-
1
-
-
78650556770
-
Survey on multiclass classification methods
-
Caltech
-
[1] Aly, M., Survey on multiclass classification methods. Technical Report, 2005, Caltech.
-
(2005)
Technical Report
-
-
Aly, M.1
-
2
-
-
79960561885
-
Multiclass functional discriminant analysis and its application to gesture recognition
-
[2] Matsui, H., Araki, T., Konishi, S., Multiclass functional discriminant analysis and its application to gesture recognition. J. Classification 28:2 (2011), 227–243.
-
(2011)
J. Classification
, vol.28
, Issue.2
, pp. 227-243
-
-
Matsui, H.1
Araki, T.2
Konishi, S.3
-
3
-
-
77953092633
-
Discriminant analysis for fast multiclass data classification through regularized kernel function approximation
-
[3] Ghorai, S., Mukherjee, A., Dutta, P.K., Discriminant analysis for fast multiclass data classification through regularized kernel function approximation. IEEE Trans. Neural Netw. 21:6 (2010), 1020–1029.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.6
, pp. 1020-1029
-
-
Ghorai, S.1
Mukherjee, A.2
Dutta, P.K.3
-
4
-
-
33845413755
-
Regularized linear discriminant analysis and its application in microarrays
-
[4] Guo, Y.Q., Hastie, T., Tibshirani, R., Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8:1 (2007), 86–100.
-
(2007)
Biostatistics
, vol.8
, Issue.1
, pp. 86-100
-
-
Guo, Y.Q.1
Hastie, T.2
Tibshirani, R.3
-
5
-
-
84896333320
-
Decision trees to multiclass prediction for analysis of arecanut data
-
[5] Suresha, M., Danti, A., Narasimhamurthy, S.K., Decision trees to multiclass prediction for analysis of arecanut data. Comput. Syst. Sci. Eng. 29:1 (2014), 105–114.
-
(2014)
Comput. Syst. Sci. Eng.
, vol.29
, Issue.1
, pp. 105-114
-
-
Suresha, M.1
Danti, A.2
Narasimhamurthy, S.K.3
-
6
-
-
85052770793
-
Classification and Regression Trees
-
CRC Press Boca Raton, Florida
-
[6] Breiman, L., Friedman, J., Olshen, R., Stone, C., Classification and Regression Trees. 1984, CRC Press, Boca Raton, Florida.
-
(1984)
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
7
-
-
33749682962
-
Data Mining and Knowledge Discovery Handbook
-
Springer New York
-
[7] Maimon, O., Rokach, L., Data Mining and Knowledge Discovery Handbook. 2005, Springer, New York.
-
(2005)
-
-
Maimon, O.1
Rokach, L.2
-
8
-
-
84922295515
-
Automatic classification of digitally modulated signals based on k-nearest neighbor
-
[8] Ahn, W.H., Nah, S.P., Seo, B.S., Automatic classification of digitally modulated signals based on k-nearest neighbor. Lect. Notes Electr. Eng. 329 (2015), 63–69.
-
(2015)
Lect. Notes Electr. Eng.
, vol.329
, pp. 63-69
-
-
Ahn, W.H.1
Nah, S.P.2
Seo, B.S.3
-
9
-
-
84904809957
-
The Third Conference on Email and Anti-Spam - Proceedings, CEAS
-
Mountain View, California
-
[9] V. Metsis, I. Androutsopoulos, G. Paliouras, Spam filtering with naive bayes - which naive bayes?, in: The Third Conference on Email and Anti-Spam - Proceedings, CEAS 2006, Mountain View, California.
-
(2006)
The Third Conference on Email and Anti-Spam - Proceedings
-
-
Metsis, V.1
Androutsopoulos, I.2
Paliouras, G.3
-
10
-
-
79952048598
-
Spam filtering: how the dimensionality reduction affects the accuracy of naive bayes classifiers
-
[10] Almeida, T.A., Almeida, J., Yamakami, A., Spam filtering: how the dimensionality reduction affects the accuracy of naive bayes classifiers. J. Internet Serv. Appl. 1:3 (2011), 183–200.
-
(2011)
J. Internet Serv. Appl.
, vol.1
, Issue.3
, pp. 183-200
-
-
Almeida, T.A.1
Almeida, J.2
Yamakami, A.3
-
11
-
-
84875898112
-
Dynamic sampling approach to training neural networks for multiclass imbalance classification
-
[11] Lin, M.L., Tang, K., Yao, X., Dynamic sampling approach to training neural networks for multiclass imbalance classification. IEEE Trans. Neural Netw. Learn. Syst. 24:4 (2013), 647–660.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, Issue.4
, pp. 647-660
-
-
Lin, M.L.1
Tang, K.2
Yao, X.3
-
12
-
-
26944464216
-
Multiclass adult image classification using neural networks
-
[12] Kim, W., Lee, H.K., Park, J., Yoon, K., Multiclass adult image classification using neural networks. Lect. Notes Comput. Sci. 3501 (2005), 222–226.
-
(2005)
Lect. Notes Comput. Sci.
, vol.3501
, pp. 222-226
-
-
Kim, W.1
Lee, H.K.2
Park, J.3
Yoon, K.4
-
13
-
-
33749240206
-
Multi-class pattern classification using neural networks
-
[13] Ou, G.B., Murphey, Y.L., Multi-class pattern classification using neural networks. Pattern Recognit. 40:1 (2007), 4–18.
-
(2007)
Pattern Recognit.
, vol.40
, Issue.1
, pp. 4-18
-
-
Ou, G.B.1
Murphey, Y.L.2
-
14
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
[14] Hsu, C.W., Lin, C.J., A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13:2 (2002), 415–425.
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.W.1
Lin, C.J.2
-
15
-
-
67650122095
-
Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates
-
[15] Anand, A., Suganthan, P.N., Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates. J. Theor. Biol. 259:3 (2009), 533–540.
-
(2009)
J. Theor. Biol.
, vol.259
, Issue.3
, pp. 533-540
-
-
Anand, A.1
Suganthan, P.N.2
-
16
-
-
34047114775
-
Multiclass support vector machines for EEG-signals classification
-
[16] Guler, I., Ubeyli, E.D., Multiclass support vector machines for EEG-signals classification. IEEE Trans. Inf. Technol. Biomed. 11:2 (2007), 117–126.
-
(2007)
IEEE Trans. Inf. Technol. Biomed.
, vol.11
, Issue.2
, pp. 117-126
-
-
Guler, I.1
Ubeyli, E.D.2
-
17
-
-
84886016841
-
Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines
-
[17] Du, S.C., Huang, D.L., Lv, J., Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines. Comput. Ind. Eng. 66:4 (2013), 683–695.
-
(2013)
Comput. Ind. Eng.
, vol.66
, Issue.4
, pp. 683-695
-
-
Du, S.C.1
Huang, D.L.2
Lv, J.3
-
18
-
-
84946720620
-
Using the one-vs-one decomposition to improve the performance of class noise filters via an aggregation strategy in multi-class classification problems
-
[18] Garcia, L.P.F., Sáez, J.A., Luengo, J., Lorena, A.C., A.C.P.L.F. de Carvalho, Herrera, F., Using the one-vs-one decomposition to improve the performance of class noise filters via an aggregation strategy in multi-class classification problems. Knowl. Based Syst. 90 (2015), 153–164.
-
(2015)
Knowl. Based Syst.
, vol.90
, pp. 153-164
-
-
Garcia, L.P.F.1
Sáez, J.A.2
Luengo, J.3
Lorena, A.C.4
de Carvalho, A.C.P.L.F.5
Herrera, F.6
-
19
-
-
84922842596
-
An ensemble approach of dual base learners for multi-class classification problems
-
[19] Paz Sesmero, M., Alonso-Weber, J.M., Gutierrez, G., Ledezma, A., Sanchis, A., An ensemble approach of dual base learners for multi-class classification problems. Inf. Fusion 24 (2015), 122–136.
-
(2015)
Inf. Fusion
, vol.24
, pp. 122-136
-
-
Paz Sesmero, M.1
Alonso-Weber, J.M.2
Gutierrez, G.3
Ledezma, A.4
Sanchis, A.5
-
20
-
-
79953051509
-
An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes
-
[20] Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 44:8 (2011), 1761–1776.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.8
, pp. 1761-1776
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
21
-
-
84926254826
-
A survey of fingerprint classification part I: taxonomies on feature extraction methods and learning models
-
[21] Galar, M., Derrac, J., Peralta, D., Triguero, I., Paternain, D., Lopez-Molina, C., Garca, S., Bentez, J.M., Pagola, M., Barrenechea, E., Bustince, H., Herrera, F., A survey of fingerprint classification part I: taxonomies on feature extraction methods and learning models. Knowl. Based Syst. 81 (2015), 76–97.
-
(2015)
Knowl. Based Syst.
, vol.81
, pp. 76-97
-
-
Galar, M.1
Derrac, J.2
Peralta, D.3
Triguero, I.4
Paternain, D.5
Lopez-Molina, C.6
Garca, S.7
Bentez, J.M.8
Pagola, M.9
Barrenechea, E.10
Bustince, H.11
Herrera, F.12
-
22
-
-
84926252172
-
A survey of fingerprint classification part II: experimental analysis and ensemble proposal
-
[22] Galar, M., Derrac, J., Peralta, D., Triguero, I., Paternain, D., Lopez-Molina, C., Garca, S., Bentez, J.M., Pagola, M., Barrenechea, E., Bustince, H., Herrera, F., A survey of fingerprint classification part II: experimental analysis and ensemble proposal. Knowl. Based Syst. 81 (2015), 98–116.
-
(2015)
Knowl. Based Syst.
, vol.81
, pp. 98-116
-
-
Galar, M.1
Derrac, J.2
Peralta, D.3
Triguero, I.4
Paternain, D.5
Lopez-Molina, C.6
Garca, S.7
Bentez, J.M.8
Pagola, M.9
Barrenechea, E.10
Bustince, H.11
Herrera, F.12
-
23
-
-
84884965072
-
Analyzing the presence of noise in multi-class problems: alleviating its influence with the one-vs-one decomposition
-
[23] Sáez, J.A., Galar, M., Luengo, J., Herrera, F., Analyzing the presence of noise in multi-class problems: alleviating its influence with the one-vs-one decomposition. Knowl. Inf Syst. 38:1 (2014), 179–206.
-
(2014)
Knowl. Inf Syst.
, vol.38
, Issue.1
, pp. 179-206
-
-
Sáez, J.A.1
Galar, M.2
Luengo, J.3
Herrera, F.4
-
24
-
-
84910111533
-
An improved multiclass logitboost using adaptive-one-vs-one
-
[24] Sun, P., Reid, M.D., Zhou, J., An improved multiclass logitboost using adaptive-one-vs-one. Mach. Learn. 97:3 (2014), 295–326.
-
(2014)
Mach. Learn.
, vol.97
, Issue.3
, pp. 295-326
-
-
Sun, P.1
Reid, M.D.2
Zhou, J.3
-
25
-
-
56449118344
-
Game theoretical analysis of the simple one-vs.-all classifier
-
[25] Shiraishi, Y., Game theoretical analysis of the simple one-vs.-all classifier. Neurocomputing 71:13–15 (2008), 2747–2753.
-
(2008)
Neurocomputing
, vol.71
, Issue.13-15
, pp. 2747-2753
-
-
Shiraishi, Y.1
-
26
-
-
24044435942
-
Reducing multiclass to binary: a unifying approach for margin classifiers
-
[26] Allwein, E.L., Schapire, R.E., Singer, Y., Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1 (2000), 113–141.
-
(2000)
J. Mach. Learn. Res.
, vol.1
, pp. 113-141
-
-
Allwein, E.L.1
Schapire, R.E.2
Singer, Y.3
-
27
-
-
72449154589
-
A review on the combination of binary classifiers in multiclass problems
-
[27] Lorena, A.C., A.C.P.L.F. De Carvalho, Gama, J.M., A review on the combination of binary classifiers in multiclass problems. Artif. Intell. Rev. 30 (2008), 19–37.
-
(2008)
Artif. Intell. Rev.
, vol.30
, pp. 19-37
-
-
Lorena, A.C.1
De Carvalho, A.C.P.L.F.2
Gama, J.M.3
-
28
-
-
84881076155
-
Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers
-
[28] Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers. Pattern Recognit. 46:12 (2013), 3412–3424.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.12
, pp. 3412-3424
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
29
-
-
84888364466
-
Large margin DAGs for multiclass classification
-
[29] Platt, J.C., Cristianini, N., Shawe-Taylor, J., Large margin DAGs for multiclass classification. Advances in Neural Information Processing Systems, 2000, 547–553.
-
(2000)
Advances in Neural Information Processing Systems
, pp. 547-553
-
-
Platt, J.C.1
Cristianini, N.2
Shawe-Taylor, J.3
-
31
-
-
77953363678
-
Corporate financial distress diagnosis model and application in credit rating for listing firms in china
-
[31] Zhang, L., Altman, E.I., Yen, J., Corporate financial distress diagnosis model and application in credit rating for listing firms in china. Front. Comput. Sci. China 4:2 (2010), 220–236.
-
(2010)
Front. Comput. Sci. China
, vol.4
, Issue.2
, pp. 220-236
-
-
Zhang, L.1
Altman, E.I.2
Yen, J.3
-
32
-
-
33745251636
-
Financial distress prediction in china
-
[32] Chen, J., Marshall, B.R., Zhang, J., Ganesh, S., Financial distress prediction in china. Rev. Pacific Basin Financ. Markets Policies 9:2 (2006), 317–336.
-
(2006)
Rev. Pacific Basin Financ. Markets Policies
, vol.9
, Issue.2
, pp. 317-336
-
-
Chen, J.1
Marshall, B.R.2
Zhang, J.3
Ganesh, S.4
-
33
-
-
84866729677
-
Empirical models based on features ranking techniques for corporate financial distress prediction
-
[33] Zhou, L., Lai, K.K., Yen, J., Empirical models based on features ranking techniques for corporate financial distress prediction. Comput. Math. Appl. 64:8 (2012), 2484–2496.
-
(2012)
Comput. Math. Appl.
, vol.64
, Issue.8
, pp. 2484-2496
-
-
Zhou, L.1
Lai, K.K.2
Yen, J.3
-
34
-
-
84945567357
-
Predicting the listing status of chinese listed companies with multi-class classification models
-
[34] Zhou, L., Tam, K.P., Fujita, H., Predicting the listing status of chinese listed companies with multi-class classification models. Inf. Sci. 328 (2016), 222–236.
-
(2016)
Inf. Sci.
, vol.328
, pp. 222-236
-
-
Zhou, L.1
Tam, K.P.2
Fujita, H.3
-
35
-
-
68949163778
-
Combining predictions in pairwise classification: an optimal adaptive voting strategy and its relation to weighted voting
-
[35] Hüllermeier, E., Vanderlooy, S., Combining predictions in pairwise classification: an optimal adaptive voting strategy and its relation to weighted voting. Pattern Recognit. 43:1 (2010), 128–142.
-
(2010)
Pattern Recognit.
, vol.43
, Issue.1
, pp. 128-142
-
-
Hüllermeier, E.1
Vanderlooy, S.2
-
37
-
-
84995744513
-
-
UCI machine learning repository
-
[37] A. Asuncion, D. Newman, UCI machine learning repository, 2007.
-
(2007)
-
-
Asuncion, A.1
Newman, D.2
-
38
-
-
0008104389
-
Forecasting bankruptcy more accurately: a simple hazard model
-
[38] Shumway, T., Forecasting bankruptcy more accurately: a simple hazard model. J. Bus. 74:1 (2001), 101–124.
-
(2001)
J. Bus.
, vol.74
, Issue.1
, pp. 101-124
-
-
Shumway, T.1
-
39
-
-
80051469759
-
The random subspace binary logit (RSBL) model for bankruptcy prediction
-
[39] Li, H., Lee, Y.C., Zhou, Y.C., Sun, J., The random subspace binary logit (RSBL) model for bankruptcy prediction. Knowl. Based Syst. 24:8 (2011), 1380–1388.
-
(2011)
Knowl. Based Syst.
, vol.24
, Issue.8
, pp. 1380-1388
-
-
Li, H.1
Lee, Y.C.2
Zhou, Y.C.3
Sun, J.4
|