-
3
-
-
0037230859
-
Finding fuzzy classification rules using data mining techniques
-
Hu Y.C., Chen R.S., and Tzeng G.H. Finding fuzzy classification rules using data mining techniques. Pattern Recognition Lett. 24 (2003) 509-519
-
(2003)
Pattern Recognition Lett.
, vol.24
, pp. 509-519
-
-
Hu, Y.C.1
Chen, R.S.2
Tzeng, G.H.3
-
4
-
-
0036833247
-
A rough-fuzzy approach for generating classification rules
-
Shen Q., and Chouchoulas A. A rough-fuzzy approach for generating classification rules. Pattern Recognition 35 (2002) 2425-2438
-
(2002)
Pattern Recognition
, vol.35
, pp. 2425-2438
-
-
Shen, Q.1
Chouchoulas, A.2
-
5
-
-
33144459783
-
Support-vector-based fuzzy neural network for pattern classification
-
Lin C.T., Yeh C.M., Liang S.F., Chung J.F., and Kumar N. Support-vector-based fuzzy neural network for pattern classification. IEEE Trans. Fuzzy Syst. 14 1 (2006) 31-41
-
(2006)
IEEE Trans. Fuzzy Syst.
, vol.14
, Issue.1
, pp. 31-41
-
-
Lin, C.T.1
Yeh, C.M.2
Liang, S.F.3
Chung, J.F.4
Kumar, N.5
-
6
-
-
25144464662
-
Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem
-
Sexton R.S., McMurtrey S., and Cleavenger D. Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem. Eur. J. Oper. Res. 168 3 (2006) 1009-1018
-
(2006)
Eur. J. Oper. Res.
, vol.168
, Issue.3
, pp. 1009-1018
-
-
Sexton, R.S.1
McMurtrey, S.2
Cleavenger, D.3
-
7
-
-
0034313673
-
Neural networks for classification: a survey
-
Zhang G.P. Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. C-Appl. Rev. 30 4 (2006) 451-461
-
(2006)
IEEE Trans. Syst. Man Cybern. C-Appl. Rev.
, vol.30
, Issue.4
, pp. 451-461
-
-
Zhang, G.P.1
-
8
-
-
0346781553
-
Ten years of genetic fuzzy systems: current framework and new trends
-
Cordón O., Gomide F., Herrera F., Hoffmann F., and Magdalena L. Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst. 141 1 (2004) 5-31
-
(2004)
Fuzzy Sets Syst.
, vol.141
, Issue.1
, pp. 5-31
-
-
Cordón, O.1
Gomide, F.2
Herrera, F.3
Hoffmann, F.4
Magdalena, L.5
-
9
-
-
33751186914
-
Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
-
Ishibuchi H., and Nojima Y. Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int. J. Approximate Reasoning 44 1 (2007) 4-31
-
(2007)
Int. J. Approximate Reasoning
, vol.44
, Issue.1
, pp. 4-31
-
-
Ishibuchi, H.1
Nojima, Y.2
-
10
-
-
26844469668
-
Rule weight specification in fuzzy rule-based classification systems
-
Ishibuchi H., and Yamamoto T. Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13 4 (2005) 428-435
-
(2005)
IEEE Trans. Fuzzy Syst.
, vol.13
, Issue.4
, pp. 428-435
-
-
Ishibuchi, H.1
Yamamoto, T.2
-
11
-
-
0027580356
-
Very simple classification rules perform well in most common used data sets
-
Holte R. Very simple classification rules perform well in most common used data sets. Mach. Learn. 11 (1993) 63-91
-
(1993)
Mach. Learn.
, vol.11
, pp. 63-91
-
-
Holte, R.1
-
12
-
-
0022098324
-
An introductory survey of fuzzy control
-
Sugeno M. An introductory survey of fuzzy control. Inf. Sci. 36 1/2 (1985) 59-83
-
(1985)
Inf. Sci.
, vol.36
, Issue.1-2
, pp. 59-83
-
-
Sugeno, M.1
-
13
-
-
0025404409
-
Fuzzy logic in control systems: fuzzy logic controller
-
Lee C.C. Fuzzy logic in control systems: fuzzy logic controller. part I and part II, IEEE Trans. Syst. Man Cybern. 20 2 (1990) 404-435
-
(1990)
part I and part II, IEEE Trans. Syst. Man Cybern.
, vol.20
, Issue.2
, pp. 404-435
-
-
Lee, C.C.1
-
14
-
-
0026943536
-
Generating fuzzy rules by learning from examples
-
Wangm L.X., and Mendel J.M. Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22 6 (1992) 1414-1427
-
(1992)
IEEE Trans. Syst. Man Cybern.
, vol.22
, Issue.6
, pp. 1414-1427
-
-
Wangm, L.X.1
Mendel, J.M.2
-
15
-
-
0002197262
-
Distributed representation of fuzzy rules and its application to pattern classification
-
Ishibuchi H., Nozaki K., and Tanaka H. Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets Syst. 52 1 (1992) 21-32
-
(1992)
Fuzzy Sets Syst.
, vol.52
, Issue.1
, pp. 21-32
-
-
Ishibuchi, H.1
Nozaki, K.2
Tanaka, H.3
-
16
-
-
0029242750
-
A method for fuzzy rules extraction directly from numerical data and its application to pattern classification
-
Abe S., and Lan M.S. A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. IEEE Trans. Fuzzy Syst. 3 1 (1995) 18-28
-
(1995)
IEEE Trans. Fuzzy Syst.
, vol.3
, Issue.1
, pp. 18-28
-
-
Abe, S.1
Lan, M.S.2
-
17
-
-
0028384240
-
Self-organizing neural network as a fuzzy classifier
-
Mitra S., and Pal S.K. Self-organizing neural network as a fuzzy classifier. IEEE Trans. Syst. Man Cybern. 24 3 (1994) 385-399
-
(1994)
IEEE Trans. Syst. Man Cybern.
, vol.24
, Issue.3
, pp. 385-399
-
-
Mitra, S.1
Pal, S.K.2
-
18
-
-
5744249209
-
Equation of state calculation by fast computing machines
-
Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., and Teller E. Equation of state calculation by fast computing machines. J. Chem. Phys. 21 (1953) 1087-1092
-
(1953)
J. Chem. Phys.
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
21
-
-
0031191557
-
Feature subset selection within a simulated annealing data mining algorithm
-
Debuse J.C., and Rayward-Smith V.J. Feature subset selection within a simulated annealing data mining algorithm. J. Intell. Inf. Syst. 9 (1997) 57-81
-
(1997)
J. Intell. Inf. Syst.
, vol.9
, pp. 57-81
-
-
Debuse, J.C.1
Rayward-Smith, V.J.2
-
22
-
-
0032137160
-
Simulated annealing based pattern classification
-
Bandyopadhyay S., Pal S.K., and Murthy C.A. Simulated annealing based pattern classification. Inf. Sci. 109 1-4 (1998) 165-184
-
(1998)
Inf. Sci.
, vol.109
, Issue.1-4
, pp. 165-184
-
-
Bandyopadhyay, S.1
Pal, S.K.2
Murthy, C.A.3
-
23
-
-
17044374644
-
Simulated annealing using a reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering
-
Bandyopadhyay S. Simulated annealing using a reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering. IEEE Trans. Knowl. Data Eng. 17 4 (2005) 479-490
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.4
, pp. 479-490
-
-
Bandyopadhyay, S.1
-
24
-
-
23844482899
-
-
X.Y. Wang, J. Garibaldi, Simulated annealing fuzzy clustering in cancer diagnosis, Eur. J. Inf. (2005) 61-70.
-
-
-
-
25
-
-
38349108371
-
-
UCI machine learning repository: 〈http://www.ics.uci.edu/∼mlearn/databases/〉.
-
-
-
-
26
-
-
85040657895
-
-
D.F. Wong, C.L. Liu, A new algorithm for floorplan design, in: Proceedings of the 23rd DAC, 1986, pp. 101-107.
-
-
-
-
27
-
-
0035312109
-
Evolutionary algorithms, simulated annealing and tabu search: a comparative study
-
Youssef H., Sait S.M., and Adiche H. Evolutionary algorithms, simulated annealing and tabu search: a comparative study. Eng. Appl. Artif. Intell. 14 2 (2001) 167-181
-
(2001)
Eng. Appl. Artif. Intell.
, vol.14
, Issue.2
, pp. 167-181
-
-
Youssef, H.1
Sait, S.M.2
Adiche, H.3
-
29
-
-
32444445211
-
-
Ramon Llull University, Barcelona, Catalonia, Spain
-
Bacardit J. Pittsburgh Genetics-Based Machine Learning in the Data Mining era: Representation, Generalization, and Run-time (2004), Ramon Llull University, Barcelona, Catalonia, Spain
-
(2004)
Pittsburgh Genetics-Based Machine Learning in the Data Mining era: Representation, Generalization, and Run-time
-
-
Bacardit, J.1
-
33
-
-
38349171984
-
-
C.C. Chang, C.J. Lin, LIBSVM: A Library for Support Vector Machines, Department of Computer Science and Information Engineering, National Taiwan University, 2001.
-
-
-
-
34
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press, Cambridge, MA
-
Platt J.C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods Support Vector Learning (1999), MIT Press, Cambridge, MA 185-208
-
(1999)
Advances in Kernel Methods Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
36
-
-
0001387704
-
Classifier fitness based on accuracy
-
Wilson S.W. Classifier fitness based on accuracy. Evol. Comput. 3 2 (1995) 149-175
-
(1995)
Evol. Comput.
, vol.3
, Issue.2
, pp. 149-175
-
-
Wilson, S.W.1
-
37
-
-
35248882041
-
Tournament selection in XCS
-
Springer, Berlin
-
Butz M.V., Sastry K., and Goldberg D.E. Tournament selection in XCS. Proceedings of the Genetic and Evolutionary Computation Conference-GECCO2003, Lecture Notes in Computer Science vol. 2724 (2003), Springer, Berlin 1857-1869
-
(2003)
Proceedings of the Genetic and Evolutionary Computation Conference-GECCO2003, Lecture Notes in Computer Science
, vol.2724
, pp. 1857-1869
-
-
Butz, M.V.1
Sastry, K.2
Goldberg, D.E.3
|