메뉴 건너뛰기




Volumn 112, Issue 1, 2013, Pages 92-103

Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm

Author keywords

Artificial Bee Colony; Diabetes disease; Fuzzy rules; Interpretable classification

Indexed keywords

10-FOLD CROSS-VALIDATION; ARTIFICIAL BEE COLONIES; ARTIFICIAL BEE COLONY ALGORITHMS; ARTIFICIAL BEE COLONY ALGORITHMS (ABC); ARTIFICIAL INTELLIGENCE TECHNIQUES; CLASSIFICATION RATES; SENSITIVITY AND SPECIFICITY; UCI MACHINE LEARNING REPOSITORY;

EID: 84883746011     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2013.07.009     Document Type: Article
Times cited : (94)

References (40)
  • 1
    • 84880892274 scopus 로고    scopus 로고
    • National Diabetes Information Clearinghouse (NDIC)
    • National Diabetes Information Clearinghouse (NDIC), http://diabetes.niddk.nih.gov/dm/pubs/d-iagnosis.
  • 3
    • 0032713743 scopus 로고    scopus 로고
    • Semantic constraints for membership function optimization
    • Valente J. Semantic constraints for membership function optimization. IEEE Transactions on Fuzzy Systems 1999, 19:128-138.
    • (1999) IEEE Transactions on Fuzzy Systems , vol.19 , pp. 128-138
    • Valente, J.1
  • 4
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • Ishibuchi H., Nozaki K., Tanaka H. Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets and System 1992, 52(1):21-32.
    • (1992) Fuzzy Sets and System , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 5
    • 1242263791 scopus 로고    scopus 로고
    • A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
    • Chakraborty D., Pal N.R. A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Transactions on Neural Networks 2004, 15(1):110-123.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.1 , pp. 110-123
    • Chakraborty, D.1    Pal, N.R.2
  • 6
    • 0026366218 scopus 로고
    • Neural network-based fuzzy logic control and decision system
    • Lin C.T., Lee C.S.G. Neural network-based fuzzy logic control and decision system. IEEE Transactions on Computers 1991, 40(12):1320-1336.
    • (1991) IEEE Transactions on Computers , vol.40 , Issue.12 , pp. 1320-1336
    • Lin, C.T.1    Lee, C.S.G.2
  • 7
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • Nauck D., Kruse R. A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems 1997, 89(3):277-288.
    • (1997) Fuzzy Sets and Systems , vol.89 , Issue.3 , pp. 277-288
    • Nauck, D.1    Kruse, R.2
  • 9
    • 33749653276 scopus 로고    scopus 로고
    • A self-constructing fuzzy CMAC model and its applications
    • Lee C.Y., Lin C.J., Chen H.J. A self-constructing fuzzy CMAC model and its applications. Information Sciences 2007, 177(1):264-280.
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 264-280
    • Lee, C.Y.1    Lin, C.J.2    Chen, H.J.3
  • 10
    • 0037361892 scopus 로고    scopus 로고
    • Learning fuzzy classification rules from labelled data
    • Roubos J.A., Setnes M., Abonyi J. Learning fuzzy classification rules from labelled data. Information Sciences 2003, 150(1/2):77-93.
    • (2003) Information Sciences , vol.150 , Issue.1-2 , pp. 77-93
    • Roubos, J.A.1    Setnes, M.2    Abonyi, J.3
  • 11
    • 80052035439 scopus 로고    scopus 로고
    • A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis
    • Ganji M.F., Abadeh M.S. A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis. Expert System with Application 2011, 38:14650-14659.
    • (2011) Expert System with Application , vol.38 , pp. 14650-14659
    • Ganji, M.F.1    Abadeh, M.S.2
  • 12
    • 33751166396 scopus 로고    scopus 로고
    • Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation
    • Alcal R., Alcala-Fdez J., Herrera F., Otero J. Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation. International Journal of Approximate Reasoning 2007, 44(1):45-64.
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 45-64
    • Alcal, R.1    Alcala-Fdez, J.2    Herrera, F.3    Otero, J.4
  • 13
    • 22144437737 scopus 로고    scopus 로고
    • Finding useful fuzzy concepts for pattern classification using genetic algorithm
    • Hu Y.C. Finding useful fuzzy concepts for pattern classification using genetic algorithm. Information Sciences 2005, 175(1/2):1-19.
    • (2005) Information Sciences , vol.175 , Issue.1-2 , pp. 1-19
    • Hu, Y.C.1
  • 14
    • 34547681970 scopus 로고    scopus 로고
    • Fuzzy classifier design using genetic algorithms
    • Zhou E., Khotanzad A. Fuzzy classifier design using genetic algorithms. Pattern Recognition 2007, 40(12):3401-3414.
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3401-3414
    • Zhou, E.1    Khotanzad, A.2
  • 17
    • 2642563714 scopus 로고    scopus 로고
    • Particle swarm based data mining algorithms for classification tasks
    • Sousa T., Silva A., Neves A. Particle swarm based data mining algorithms for classification tasks. Parallel Computing 2004, 30(5/6):767-783.
    • (2004) Parallel Computing , vol.30 , Issue.5-6 , pp. 767-783
    • Sousa, T.1    Silva, A.2    Neves, A.3
  • 20
    • 33847117702 scopus 로고    scopus 로고
    • A framework for identification of fuzzy models through particle swarm optimization
    • Khosla A., Kumar S., Aggarwal K.K. A framework for identification of fuzzy models through particle swarm optimization. IEEE Indicon Conference 2005, 388-391.
    • (2005) IEEE Indicon Conference , pp. 388-391
    • Khosla, A.1    Kumar, S.2    Aggarwal, K.K.3
  • 23
    • 77957901422 scopus 로고    scopus 로고
    • A novel clustering approach: artificial bee colony (ABC) algorithm
    • Karaboga D., Ozturk C. A novel clustering approach: artificial bee colony (ABC) algorithm. Applied Soft Computing 2011, 1:652-657.
    • (2011) Applied Soft Computing , vol.1 , pp. 652-657
    • Karaboga, D.1    Ozturk, C.2
  • 24
    • 67651121862 scopus 로고    scopus 로고
    • Neural networks training by artificial bee colony algorithm on pattern classification
    • Karaboga D., Ozturk C. Neural networks training by artificial bee colony algorithm on pattern classification. Neural Network World 2009, 19:279-292.
    • (2009) Neural Network World , vol.19 , pp. 279-292
    • Karaboga, D.1    Ozturk, C.2
  • 25
    • 37249084064 scopus 로고    scopus 로고
    • Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems
    • Karaboga D., Basturk B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. Lecture Notes in Computer Science 2007, 4529:789-798.
    • (2007) Lecture Notes in Computer Science , vol.4529 , pp. 789-798
    • Karaboga, D.1    Basturk, B.2
  • 27
    • 34248592215 scopus 로고    scopus 로고
    • A cascade learning system for classification of diabetes disease: generalized discriminant analysis and least square suport vector machine
    • Polat K., Gunes S., Arslan A. A cascade learning system for classification of diabetes disease: generalized discriminant analysis and least square suport vector machine. Expert Systems with Applications 2008, 34(1):482-487.
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 482-487
    • Polat, K.1    Gunes, S.2    Arslan, A.3
  • 28
    • 34548015421 scopus 로고    scopus 로고
    • An improved approach to medical data sets classification: artificial immune recognition system with fuzzy resource allocation mechanism
    • Polat K., Gunes S. An improved approach to medical data sets classification: artificial immune recognition system with fuzzy resource allocation mechanism. Expert Systems with Applications 2007, 24(4):252-270.
    • (2007) Expert Systems with Applications , vol.24 , Issue.4 , pp. 252-270
    • Polat, K.1    Gunes, S.2
  • 30
    • 34249285900 scopus 로고    scopus 로고
    • An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease
    • Polat K., Günes S. An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digital Signal Processing 2007, 17(4):702-710.
    • (2007) Digital Signal Processing , vol.17 , Issue.4 , pp. 702-710
    • Polat, K.1    Günes, S.2
  • 31
    • 60349107274 scopus 로고    scopus 로고
    • A comparative study on diabetes disease diagnosis using neural networks
    • Temurtas H., Yumusak N., Temurtas F. A comparative study on diabetes disease diagnosis using neural networks. Expert Systems with Applications 2009, 36(4):8610-8615.
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 8610-8615
    • Temurtas, H.1    Yumusak, N.2    Temurtas, F.3
  • 34
    • 78649934709 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA,
    • Frank A., Asuncion A. UCI Machine Learning Repository 2010, University of California, School of Information and Computer Science, Irvine, CA, http://archive.ics.uci.edu/ml.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 35
    • 46549086330 scopus 로고    scopus 로고
    • Medical data mining by fuzzy modeling with selected features
    • Ghazavi S.N., Liao T.W. Medical data mining by fuzzy modeling with selected features. Artificial Intelligence in Medicine 2008, 43(3):195-206.
    • (2008) Artificial Intelligence in Medicine , vol.43 , Issue.3 , pp. 195-206
    • Ghazavi, S.N.1    Liao, T.W.2
  • 36
    • 79959828517 scopus 로고    scopus 로고
    • Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm
    • Ozturk C., Karaboga D., Gorkemli B. Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm. Sensors 2011, 11(6):6056-6065.
    • (2011) Sensors , vol.11 , Issue.6 , pp. 6056-6065
    • Ozturk, C.1    Karaboga, D.2    Gorkemli, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.