fuzzy systems with rule extraction using formal concept analysis. Inf. Sci. 349 (2016), 199–215, 10.1016/j.ins.2016.02.026.
    • (2016) Inf. Sci. , vol.349 , pp. 199-215
    • Cintra, M.1    Camargo, H.2    Monard, M.3
  • 48
    • 33645964460 scopus 로고    scopus 로고
    • Data Mining: A Heuristic Approach
    • IGI Global
    • Abbass, H.A., Data Mining: A Heuristic Approach. 2001, IGI Global.
    • (2001)
    • Abbass, H.A.1
  • 50
    • 38349177924 scopus 로고    scopus 로고
    • Data mining with a simulated annealing based fuzzy classification system
    • Mohamadi, H., Habibi, J., Abadeh, M.S., Saadi, H., Data mining with a simulated annealing based fuzzy classification system. Pattern Recognit. 41:5 (2008), 1824–1833, 10.1016/j.patcog.2007.11.002.
    • (2008) Pattern Recognit. , vol.41 , Issue.5 , pp. 1824-1833
    • Mohamadi, H.1    Habibi, J.2    Abadeh, M.S.3    Saadi, H.4
  • 51
    • 84899989207 scopus 로고    scopus 로고
    • An intelligent temporal pattern classification system using fuzzy temporal rules and particle swarm optimization
    • Ganapathy, S., Sethukkarasi, R., Yogesh, P., Vijayakumar, P., Kannan, A., An intelligent temporal pattern classification system using fuzzy temporal rules and particle swarm optimization. Sadhana 39:2 (2014), 283–302, 10.1007/s12046-014-0236-7.
    • (2014) Sadhana , vol.39 , Issue.2 , pp. 283-302
    • Ganapathy, S.1    Sethukkarasi, R.2    Yogesh, P.3    Vijayakumar, P.4    Kannan, A.5
  • 52
    • 84953376454 scopus 로고    scopus 로고
    • A hybrid model of fuzzy artmap and genetic algorithm for data classification and rule extraction
    • Pourpanah, F., Lim, C.P., Saleh, J.M., A hybrid model of fuzzy artmap and genetic algorithm for data classification and rule extraction. Expert Syst. Appl. 49 (2016), 74–85, 10.1016/j.eswa.2015.11.009.
    • (2016) Expert Syst. Appl. , vol.49 , pp. 74-85
    • Pourpanah, F.1    Lim, C.P.2    Saleh, J.M.3
  • 53
    • 84959017411 scopus 로고    scopus 로고
    • COABCMINER: an algorithm for cooperative rule classification system based on artificial bee colony
    • Celik, M., Koylu, F., Karaboga, D., COABCMINER: an algorithm for cooperative rule classification system based on artificial bee colony. Int. J. Artif. Intel. Syst., 25(01), 2016, 1550028, 10.1142/S0218213015500281.
    • (2016) Int. J. Artif. Intel. Syst. , vol.25 , Issue.1 , pp. 1550028
    • Celik, M.1    Koylu, F.2    Karaboga, D.3
  • 54
    • 0344466786 scopus 로고    scopus 로고
    • A fuzzy-genetic approach to breast cancer diagnosis
    • Pena-Reyes, C.A., Sipper, M., A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17:2 (1999), 131–155.
    • (1999) Artif. Intell. Med. , vol.17 , Issue.2 , pp. 131-155
    • Pena-Reyes, C.A.1    Sipper, M.2
  • 56
    • 85017150802 scopus 로고    scopus 로고
    • Designing rule-based fuzzy systems for classification in medicine
    • Pota, M., Esposito, M., De Pietro, G., Designing rule-based fuzzy systems for classification in medicine. Knowl. Based Syst. 124 (2017), 105–132, 10.1016/j.knosys.2017.03.006.
    • (2017) Knowl. Based Syst. , vol.124 , pp. 105-132
    • Pota, M.1    Esposito, M.2    De Pietro, G.3
  • 57
    • 78649820012 scopus 로고    scopus 로고
    • A hybrid PSO/ACO algorithm for discovering classification rules in data mining
    • Holden, N., Freitas, A.A., A hybrid PSO/ACO algorithm for discovering classification rules in data mining. J. Artif. Evol. Appl. 2008 (2008), 1–11, 10.1155/2008/316145.
    • (2008) J. Artif. Evol. Appl. , vol.2008 , pp. 1-11
    • Holden, N.1    Freitas, A.A.2
  • 58
    • 85046853442 scopus 로고    scopus 로고
    • Cyclomatic Complexity. (accessed 13.04.17).
    • Cyclomatic Complexity. https://en.wikipedia.org/wiki/Cyclomatic_complexity (accessed 13.04.17).
  • 59
    • 33646254145 scopus 로고    scopus 로고
    • Design of PSO-based fuzzy classification systems
    • Chen, C.-C., Design of PSO-based fuzzy classification systems. Tamkang J. Sci. Eng. 9:1 (2006), 63–70, 10.6180/jase.2006.9.1.07.
    • (2006) Tamkang J. Sci. Eng. , vol.9 , Issue.1 , pp. 63-70
    • Chen, C.-C.1
  • 61
    • 77955916329 scopus 로고    scopus 로고
    • Classification rule discovery with ant colony optimization and improved quick reduct algorithm
    • Jaganathan, P., Thangavel, K., Pethalakshmi, A., Karnan, M., Classification rule discovery with ant colony optimization and improved quick reduct algorithm. IAENG Int. J. Comput. Sci. 33:1 (2007), 50–55.
    • (2007) IAENG Int. J. Comput. Sci. , vol.33 , Issue.1 , pp. 50-55
    • Jaganathan, P.1    Thangavel, K.2    Pethalakshmi, A.3    Karnan, M.4
  • 62
    • 84956582716 scopus 로고    scopus 로고
    • A cost-sensitive classification algorithm: bee-miner
    • Tapkan, P., Özbakır, L., Kulluk, S., Baykasoğlu, A., A cost-sensitive classification algorithm: bee-miner. Knowl. Based Syst. 95 (2016), 99–113, 10.1016/j.knosys.2015.12.010.
    • (2016) Knowl. Based Syst. , vol.95 , pp. 99-113
    • Tapkan, P.1    Özbakır, L.2    Kulluk, S.3    Baykasoğlu, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.