메뉴 건너뛰기




Volumn 5, Issue 2, 2017, Pages 120-134

Conscientious Classification: A Data Scientist's Guide to Discrimination-Aware Classification

Author keywords

data science; disparate impact; ethics

Indexed keywords

ALGORITHM; HUMAN; MACHINE LEARNING; STATISTICAL ANALYSIS;

EID: 85021165717     PISSN: 21676461     EISSN: 2167647X     Source Type: Journal    
DOI: 10.1089/big.2016.0048     Document Type: Article
Times cited : (215)

References (30)
  • 1
    • 84954094374 scopus 로고    scopus 로고
    • 104 California Law Review . Available at SSRN
    • Barocas S, Selbst AD. Big data's disparate impact. 104 California Law Review 671 (2016). Available at SSRN: https://ssrn. com/ abstract=2477899
    • (2016) Big Data's Disparate Impact , pp. 671
    • Barocas, S.1    Selbst, A.D.2
  • 3
    • 0010877010 scopus 로고
    • Fair credit reporting act: A legislative overview
    • McNamara RM Jr. Fair credit reporting act: A legislative overview. J Pub L. 1973;22:67.
    • (1973) J Pub L. , vol.22 , pp. 67
    • McNamara, R.M.1
  • 4
    • 85019708205 scopus 로고    scopus 로고
    • Zalta EN (ed. ) The Stanford Encyclopedia of Philosophy accessed June 7
    • Altman A. Discrimination. In: Zalta EN (ed. ) The Stanford Encyclopedia of Philosophy. Available at: https://plato. stanford. edu/archives/ win2016/entries/discrimination (accessed June 7, 2017).
    • (2017) Discrimination
    • Altman, A.1
  • 6
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol. 1974;66:688.
    • (1974) J Educ Psychol. , vol.66 , pp. 688
    • Rubin, D.B.1
  • 9
    • 84900849170 scopus 로고    scopus 로고
    • A multidisciplinary survey on discrimination analysis
    • Romei A, Ruggieri S. A multidisciplinary survey on discrimination analysis. Knowl Eng Rev. 2014;29:582-638.
    • (2014) Knowl Eng Rev. , vol.29 , pp. 582-638
    • Romei, A.1    Ruggieri, S.2
  • 11
    • 77958063401 scopus 로고    scopus 로고
    • Three naive Bayes approaches for discrimination-free classification
    • Calders T, Verwer S. Three naive Bayes approaches for discrimination-free classification. Data Min Knowl Discov. 2010;21:277-292.
    • (2010) Data Min Knowl Discov. , vol.21 , pp. 277-292
    • Calders, T.1    Verwer, S.2
  • 12
    • 84897542525 scopus 로고    scopus 로고
    • Learning fair representations
    • Zemel RS, Wu Y, Swersky K, et al. Learning fair representations. ICML. 2013;28:325-333.
    • (2013) ICML. , vol.28 , pp. 325-333
    • Zemel, R.S.1    Wu, Y.2    Swersky, K.3
  • 14
    • 84877110194 scopus 로고    scopus 로고
    • Quantifying explainable discrimination and removing illegal discrimination in automated decision making
    • Kamiran F, Zliobaite I, Calders T. Quantifying explainable discrimination and removing illegal discrimination in automated decision making. Knowl Inf Syst. 2013;35:613-644.
    • (2013) Knowl Inf Syst. , vol.35 , pp. 613-644
    • Kamiran, F.1    Zliobaite, I.2    Calders, T.3
  • 18
    • 85021144225 scopus 로고    scopus 로고
    • last accessed January 31
    • Wikipedia. Cross industry standard process for data mining. Available online at https://en. wikipedia. org/wiki/Cross-Industry-Standard- Process-for-Data-Mining (last accessed January 31, 2017).
    • (2017) Cross Industry Standard Process for Data Mining
  • 21
    • 84991834384 scopus 로고    scopus 로고
    • Evaluating and optimizing online advertising: Forget the click, but there are good proxies
    • Dalessandro B, Hook R, Perlich C, Provost F. Evaluating and optimizing online advertising: Forget the click, but there are good proxies. Big Data 2015;3:90-102.
    • (2015) Big Data , vol.3 , pp. 90-102
    • Dalessandro, B.1    Hook, R.2    Perlich, C.3    Provost, F.4
  • 23
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning
    • Lawrence Erlbaum Associates Ltd.
    • Elkan C. The foundations of cost-sensitive learning. In: International Joint Conference on Artificial Intelligence (Vol. 17, No. 1). Lawrence Erlbaum Associates Ltd. , 2001, pp. 973-978.
    • (2001) International Joint Conference on Artificial Intelligence , vol.17 , Issue.1 , pp. 973-978
    • Elkan, C.1
  • 24
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F, Fawcett T. Robust classification for imprecise environments. Mach Learn. 2001;42:203-231.
    • (2001) Mach Learn. , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 25
    • 68949137209 scopus 로고    scopus 로고
    • Madison, WI: University of Wisconsin. 52. 55-52. 66
    • Settles B. Active learning literature survey. Madison, WI: University of Wisconsin. 2010;52. 55-52. 66:11.
    • (2010) Active Learning Literature Survey , pp. 11
    • Settles, B.1
  • 26
    • 84867097035 scopus 로고    scopus 로고
    • Data preprocessing techniques for classification without discrimination
    • Kamiran F, Calders T. Data preprocessing techniques for classification without discrimination. Knowl Inf Syst. 2012;33:1-33.
    • (2012) Knowl Inf Syst. , vol.33 , pp. 1-33
    • Kamiran, F.1    Calders, T.2
  • 28
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • Hand DJ. Classifier technology and the illusion of progress. Stat Sci. 2006;21:1-14.
    • (2006) Stat Sci. , vol.21 , pp. 1-14
    • Hand, D.J.1
  • 29
    • 85021138156 scopus 로고    scopus 로고
    • Why you're not getting value from your data science
    • December 7
    • Veeramachaneni K. Why you're not getting value from your data science. Harvard Business Review. December 7, 2016.
    • (2016) Harvard Business Review
    • Veeramachaneni, K.1
  • 30
    • 85021138139 scopus 로고    scopus 로고
    • The problems with using personality tests for hiring
    • August 27
    • Marin W. The problems with using personality tests for hiring. Harvard Business Review. August 27, 2014.
    • (2014) Harvard Business Review
    • Marin, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.