메뉴 건너뛰기




Volumn 48, Issue 1, 2015, Pages 231-243

Relaxed sparse eigenvalue conditions for sparse estimation via non-convex regularized regression

Author keywords

Coordinate descent; Non convex regularization; Sparse eigenvalue; Sparse estimation

Indexed keywords

COORDINATE DESCENT; EIGEN-VALUE; NON-CONVEX REGULARIZATION; SPARSE ESTIMATION;

EID: 84908024543     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.06.018     Document Type: Article
Times cited : (13)

References (42)
  • 1
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck, and M. Teboulle A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imaging Sci. 2 1 2009 183 202
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 2
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • P.J. Bickel, Y. Ritov, and A.B. Tsybakov Simultaneous analysis of Lasso and Dantzig selector Ann. Stat. 37 4 2009 1705 1732
    • (2009) Ann. Stat. , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 3
    • 80053013888 scopus 로고    scopus 로고
    • Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
    • P. Breheny, and J. Huang Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection Ann. Appl. Stat. 5 1 2011 232
    • (2011) Ann. Appl. Stat. , vol.5 , Issue.1 , pp. 232
    • Breheny, P.1    Huang, J.2
  • 5
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • E. Candès, and T. Tao The Dantzig selector: statistical estimation when p is much larger than n Ann. Stat. 35 6 2007 2313 2351
    • (2007) Ann. Stat. , vol.35 , Issue.6 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 6
    • 81255188959 scopus 로고    scopus 로고
    • A probabilistic and ripless theory of compressed sensing
    • E.J. Candès, and Y. Plan A probabilistic and ripless theory of compressed sensing IEEE Trans. Inf. Theory 57 November (11) 2011 7235 7254
    • (2011) IEEE Trans. Inf. Theory , vol.57 , Issue.NOV. 11 , pp. 7235-7254
    • Candès, E.J.1    Plan, Y.2
  • 7
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • E.J. Candès, and T. Tao Decoding by linear programming IEEE Trans. Inf. Theory 51 12 2005 4203 4215
    • (2005) IEEE Trans. Inf. Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candès, E.J.1    Tao, T.2
  • 11
    • 84903554150 scopus 로고    scopus 로고
    • Complexity of unconstrained L2-Lp minimization
    • Xiaojun Chen, Dongdong Ge, Zizhuo Wang, Yinyu Ye, Complexity of unconstrained L2-Lp minimization, Math. Programm. (2011) 1-13.
    • (2011) Math. Programm. , pp. 1-13
    • Chen, X.1    Ge, D.2    Wang, Z.3    Ye, Y.4
  • 12
  • 14
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan, and R. Li Variable selection via nonconcave penalized likelihood and its oracle properties J. Am. Stat. Assoc. 96 456 2001 1348 1360
    • (2001) J. Am. Stat. Assoc. , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 15
    • 62549128663 scopus 로고    scopus 로고
    • Sparsest solutions of underdetermined linear systems via lq-minimization for 0 < q ≤ 1
    • S. Foucart, and M.J. Lai Sparsest solutions of underdetermined linear systems via lq-minimization for 0 < q ≤ 1 Appl. Comput. Harmon. Anal. 26 3 2009 395 407
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , Issue.3 , pp. 395-407
    • Foucart, S.1    Lai, M.J.2
  • 16
    • 71149117997 scopus 로고    scopus 로고
    • Gradient descent with sparsification: An iterative algorithm for sparse recovery with restricted isometry property
    • R. Garg, R. Khandekar, Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property, in: ICML 2009, 2009.
    • (2009) ICML 2009
    • Garg, R.1    Khandekar, R.2
  • 17
    • 0029341230 scopus 로고
    • Nonlinear image recovery with half-quadratic regularization
    • D. Geman, and C. Yang Nonlinear image recovery with half-quadratic regularization IEEE Trans. Image Process. 4 7 1995 932 946
    • (1995) IEEE Trans. Image Process. , vol.4 , Issue.7 , pp. 932-946
    • Geman, D.1    Yang, C.2
  • 18
    • 84897545592 scopus 로고    scopus 로고
    • A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems
    • Pinghua Gong, Changshui Zhang, Zhaosong Lu, Jianhua Z. Huang, Jieping Ye, A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems, in: ICML 2013, 2013.
    • (2013) ICML 2013
    • Gong, P.1    Zhang, C.2    Lu, Z.3    Huang, J.Z.4    Ye, J.5
  • 19
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for sparse high-dimensional regression models
    • J. Huang, S. Ma, and C.H. Zhang Adaptive Lasso for sparse high-dimensional regression models Stat. Sin. 18 4 2008 1603
    • (2008) Stat. Sin. , vol.18 , Issue.4 , pp. 1603
    • Huang, J.1    Ma, S.2    Zhang, C.H.3
  • 20
    • 26444617168 scopus 로고    scopus 로고
    • Variable selection using MM algorithms
    • D.R. Hunter, and R. Li Variable selection using MM algorithms Ann. Stat. 33 4 2005 1617
    • (2005) Ann. Stat. , vol.33 , Issue.4 , pp. 1617
    • Hunter, D.R.1    Li, R.2
  • 21
    • 72249100613 scopus 로고    scopus 로고
    • The Dantzig selector and sparsity oracle inequalities
    • V. Koltchinskii The Dantzig selector and sparsity oracle inequalities Bernoulli 15 3 2009 799 828
    • (2009) Bernoulli , vol.15 , Issue.3 , pp. 799-828
    • Koltchinskii, V.1
  • 22
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • J. Mairal, M. Elad, and G. Sapiro Sparse representation for color image restoration IEEE Trans. Image Process. 17 1 2008 53 69
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.1 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 23
    • 80052694528 scopus 로고    scopus 로고
    • Sparsenet: Coordinate descent with nonconvex penalties
    • R. Mazumder, J.H. Friedman, and T. Hastie Sparsenet: coordinate descent with nonconvex penalties J. Am. Stat. Assoc. 106 495 2011 1125 1138
    • (2011) J. Am. Stat. Assoc. , vol.106 , Issue.495 , pp. 1125-1138
    • Mazumder, R.1    Friedman, J.H.2    Hastie, T.3
  • 24
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers
    • Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers Stat. Sci. 27 4 2012 538 557
    • (2012) Stat. Sci. , vol.27 , Issue.4 , pp. 538-557
    • Negahban, S.N.1    Ravikumar, P.2    Wainwright, M.J.3    Yu, B.4
  • 25
    • 84908033967 scopus 로고    scopus 로고
    • High-dimensional inference via Lipschitz sparsity-yielding regularizers
    • Zheng Pan, Changshui Zhang, High-dimensional inference via Lipschitz sparsity-yielding regularizers, in: AISTATS 2013, 2013.
    • (2013) AISTATS 2013
    • Pan, Z.1    Zhang, C.2
  • 26
    • 79953654020 scopus 로고    scopus 로고
    • Nonconvex prior image constrained compressed sensing (NCPICCS): Theory and simulations on perfusion CT
    • J.C. Ramirez-Giraldo, J. Trzasko, S. Leng, L. Yu, A. Manduca, and C.H. McCollough Nonconvex prior image constrained compressed sensing (NCPICCS): theory and simulations on perfusion CT Med. Phys. 38 4 2011 2157
    • (2011) Med. Phys. , vol.38 , Issue.4 , pp. 2157
    • Ramirez-Giraldo, J.C.1    Trzasko, J.2    Leng, S.3    Yu, L.4    Manduca, A.5    McCollough, C.H.6
  • 27
    • 84862880599 scopus 로고    scopus 로고
    • Likelihood-based selection and sharp parameter estimation
    • Xiaotong Shen, Wei Pan, and Yunzhang Zhu Likelihood-based selection and sharp parameter estimation J. Am. Stat. Assoc. 107 497 2012 223 232
    • (2012) J. Am. Stat. Assoc. , vol.107 , Issue.497 , pp. 223-232
    • Shen, X.1    Pan, W.2    Zhu, Y.3
  • 28
    • 84885310442 scopus 로고    scopus 로고
    • On constrained and regularized high-dimensional regression
    • Xiaotong Shen, Wei Pan, Yunzhang Zhu, and Hui Zhou On constrained and regularized high-dimensional regression Ann. Inst. Stat. Math. 1 2013 1 26
    • (2013) Ann. Inst. Stat. Math. , vol.1 , pp. 1-26
    • Shen, X.1    Pan, W.2    Zhu, Y.3    Zhou, H.4
  • 29
    • 80052910914 scopus 로고    scopus 로고
    • A non-convex relaxation approach to sparse dictionary learning
    • J. Shi, X. Ren, G. Dai, J. Wang, Z. Zhang, A non-convex relaxation approach to sparse dictionary learning, in: CVPR 2011, 2011.
    • (2011) CVPR 2011
    • Shi, J.1    Ren, X.2    Dai, G.3    Wang, J.4    Zhang, Z.5
  • 31
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • J.A. Tropp, and A.C. Gilbert Signal recovery from random measurements via orthogonal matching pursuit IEEE Trans. Inf. Theory 53 12 2007 4655 4666
    • (2007) IEEE Trans. Inf. Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 32
    • 70350503590 scopus 로고    scopus 로고
    • Relaxed conditions for sparse signal recovery with general concave priors
    • J. Trzasko, and A. Manduca Relaxed conditions for sparse signal recovery with general concave priors IEEE Trans. Signal Process. 57 11 2009 4347 4354
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4347-4354
    • Trzasko, J.1    Manduca, A.2
  • 34
    • 58049195322 scopus 로고    scopus 로고
    • Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization
    • J. Trzasko, A. Manduca, and E. Borisch Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization IEEE Trans. Med. Imaging 28 1 2009 106 121
    • (2009) IEEE Trans. Med. Imaging , vol.28 , Issue.1 , pp. 106-121
    • Trzasko, J.1    Manduca, A.2    Borisch, E.3
  • 36
    • 79551503968 scopus 로고    scopus 로고
    • Rate minimaxity of the Lasso and Dantzig selector for the lq loss in lr balls
    • F. Ye, and C.H. Zhang Rate minimaxity of the Lasso and Dantzig selector for the lq loss in lr balls J. Mach. Learn. Res. 2010 3519 3540
    • (2010) J. Mach. Learn. Res. , pp. 3519-3540
    • Ye, F.1    Zhang, C.H.2
  • 37
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • C.H. Zhang Nearly unbiased variable selection under minimax concave penalty Ann. Stat. 38 2 2010 894 942
    • (2010) Ann. Stat. , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.H.1
  • 38
    • 84871532743 scopus 로고    scopus 로고
    • A general theory of concave regularization for high dimensional sparse estimation problems
    • C.H. Zhang, T. Zhang, A general theory of concave regularization for high dimensional sparse estimation problems, Stat. Sci., 2012.
    • (2012) Stat. Sci.
    • Zhang, C.H.1    Zhang, T.2
  • 39
    • 77951191949 scopus 로고    scopus 로고
    • Analysis of multi-stage convex relaxation for sparse regularization
    • Tong Zhang Analysis of multi-stage convex relaxation for sparse regularization J. Mach. Learn. Res. 11 2010 1081 1107
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1081-1107
    • Zhang, T.1
  • 40
    • 80052353493 scopus 로고    scopus 로고
    • Sparse recovery with orthogonal matching pursuit under rip
    • Tong Zhang Sparse recovery with orthogonal matching pursuit under rip IEEE Trans. Inf. Theory 57 September (9) 2011 6215 6221
    • (2011) IEEE Trans. Inf. Theory , vol.57 , Issue.SEP. 9 , pp. 6215-6221
    • Zhang, T.1
  • 41
    • 84891952223 scopus 로고    scopus 로고
    • Multi-stage convex relaxation for feature selection
    • Tong Zhang Multi-stage convex relaxation for feature selection Bernoulli 19 5B 2013 2277 2293
    • (2013) Bernoulli , vol.19 , Issue.5 B , pp. 2277-2293
    • Zhang, T.1
  • 42
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • H. Zou The adaptive Lasso and its oracle properties J. Am. Stat. Assoc. 101 476 2006 1418 1429
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.