메뉴 건너뛰기




Volumn 67, Issue , 2015, Pages 138-144

A new method for constructing granular neural networks based on rule extraction and extreme learning machine

Author keywords

Granular neural networks; Rough rule granular extreme learning machine; Rough set; Rule extraction; Single hidden layer feedforward neural networks

Indexed keywords

ALGORITHMS; BENCHMARKING; DATA REDUCTION; DECISION THEORY; EXTRACTION; FEEDFORWARD NEURAL NETWORKS; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; NETWORK LAYERS; NEURAL NETWORKS; NEURONS; SET THEORY;

EID: 84946493375     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2015.05.006     Document Type: Article
Times cited : (11)

References (31)
  • 2
    • 79951581007 scopus 로고    scopus 로고
    • Early warning of enterprise decline in a life cycle using neural networks and rough set theory
    • Y. Cao, X.-H. Chen, D.D. Wu, and M. Mo Early warning of enterprise decline in a life cycle using neural networks and rough set theory Expert Syst. Appl. 38 6 2011 6424 6429
    • (2011) Expert Syst. Appl. , vol.38 , Issue.6 , pp. 6424-6429
    • Cao, Y.1    Chen, X.-H.2    Wu, D.D.3    Mo, M.4
  • 3
    • 84865616390 scopus 로고    scopus 로고
    • Segmentation of multispectral mr images through an annealed rough neural network
    • Y.-Y. Chang, S.-C. Tai, and J.-S. Lin Segmentation of multispectral mr images through an annealed rough neural network Neural Comput. Appl. 21 5 2012 911 919
    • (2012) Neural Comput. Appl. , vol.21 , Issue.5 , pp. 911-919
    • Chang, Y.-Y.1    Tai, S.-C.2    Lin, J.-S.3
  • 4
    • 45849098303 scopus 로고    scopus 로고
    • An information granulation based data mining approach for classifying imbalanced data
    • M.-C. Chen, L.-S. Chen, C.-C. Hsu, and W.-R. Zeng An information granulation based data mining approach for classifying imbalanced data Inf. Sci. 178 16 2008 3214 3227
    • (2008) Inf. Sci. , vol.178 , Issue.16 , pp. 3214-3227
    • Chen, M.-C.1    Chen, L.-S.2    Hsu, C.-C.3    Zeng, W.-R.4
  • 5
    • 70449520177 scopus 로고    scopus 로고
    • A hybrid forecast marketing timing model based on probabilistic neural network, rough set and c4. 5
    • J.-H. Cheng, H.-P. Chen, and Y.-M. Lin A hybrid forecast marketing timing model based on probabilistic neural network, rough set and c4. 5 Expert syst. Appl. 37 3 2010 1814 1820
    • (2010) Expert Syst. Appl. , vol.37 , Issue.3 , pp. 1814-1820
    • Cheng, J.-H.1    Chen, H.-P.2    Lin, Y.-M.3
  • 6
    • 84879603249 scopus 로고    scopus 로고
    • A granular neural network: Performance analysis and application to re-granulation
    • S. Dick, A. Tappenden, C. Badke, and O. Olarewaju A granular neural network: performance analysis and application to re-granulation Int. J. Approximate Reasoning 54 8 2013 1149 1167
    • (2013) Int. J. Approximate Reasoning , vol.54 , Issue.8 , pp. 1149-1167
    • Dick, S.1    Tappenden, A.2    Badke, C.3    Olarewaju, O.4
  • 7
    • 84907233102 scopus 로고    scopus 로고
    • Extreme learning machine and its applications
    • S. Ding, X. Xu, and R. Nie Extreme learning machine and its applications Neural Comput. Appl. 25 3-4 2014 549 556
    • (2014) Neural Comput. Appl. , vol.25 , Issue.3-4 , pp. 549-556
    • Ding, S.1    Xu, X.2    Nie, R.3
  • 8
    • 80052819788 scopus 로고    scopus 로고
    • Fuzzy rough granular neural networks, fuzzy granules, and classification
    • A. Ganivada, S. Dutta, and S.K. Pal Fuzzy rough granular neural networks, fuzzy granules, and classification Theor. Comput. Sci. 412 42 2011 5834 5853
    • (2011) Theor. Comput. Sci. , vol.412 , Issue.42 , pp. 5834-5853
    • Ganivada, A.1    Dutta, S.2    Pal, S.K.3
  • 9
    • 80052970383 scopus 로고    scopus 로고
    • Rough sets for adapting wavelet neural networks as a new classifier system
    • Y.F. Hassan Rough sets for adapting wavelet neural networks as a new classifier system Appl. Intell. 35 2 2011 260 268
    • (2011) Appl. Intell. , vol.35 , Issue.2 , pp. 260-268
    • Hassan, Y.F.1
  • 11
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew Extreme learning machine: theory and applications Neurocomputing 70 1 2006 489 501
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 14
    • 84870233667 scopus 로고    scopus 로고
    • Evolving granular neural networks from fuzzy data streams
    • D. Leite, P. Costa, and F. Gomide Evolving granular neural networks from fuzzy data streams Neural Netw. 38 2013 1 16
    • (2013) Neural Netw. , vol.38 , pp. 1-16
    • Leite, D.1    Costa, P.2    Gomide, F.3
  • 15
    • 84946496486 scopus 로고    scopus 로고
    • Corporate performance forecasting using hybrid rough set theory
    • C. Lin, T. Lin, and S. Chiu Corporate performance forecasting using hybrid rough set theory Neural Netw. DEA 41 3 2013 359 365
    • (2013) Neural Netw. DEA , vol.41 , Issue.3 , pp. 359-365
    • Lin, C.1    Lin, T.2    Chiu, S.3
  • 16
    • 44649143992 scopus 로고    scopus 로고
    • Approximation and prediction of wages based on granular neural network
    • Springer
    • M. Marček, and D. Marček Approximation and prediction of wages based on granular neural network Rough Sets and Knowledge Technology 2008 Springer 556 563
    • (2008) Rough Sets and Knowledge Technology , pp. 556-563
    • Marček, M.1    Marček, D.2
  • 17
    • 84875896163 scopus 로고    scopus 로고
    • Granular neural networks: Concepts and development schemes
    • S. Mingli, and W. Pedrycz Granular neural networks: concepts and development schemes. IEEE Trans. neural Netw. Learn. Syst. 24 4 2013 542 553
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , Issue.4 , pp. 542-553
    • Mingli, S.1    Pedrycz, W.2
  • 18
  • 19
    • 81855167014 scopus 로고    scopus 로고
    • Modeling of the charging characteristic of linear-type superconducting power supply using granular-based radial basis function neural networks
    • H.-S. Park, W. Pedrycz, Y.-D. Chung, and S.-K. Oh Modeling of the charging characteristic of linear-type superconducting power supply using granular-based radial basis function neural networks Expert Syst. Appl. 39 1 2012 1021 1039
    • (2012) Expert Syst. Appl. , vol.39 , Issue.1 , pp. 1021-1039
    • Park, H.-S.1    Pedrycz, W.2    Chung, Y.-D.3    Oh, S.-K.4
  • 20
    • 0034493984 scopus 로고    scopus 로고
    • Granular neural networks
    • W. Pedrycz, and G. Vukovich Granular neural networks Neurocomputing 36 1 2001 205 224
    • (2001) Neurocomputing , vol.36 , Issue.1 , pp. 205-224
    • Pedrycz, W.1    Vukovich, G.2
  • 21
    • 33750049650 scopus 로고    scopus 로고
    • Satellite image classification using granular neural networks
    • D. Stathakis, and A. Vasilakos Satellite image classification using granular neural networks Int. J. Rem. Sens. 27 18 2006 3991 4003
    • (2006) Int. J. Rem. Sens. , vol.27 , Issue.18 , pp. 3991-4003
    • Stathakis, D.1    Vasilakos, A.2
  • 23
    • 84865232860 scopus 로고    scopus 로고
    • Data and knowledge visualization with virtual reality spaces, neural networks and rough sets: Application to cancer and geophysical prospecting data
    • J.J. Valdés, E. Romero, and A.J. Barton Data and knowledge visualization with virtual reality spaces, neural networks and rough sets: Application to cancer and geophysical prospecting data Expert Syst. Appl. 39 18 2012 13193 13201
    • (2012) Expert Syst. Appl. , vol.39 , Issue.18 , pp. 13193-13201
    • Valdés, J.J.1    Romero, E.2    Barton, A.J.3
  • 24
    • 17244366734 scopus 로고    scopus 로고
    • Granular neural networks for land use classification
    • A. Vasilakos, and D. Stathakis Granular neural networks for land use classification Soft Comput. 9 5 2005 332 340
    • (2005) Soft Comput. , vol.9 , Issue.5 , pp. 332-340
    • Vasilakos, A.1    Stathakis, D.2
  • 25
    • 84860763426 scopus 로고    scopus 로고
    • Optimizing radial basis function neural network based on rough set and ap clustering algorithm
    • X.-Z. Xu, S.-F. Ding, and H. Zhu Optimizing radial basis function neural network based on rough set and ap clustering algorithm Zhejiang University (SCIENCE C) 13 2 2012 18
    • (2012) Zhejiang University (SCIENCE C) , vol.13 , Issue.2 , pp. 18
    • Xu, X.-Z.1    Ding, S.-F.2    Zhu, H.3
  • 26
    • 1642469977 scopus 로고    scopus 로고
    • Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • L.A. Zadeh Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic Fuzzy Sets Syst. 90 2 1997 111 127
    • (1997) Fuzzy Sets Syst. , vol.90 , Issue.2 , pp. 111-127
    • Zadeh, L.A.1
  • 27
    • 67349258315 scopus 로고    scopus 로고
    • Rough neural network modeling based on fuzzy rough model and its application to texture classification
    • D.-B. Zhang, Y.-N. Wang, and H.-X. Huang Rough neural network modeling based on fuzzy rough model and its application to texture classification Neurocomputing 72 10 2009 2433 2443
    • (2009) Neurocomputing , vol.72 , Issue.10 , pp. 2433-2443
    • Zhang, D.-B.1    Wang, Y.-N.2    Huang, H.-X.3
  • 29
    • 0034186991 scopus 로고    scopus 로고
    • Granular neural networks for numerical-linguistic data fusion and knowledge discovery
    • Y.-Q. Zhang, M.D. Fraser, R.A. Gagliano, and A. Kandel Granular neural networks for numerical-linguistic data fusion and knowledge discovery Neural Netw. IEEE Trans. 11 3 2000 658 667
    • (2000) Neural Netw. IEEE Trans. , vol.11 , Issue.3 , pp. 658-667
    • Zhang, Y.-Q.1    Fraser, M.D.2    Gagliano, R.A.3    Kandel, A.4
  • 30
    • 42549168022 scopus 로고    scopus 로고
    • Granular neural networks with evolutionary interval learning
    • Y.-Q. Zhang, B. Jin, and Y.-C. Tang Granular neural networks with evolutionary interval learning Fuzzy Syst. IEEE Trans. 16 2 2008 309 319
    • (2008) Fuzzy Syst. IEEE Trans. , vol.16 , Issue.2 , pp. 309-319
    • Zhang, Y.-Q.1    Jin, B.2    Tang, Y.-C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.