메뉴 건너뛰기




Volumn 41, Issue 5, 2008, Pages 1824-1833

Data mining with a simulated annealing based fuzzy classification system

Author keywords

Data mining; Fuzzy rule extraction; Fuzzy systems; Pattern classification; Simulated annealing

Indexed keywords

ALGORITHMS; FUZZY SYSTEMS; PATTERN RECOGNITION; PROBLEM SOLVING; SIMULATED ANNEALING;

EID: 38349177924     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.11.002     Document Type: Article
Times cited : (53)

References (38)
  • 3
    • 0037230859 scopus 로고    scopus 로고
    • Finding fuzzy classification rules using data mining techniques
    • Hu Y.C., Chen R.S., and Tzeng G.H. Finding fuzzy classification rules using data mining techniques. Pattern Recognition Lett. 24 (2003) 509-519
    • (2003) Pattern Recognition Lett. , vol.24 , pp. 509-519
    • Hu, Y.C.1    Chen, R.S.2    Tzeng, G.H.3
  • 4
    • 0036833247 scopus 로고    scopus 로고
    • A rough-fuzzy approach for generating classification rules
    • Shen Q., and Chouchoulas A. A rough-fuzzy approach for generating classification rules. Pattern Recognition 35 (2002) 2425-2438
    • (2002) Pattern Recognition , vol.35 , pp. 2425-2438
    • Shen, Q.1    Chouchoulas, A.2
  • 5
    • 33144459783 scopus 로고    scopus 로고
    • Support-vector-based fuzzy neural network for pattern classification
    • Lin C.T., Yeh C.M., Liang S.F., Chung J.F., and Kumar N. Support-vector-based fuzzy neural network for pattern classification. IEEE Trans. Fuzzy Syst. 14 1 (2006) 31-41
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.1 , pp. 31-41
    • Lin, C.T.1    Yeh, C.M.2    Liang, S.F.3    Chung, J.F.4    Kumar, N.5
  • 6
    • 25144464662 scopus 로고    scopus 로고
    • Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem
    • Sexton R.S., McMurtrey S., and Cleavenger D. Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem. Eur. J. Oper. Res. 168 3 (2006) 1009-1018
    • (2006) Eur. J. Oper. Res. , vol.168 , Issue.3 , pp. 1009-1018
    • Sexton, R.S.1    McMurtrey, S.2    Cleavenger, D.3
  • 7
  • 8
  • 9
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • Ishibuchi H., and Nojima Y. Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int. J. Approximate Reasoning 44 1 (2007) 4-31
    • (2007) Int. J. Approximate Reasoning , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 10
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • Ishibuchi H., and Yamamoto T. Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13 4 (2005) 428-435
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.4 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 11
    • 0027580356 scopus 로고
    • Very simple classification rules perform well in most common used data sets
    • Holte R. Very simple classification rules perform well in most common used data sets. Mach. Learn. 11 (1993) 63-91
    • (1993) Mach. Learn. , vol.11 , pp. 63-91
    • Holte, R.1
  • 12
    • 0022098324 scopus 로고
    • An introductory survey of fuzzy control
    • Sugeno M. An introductory survey of fuzzy control. Inf. Sci. 36 1/2 (1985) 59-83
    • (1985) Inf. Sci. , vol.36 , Issue.1-2 , pp. 59-83
    • Sugeno, M.1
  • 13
    • 0025404409 scopus 로고
    • Fuzzy logic in control systems: fuzzy logic controller
    • Lee C.C. Fuzzy logic in control systems: fuzzy logic controller. part I and part II, IEEE Trans. Syst. Man Cybern. 20 2 (1990) 404-435
    • (1990) part I and part II, IEEE Trans. Syst. Man Cybern. , vol.20 , Issue.2 , pp. 404-435
    • Lee, C.C.1
  • 14
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • Wangm L.X., and Mendel J.M. Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22 6 (1992) 1414-1427
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.6 , pp. 1414-1427
    • Wangm, L.X.1    Mendel, J.M.2
  • 15
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • Ishibuchi H., Nozaki K., and Tanaka H. Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets Syst. 52 1 (1992) 21-32
    • (1992) Fuzzy Sets Syst. , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 16
    • 0029242750 scopus 로고
    • A method for fuzzy rules extraction directly from numerical data and its application to pattern classification
    • Abe S., and Lan M.S. A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. IEEE Trans. Fuzzy Syst. 3 1 (1995) 18-28
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.1 , pp. 18-28
    • Abe, S.1    Lan, M.S.2
  • 17
    • 0028384240 scopus 로고
    • Self-organizing neural network as a fuzzy classifier
    • Mitra S., and Pal S.K. Self-organizing neural network as a fuzzy classifier. IEEE Trans. Syst. Man Cybern. 24 3 (1994) 385-399
    • (1994) IEEE Trans. Syst. Man Cybern. , vol.24 , Issue.3 , pp. 385-399
    • Mitra, S.1    Pal, S.K.2
  • 19
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S., Gelatt C.D., and Vecchi M.P. Optimization by simulated annealing. Science 220 (1983) 671-680
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 21
    • 0031191557 scopus 로고    scopus 로고
    • Feature subset selection within a simulated annealing data mining algorithm
    • Debuse J.C., and Rayward-Smith V.J. Feature subset selection within a simulated annealing data mining algorithm. J. Intell. Inf. Syst. 9 (1997) 57-81
    • (1997) J. Intell. Inf. Syst. , vol.9 , pp. 57-81
    • Debuse, J.C.1    Rayward-Smith, V.J.2
  • 22
    • 0032137160 scopus 로고    scopus 로고
    • Simulated annealing based pattern classification
    • Bandyopadhyay S., Pal S.K., and Murthy C.A. Simulated annealing based pattern classification. Inf. Sci. 109 1-4 (1998) 165-184
    • (1998) Inf. Sci. , vol.109 , Issue.1-4 , pp. 165-184
    • Bandyopadhyay, S.1    Pal, S.K.2    Murthy, C.A.3
  • 23
    • 17044374644 scopus 로고    scopus 로고
    • Simulated annealing using a reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering
    • Bandyopadhyay S. Simulated annealing using a reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering. IEEE Trans. Knowl. Data Eng. 17 4 (2005) 479-490
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 479-490
    • Bandyopadhyay, S.1
  • 24
    • 23844482899 scopus 로고    scopus 로고
    • X.Y. Wang, J. Garibaldi, Simulated annealing fuzzy clustering in cancer diagnosis, Eur. J. Inf. (2005) 61-70.
  • 25
    • 38349108371 scopus 로고    scopus 로고
    • UCI machine learning repository: 〈http://www.ics.uci.edu/∼mlearn/databases/〉.
  • 26
    • 85040657895 scopus 로고    scopus 로고
    • D.F. Wong, C.L. Liu, A new algorithm for floorplan design, in: Proceedings of the 23rd DAC, 1986, pp. 101-107.
  • 27
    • 0035312109 scopus 로고    scopus 로고
    • Evolutionary algorithms, simulated annealing and tabu search: a comparative study
    • Youssef H., Sait S.M., and Adiche H. Evolutionary algorithms, simulated annealing and tabu search: a comparative study. Eng. Appl. Artif. Intell. 14 2 (2001) 167-181
    • (2001) Eng. Appl. Artif. Intell. , vol.14 , Issue.2 , pp. 167-181
    • Youssef, H.1    Sait, S.M.2    Adiche, H.3
  • 31
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D.W., Kibler D.F., and Albert M.K. Instance-based learning algorithms. Mach. Learn. 6 1 (1991) 37-66
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.F.2    Albert, M.K.3
  • 33
    • 38349171984 scopus 로고    scopus 로고
    • C.C. Chang, C.J. Lin, LIBSVM: A Library for Support Vector Machines, Department of Computer Science and Information Engineering, National Taiwan University, 2001.
  • 34
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA
    • Platt J.C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods Support Vector Learning (1999), MIT Press, Cambridge, MA 185-208
    • (1999) Advances in Kernel Methods Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 36
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • Wilson S.W. Classifier fitness based on accuracy. Evol. Comput. 3 2 (1995) 149-175
    • (1995) Evol. Comput. , vol.3 , Issue.2 , pp. 149-175
    • Wilson, S.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.