메뉴 건너뛰기




Volumn 81, Issue , 2018, Pages 1484-1512

Review on probabilistic forecasting of photovoltaic power production and electricity consumption

Author keywords

Electricity consumption; Irradiance; Photovoltaic; Prediction interval; Probabilistic forecasting; Solar radiation

Indexed keywords

ELECTRIC POWER GENERATION; ELECTRIC POWER UTILIZATION; FORECASTING; SOLAR POWER GENERATION; STOCHASTIC SYSTEMS;

EID: 85020268535     PISSN: 13640321     EISSN: 18790690     Source Type: Journal    
DOI: 10.1016/j.rser.2017.05.212     Document Type: Review
Times cited : (358)

References (140)
  • 1
    • 85152092929 scopus 로고    scopus 로고
    • s for Environmental Information, State of the Climate: Global Analysis for June 2016. URL 〈〉;
    • NOAA National Centers for Environmental Information, State of the Climate: Global Analysis for June 2016. URL 〈 http://www.ncdc.noaa.gov/sotc/global/201606〉; 2016.
    • (2016)
    • NOAA National Center1
  • 2
    • 85151967884 scopus 로고    scopus 로고
    • NASA/GISS, Global Land-Ocean Temperature Index. URL 〈〉;
    • NASA/GISS, Global Land-Ocean Temperature Index. URL 〈 http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt〉; 2016.
    • (2016)
  • 3
    • 85152019819 scopus 로고    scopus 로고
    • Adoption of the Paris Agreement., Tech. Rep. December. URL 〈〉; 2015., http://www.unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
    • UNFCCC, Adoption of the Paris Agreement., Tech. Rep. December. www.FCCC.CP/2015/L9/Rev1. URL 〈 http://www.unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf〉; 2015.
    • UNFCCC1
  • 4
    • 85151968302 scopus 로고    scopus 로고
    • International Energy Agency, Snapshot of global photovoltaic markets, Technical Report;
    • International Energy Agency, Snapshot of global photovoltaic markets, Technical Report; 2016.
    • (2016)
  • 5
    • 85152080530 scopus 로고    scopus 로고
    • International Renewable Energy Agency, Renewable Power Generation Costs in 2014, Technical Report January;
    • International Renewable Energy Agency, Renewable Power Generation Costs in 2014, Technical Report January; 2015.
    • (2015)
  • 6
    • 84903803932 scopus 로고    scopus 로고
    • Chapter 8 - Overview of Solar-Forecasting Methods and a Metric for Accuracy Evaluation. In: Kleissl J, editor. Solar energy forecasting and resource assessment. Boston: Acadamic Press;
    • Coimbra CF, Kleissl J, Marquez R, Chapter 8 - Overview of Solar-Forecasting Methods and a Metric for Accuracy Evaluation. In: Kleissl J, editor. Solar energy forecasting and resource assessment. Boston: Acadamic Press; 2013. p. 171–194.
    • (2013) , pp. 171-194
    • Coimbra, C.F.1    Kleissl, J.2    Marquez, R.3
  • 7
    • 85152067301 scopus 로고    scopus 로고
    • for Solar Energy Systems ISE, Recent Facts about Photovoltaics in Germany, Technical Report.
    • Fraunhofer Institute for Solar Energy Systems ISE, Recent Facts about Photovoltaics in Germany, Technical Report, 2016.
    • (2016)
    • Fraunhofer Institute1
  • 8
    • 66149107462 scopus 로고    scopus 로고
    • Irradiance forecasting for the power prediction of grid-connected photovoltaic systems
    • Lorenz, E., Hurka, J., Heinemann, D., Beyer, H.G., Irradiance forecasting for the power prediction of grid-connected photovoltaic systems. IEEE J Sel Top Appl Earth Obs Remote Sens 2:1 (2009), 2–10.
    • (2009) IEEE J Sel Top Appl Earth Obs Remote Sens , vol.2 , Issue.1 , pp. 2-10
    • Lorenz, E.1    Hurka, J.2    Heinemann, D.3    Beyer, H.G.4
  • 9
    • 84939814087 scopus 로고    scopus 로고
    • An analog ensemble for short-term probabilistic solar power forecast
    • Alessandrini, S., Delle Monache, L., Sperati, S., Cervone, G., An analog ensemble for short-term probabilistic solar power forecast. Appl Energy 157 (2015), 95–110, 10.1016/j.apenergy.2015.08.011.
    • (2015) Appl Energy , vol.157 , pp. 95-110
    • Alessandrini, S.1    Delle Monache, L.2    Sperati, S.3    Cervone, G.4
  • 10
    • 85152039678 scopus 로고    scopus 로고
    • Research of effect on distribution network with penetration of photovoltaic system. In: Univ. Power Eng. Conference (UPEC) 45th International
    • Wang XWX, Gao JGJ, Hu WHW, Shi ZSZ, Tang BTB, Research of effect on distribution network with penetration of photovoltaic system. In: Univ. Power Eng. Conference (UPEC), 2010 45th International, 2010, pp. 1–4.
    • (2010) , pp. 1-4
    • Wang, X.W.X.1    Gao, J.G.J.2    Hu, W.H.W.3    Shi, Z.S.Z.4    Tang, B.T.B.5
  • 11
    • 82855181120 scopus 로고    scopus 로고
    • Integration challenges of photovoltaic distributed generation on power distribution systems. In: 2011 IEEE Power Energy Soc. Gen. Meet.
    • Aguero JR, Steffel SJ, Integration challenges of photovoltaic distributed generation on power distribution systems. In: 2011 IEEE Power Energy Soc. Gen. Meet., 2011, p. 1–6. http://dx.doi.org/10.1109/PES.2011.6039097.
    • (2011) , pp. 1-6
    • Aguero, J.R.1    Steffel, S.J.2
  • 12
    • 84879733602 scopus 로고    scopus 로고
    • Review of potential problems and utility concerns arising from high penetration levels of photovoltaics in distribution systems. In: IEEE Photovolt. Spec. Conference.
    • Ropp M, Newmiller J, Whitaker C, Norris B, Review of potential problems and utility concerns arising from high penetration levels of photovoltaics in distribution systems. In: IEEE Photovolt. Spec. Conference, 2008. http://dx.doi.org/10.1109/PVSC.2008.4922861.
    • (2008)
    • Ropp, M.1    Newmiller, J.2    Whitaker, C.3    Norris, B.4
  • 13
    • 84960172423 scopus 로고    scopus 로고
    • Probabilistic energy forecasting: global energy forecasting competition 2014 and beyond
    • Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R.J., Probabilistic energy forecasting: global energy forecasting competition 2014 and beyond. Int J Forecast 32:3 (2016), 896–913, 10.1016/j.ijforecast.2016.02.001.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 896-913
    • Hong, T.1    Pinson, P.2    Fan, S.3    Zareipour, H.4    Troccoli, A.5    Hyndman, R.J.6
  • 14
    • 84977626775 scopus 로고    scopus 로고
    • On recent advances in PV output power forecast
    • Raza, Muhammad Qamar, Nadarajah, Mithulananthan, Ekanayake, Chandima, On recent advances in PV output power forecast. Sol Energy 136:136 (2016), 125–144, 10.1016/j.solener.2016.06.073.
    • (2016) Sol Energy , vol.136 , Issue.136 , pp. 125-144
    • Raza, M.Q.1    Nadarajah, M.2    Ekanayake, C.3
  • 15
    • 84887176408 scopus 로고    scopus 로고
    • Solar forecasting methods for renewable energy integration
    • Inman, R.H., Pedro, H.T., Coimbra, C.F., Solar forecasting methods for renewable energy integration. Prog Energy Combust Sci 39:6 (2013), 535–576, 10.1016/j.pecs.2013.06.002.
    • (2013) Prog Energy Combust Sci , vol.39 , Issue.6 , pp. 535-576
    • Inman, R.H.1    Pedro, H.T.2    Coimbra, C.F.3
  • 16
    • 84880379200 scopus 로고    scopus 로고
    • Review of solar irradiance forecasting methods and a proposition for small-scale insular grids
    • Diagne, M., David, M., Lauret, P., Boland, J., Schmutz, N., Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew Sustain Energy Rev 27 (2013), 65–76, 10.1016/j.rser.2013.06.042.
    • (2013) Renew Sustain Energy Rev , vol.27 , pp. 65-76
    • Diagne, M.1    David, M.2    Lauret, P.3    Boland, J.4    Schmutz, N.5
  • 17
    • 85152067194 scopus 로고    scopus 로고
    • Photovoltaic and solar forecasting: State of the Art.
    • International Energy Agency (IEA), Photovoltaic and solar forecasting: State of the Art.
    • International Energy Agency (IEA)1
  • 18
    • 84920973463 scopus 로고    scopus 로고
    • Variability assessment and forecasting of renewables: a review for solar, wind, wave and tidal resources
    • Widén, J., Carpman, N., Castellucci, V., Lingfors, D., Olauson, J., Remouit, F., et al. Variability assessment and forecasting of renewables: a review for solar, wind, wave and tidal resources. Renew Sustain Energy Rev 44 (2015), 356–375, 10.1016/j.rser.2014.12.019.
    • (2015) Renew Sustain Energy Rev , vol.44 , pp. 356-375
    • Widén, J.1    Carpman, N.2    Castellucci, V.3    Lingfors, D.4    Olauson, J.5    Remouit, F.6
  • 19
    • 84929622158 scopus 로고    scopus 로고
    • Ensemble methods for wind and solar power forecasting – a state-of-the-art review
    • Ren, Y., Suganthan, P., Srikanth, N., Ensemble methods for wind and solar power forecasting – a state-of-the-art review. Renew Sustain Energy Rev 50 (2015), 82–91, 10.1016/j.rser.2015.04.081.
    • (2015) Renew Sustain Energy Rev , vol.50 , pp. 82-91
    • Ren, Y.1    Suganthan, P.2    Srikanth, N.3
  • 20
    • 84956622975 scopus 로고    scopus 로고
    • Photovoltaic and solar power forecasting for smart grid energy management
    • Wan, C., Zhao, J., Member, S., Song, Y., Photovoltaic and solar power forecasting for smart grid energy management. J Power Energy Syst 1:4 (2015), 38–46, 10.17775/CSEEJPES.2015.00046.
    • (2015) J Power Energy Syst , vol.1 , Issue.4 , pp. 38-46
    • Wan, C.1    Zhao, J.2    Member, S.3    Song, Y.4
  • 22
    • 84964389454 scopus 로고    scopus 로고
    • Solar radiation prediction using different techniques: model evaluation and comparison
    • Wang, L., Kisi, O., Zounemat-Kermani, M., Salazar, G.A., Zhu, Z., Gong, W., Solar radiation prediction using different techniques: model evaluation and comparison. Renew Sustain Energy Rev 61 (2016), 384–397, 10.1016/j.rser.2016.04.024.
    • (2016) Renew Sustain Energy Rev , vol.61 , pp. 384-397
    • Wang, L.1    Kisi, O.2    Zounemat-Kermani, M.3    Salazar, G.A.4    Zhu, Z.5    Gong, W.6
  • 23
    • 85008622769 scopus 로고    scopus 로고
    • Machine Learning methods for solar radiation forecasting: a review, renew
    • Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli, C., Motte, F., et al. Machine Learning methods for solar radiation forecasting: a review, renew. Energy 105 (2017), 569–582, 10.1016/j.renene.2016.12.095.
    • (2017) Energy , vol.105 , pp. 569-582
    • Voyant, C.1    Notton, G.2    Kalogirou, S.3    Nivet, M.-L.4    Paoli, C.5    Motte, F.6
  • 24
    • 84880196445 scopus 로고    scopus 로고
    • Solar energy forecasting and resource assessment
    • Academic Press Boston
    • Kleissl, J., Solar energy forecasting and resource assessment. 2013, Academic Press, Boston.
    • (2013)
    • Kleissl, J.1
  • 25
    • 84905712105 scopus 로고    scopus 로고
    • Energy forecasting: past, present and future
    • Hong, T., Energy forecasting: past, present and future. Foresight Int J Forecast(32), 2014, 43–49.
    • (2014) Foresight Int J Forecast , Issue.32 , pp. 43-49
    • Hong, T.1
  • 26
    • 84979643065 scopus 로고    scopus 로고
    • Probabilistic electric load forecasting: a tutorial review
    • Hong, T., Fan, S., Probabilistic electric load forecasting: a tutorial review. Int J Forecast 32:3 (2016), 914–938, 10.1016/j.ijforecast.2015.11.011.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 914-938
    • Hong, T.1    Fan, S.2
  • 27
    • 84964947989 scopus 로고    scopus 로고
    • Prediction models for dynamic demand response: Requirements, challenges, and insights. In: 2015 IEEE International Conference Smart Grid Commun.
    • Aman S, Frincu M, Chelmis C, Noor M, Simmhan Y, Prasanna VK, Prediction models for dynamic demand response: Requirements, challenges, and insights. In: 2015 IEEE International Conference Smart Grid Commun., 2015, p. 338–343. http://dx.doi.org/10.1109/SmartGridComm.2015.7436323.
    • (2015) , pp. 338-343
    • Aman, S.1    Frincu, M.2    Chelmis, C.3    Noor, M.4    Simmhan, Y.5    Prasanna, V.K.6
  • 28
    • 85045576584 scopus 로고    scopus 로고
    • Short Term Electric Load Forecasting, [Ph.D. thesis], North Carolina State University, ; 2010., arXiv:1011.1669v3
    • Hong T, Short Term Electric Load Forecasting, [Ph.D. thesis], North Carolina State University arXiv:1011.1669v3, http://dx.doi.org/10.1017/CBO9781107415324.004; 2010.
    • Hong, T.1
  • 29
    • 85152033470 scopus 로고    scopus 로고
    • Ibraheem, Khatoon S, Muazzam M, Chaturvedi DK, Load Forecasting techniques and methodologies: a review. In: International Conference Power, Control Embed. Syst.
    • Singh AK, Ibraheem, Khatoon S, Muazzam M, Chaturvedi DK, Load Forecasting techniques and methodologies: a review. In: International Conference Power, Control Embed. Syst., 2012.
    • (2012)
    • Singh, A.K.1
  • 30
    • 84961778492 scopus 로고    scopus 로고
    • Trend analysis and evolution of Short Term Load Forecasting Techniques. In: 2015 Proceedings of the 4th International Conference Reliab. Infocom Technol. Optim. (Trends Futur. Dir., IEEE
    • Takiyar S, Singh V, Trend analysis and evolution of Short Term Load Forecasting Techniques. In: 2015 Proceedings of the 4th International Conference Reliab. Infocom Technol. Optim. (Trends Futur. Dir., IEEE, 2015, pp. 1–6. http://dx.doi.org/10.1109/ICRITO.2015.7359233.
    • (2015) , pp. 1-6
    • Takiyar, S.1    Singh, V.2
  • 31
    • 84935845022 scopus 로고    scopus 로고
    • A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings
    • Raza, M.Q., Khosravi, A., A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew Sustain Energy Rev 50 (2015), 1352–1372, 10.1016/j.rser.2015.04.065.
    • (2015) Renew Sustain Energy Rev , vol.50 , pp. 1352-1372
    • Raza, M.Q.1    Khosravi, A.2
  • 32
    • 85152004614 scopus 로고    scopus 로고
    • On the energy performance of buildings, Tech. rep., EPBD (2010).
    • EPBD, On the energy performance of buildings, Tech. rep., EPBD (2010).
    • EPBD1
  • 33
    • 84875690842 scopus 로고    scopus 로고
    • State of the art in building modelling and energy performances prediction: a review
    • Foucquier, A., Robert, S., Suard, F., Stéphan, L., Jay, A., State of the art in building modelling and energy performances prediction: a review. Renew Sustain Energy Rev 23 (2013), 272–288, 10.1016/j.rser.2013.03.004.
    • (2013) Renew Sustain Energy Rev , vol.23 , pp. 272-288
    • Foucquier, A.1    Robert, S.2    Suard, F.3    Stéphan, L.4    Jay, A.5
  • 34
    • 84890278566 scopus 로고    scopus 로고
    • A review on the basics of building energy estimation
    • Fumo, N., A review on the basics of building energy estimation. Renew Sustain Energy Rev 31 (2014), 53–60, 10.1016/j.rser.2013.11.040.
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 53-60
    • Fumo, N.1
  • 35
    • 84962808828 scopus 로고    scopus 로고
    • A review of artificial intelligence based building energy prediction with a focus on ensemble prediction models. In: 2015 Winter Simulation Conference, IEEE
    • Wang Z, Srinivasan RS, A review of artificial intelligence based building energy prediction with a focus on ensemble prediction models. In: 2015 Winter Simulation Conference, IEEE, 2015, p. 3438–3448. http://dx.doi.org/10.1109/WSC.2015.7408504.
    • (2015) , pp. 3438-3448
    • Wang, Z.1    Srinivasan, R.S.2
  • 36
    • 85012038719 scopus 로고    scopus 로고
    • A review and analysis of regression and machine learning models on commercial building electricity load forecasting, Renew Sustain Energy Rev. 73, December 2016,. ;
    • Yildiz B, Bilbao J, Sproul A, A review and analysis of regression and machine learning models on commercial building electricity load forecasting, Renew Sustain Energy Rev. 73, December 2016, p. 1104–1122. http://dx.doi.org/10.1016/j.rser.2017.02.023; 2017.
    • (2017) , pp. 1104-1122
    • Yildiz, B.1    Bilbao, J.2    Sproul, A.3
  • 37
    • 85045576584 scopus 로고    scopus 로고
    • Qualified forecast of ensemble power production by spatially dispersed grid-connected PV systems. In: 23rd European Photovoltatic Solar Energy Conference Exhib. Val. Spain, 1–5 Sept., ; 2008., arXiv:1011.1669v3
    • Lorenz E, Hurka J, Karampela G, Heinemann D, Beyer HG, Schneider M, Qualified forecast of ensemble power production by spatially dispersed grid-connected PV systems. In: 23rd European Photovoltatic Solar Energy Conference Exhib. Val. Spain, 1–5 Sept. arXiv:1011.1669v3, http://dx.doi.org/10.1017/CBO9781107415324.004; 2008.
    • Lorenz, E.1    Hurka, J.2    Karampela, G.3    Heinemann, D.4    Beyer, H.G.5    Schneider, M.6
  • 38
    • 67349088412 scopus 로고    scopus 로고
    • Constructing load profiles for household electricity and hot water from time-use data-Modelling approach and validation
    • Widén, J., Lundh, M., Vassileva, I., Dahlquist, E., Ellegård, K., Wäckelgård, E., Constructing load profiles for household electricity and hot water from time-use data-Modelling approach and validation. Energy Build 41:7 (2009), 753–768, 10.1016/j.enbuild.2009.02.013.
    • (2009) Energy Build , vol.41 , Issue.7 , pp. 753-768
    • Widén, J.1    Lundh, M.2    Vassileva, I.3    Dahlquist, E.4    Ellegård, K.5    Wäckelgård, E.6
  • 39
    • 77950861438 scopus 로고    scopus 로고
    • A high-resolution stochastic model of domestic activity patterns and electricity demand
    • Widen, J., Wackelgard, E., A high-resolution stochastic model of domestic activity patterns and electricity demand. Appl Energy 87:6 (2010), 1880–1892, 10.1016/j.apenergy.2009.11.006.
    • (2010) Appl Energy , vol.87 , Issue.6 , pp. 1880-1892
    • Widen, J.1    Wackelgard, E.2
  • 40
    • 84912016827 scopus 로고    scopus 로고
    • Household electricity use, electric vehicle home-charging and distributed photovoltaic power production in the city of Westminster
    • Munkhammar, J., Bishop, J.D.K., Sarralde, J.J., Tian, W., Choudhary, R., Household electricity use, electric vehicle home-charging and distributed photovoltaic power production in the city of Westminster. Energy Build 86 (2015), 439–448, 10.1016/j.enbuild.2014.10.006.
    • (2015) Energy Build , vol.86 , pp. 439-448
    • Munkhammar, J.1    Bishop, J.D.K.2    Sarralde, J.J.3    Tian, W.4    Choudhary, R.5
  • 41
    • 84905700790 scopus 로고    scopus 로고
    • Optimisation of energy management in commercial buildings with weather forecasting inputs: a review
    • Lazos, D., Sproul, A.B., Kay, M., Optimisation of energy management in commercial buildings with weather forecasting inputs: a review. Renew Sustain Energy Rev 39 (2014), 587–603, 10.1016/j.rser.2014.07.053.
    • (2014) Renew Sustain Energy Rev , vol.39 , pp. 587-603
    • Lazos, D.1    Sproul, A.B.2    Kay, M.3
  • 42
    • 84960867057 scopus 로고    scopus 로고
    • A hybrid model approach for forecasting future residential electricity consumption
    • Dong, B., Li, Z., Rahman, S.M., Vega, R., A hybrid model approach for forecasting future residential electricity consumption. Energy Build 117 (2016), 341–351, 10.1016/j.enbuild.2015.09.033.
    • (2016) Energy Build , vol.117 , pp. 341-351
    • Dong, B.1    Li, Z.2    Rahman, S.M.3    Vega, R.4
  • 43
    • 85152067449 scopus 로고    scopus 로고
    • Hodge Bm, Hummon M, Orwig K, Solar Ramping Distributions over Multiple Timescales and Weather Patterns. In: 10th International Work. Large-Scale Integr. Wind Power into Power Syst.
    • Hodge Bm, Hummon M, Orwig K, Solar Ramping Distributions over Multiple Timescales and Weather Patterns. In: 10th International Work. Large-Scale Integr. Wind Power into Power Syst., 2011.
    • (2011)
  • 44
    • 84953328676 scopus 로고    scopus 로고
    • Very short-term nonparametric probabilistic forecasting of renewable forecast renew energy generation; with application to solar energy
    • Golestaneh, F., Pinson, P., Gooi, H.B., Very short-term nonparametric probabilistic forecasting of renewable forecast renew energy generation; with application to solar energy. Power Syst. IEEE Trans. PP 99 (2016), 1–14, 10.1109/TPWRS.2015.2502423.
    • (2016) Power Syst. IEEE Trans. PP , vol.99 , pp. 1-14
    • Golestaneh, F.1    Pinson, P.2    Gooi, H.B.3
  • 45
    • 33646476333 scopus 로고    scopus 로고
    • Comparison of eight clear sky broadband models against 16 independent data banks
    • Ineichen, P., Comparison of eight clear sky broadband models against 16 independent data banks. Sol Energy 80:4 (2006), 468–478, 10.1016/j.solener.2005.04.018.
    • (2006) Sol Energy , vol.80 , Issue.4 , pp. 468-478
    • Ineichen, P.1
  • 46
    • 84859562589 scopus 로고    scopus 로고
    • Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations
    • Pinson, P., Hagedorn, R., Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations. Meteorol Appl 19:4 (2012), 484–500, 10.1002/met.283.
    • (2012) Meteorol Appl , vol.19 , Issue.4 , pp. 484-500
    • Pinson, P.1    Hagedorn, R.2
  • 47
    • 84912144190 scopus 로고    scopus 로고
    • A new operational solar resource forecast model service for PV fleet simulation. In: 2014 IEEE 40th Photovolt. Spec. Conference, IEEE
    • Perez R, Kankiewicz A, Schlemmer J, Hemker K, Kivalov S, A new operational solar resource forecast model service for PV fleet simulation. In: 2014 IEEE 40th Photovolt. Spec. Conference, IEEE, 2014, pp. 0069–0074. http://dx.doi.org/10.1109/PVSC.2014.6925204.
    • (2014) , pp. 0069-0074
    • Perez, R.1    Kankiewicz, A.2    Schlemmer, J.3    Hemker, K.4    Kivalov, S.5
  • 48
    • 0043246006 scopus 로고    scopus 로고
    • Short-term double electricity demand
    • Taylor, J.W., Short-term double electricity demand. J Oper Res Soc 54:8 (2003), 799–805, 10.1057/palgrave.jors.2601589.
    • (2003) J Oper Res Soc , vol.54 , Issue.8 , pp. 799-805
    • Taylor, J.W.1
  • 49
    • 85152056472 scopus 로고    scopus 로고
    • Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts, IEEE Trans. Smart Grid.
    • Liu B, Nowotarski J, Hong T, Weron R, Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts, IEEE Trans. Smart Grid.
    • Liu, B.1    Nowotarski, J.2    Hong, T.3    Weron, R.4
  • 50
    • 85152067988 scopus 로고
    • Time series analysis: forecasting and control, Englewood Cliffs, N.J.:, Englewood Cliffs, N.J.;
    • Box GEP, Jenkins GM, Reinsel GC, Time series analysis: forecasting and control, Englewood Cliffs, N.J.:, Englewood Cliffs, N.J.; 1994.
    • (1994)
    • Box, G.E.P.1    Jenkins, G.M.2    Reinsel, G.C.3
  • 51
    • 85152005724 scopus 로고    scopus 로고
    • Time-Series Forecasting, Chapman & Hall / CRC, Bath.
    • Chatfield C, Time-Series Forecasting, Chapman & Hall / CRC, Bath, 2000.
    • (2000)
    • Chatfield, C.1
  • 52
    • 84901845911 scopus 로고    scopus 로고
    • A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production. Part II: probabilistic forecast of daily production
    • Zamo, M., Mestre, O., Arbogast, P., Pannekoucke, O., A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production. Part II: probabilistic forecast of daily production. Sol Energy 105 (2014), 804–816, 10.1016/j.solener.2014.03.026.
    • (2014) Sol Energy , vol.105 , pp. 804-816
    • Zamo, M.1    Mestre, O.2    Arbogast, P.3    Pannekoucke, O.4
  • 53
    • 84949087160 scopus 로고    scopus 로고
    • Forecasting electricity smart meter data using conditional kernel density estimation
    • Arora, S., Taylor, J.W., Forecasting electricity smart meter data using conditional kernel density estimation. Omega 59 (2016), 1–13, 10.1016/j.omega.2014.08.008.
    • (2016) Omega , vol.59 , pp. 1-13
    • Arora, S.1    Taylor, J.W.2
  • 54
    • 84905750068 scopus 로고    scopus 로고
    • Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
    • Quan, H., Srinivasan, D., Khosravi, A., Uncertainty handling using neural network-based prediction intervals for electrical load forecasting. Energy 73 (2014), 916–925, 10.1016/j.energy.2014.06.104.
    • (2014) Energy , vol.73 , pp. 916-925
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 55
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • Hyndman, R.J., Koehler, A.B., Another look at measures of forecast accuracy. Int J Forecast 22:4 (2006), 679–688, 10.1016/j.ijforecast.2006.03.001.
    • (2006) Int J Forecast , vol.22 , Issue.4 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2
  • 56
    • 84910629924 scopus 로고    scopus 로고
    • A suite of metrics for assessing the performance of solar power forecasting
    • Zhang, J., Florita, A., Hodge, B.-M., Lu, S., Hamann, H.F., Banunarayanan, V., et al. A suite of metrics for assessing the performance of solar power forecasting. Sol Energy 111 (2015), 157–175, 10.1016/j.solener.2014.10.016.
    • (2015) Sol Energy , vol.111 , pp. 157-175
    • Zhang, J.1    Florita, A.2    Hodge, B.-M.3    Lu, S.4    Hamann, H.F.5    Banunarayanan, V.6
  • 57
    • 84906854940 scopus 로고    scopus 로고
    • Probabilistic forecasting
    • Gneiting, T., Katzfuss, M., Probabilistic forecasting. Annu Rev Stat Appl 1 (2014), 125–151, 10.1146/annurev-statistics-062713-085831.
    • (2014) Annu Rev Stat Appl , vol.1 , pp. 125-151
    • Gneiting, T.1    Katzfuss, M.2
  • 58
    • 84893275099 scopus 로고    scopus 로고
    • Review on probabilistic forecasting of wind power generation
    • Zhang, Y., Wang, J., Wang, X., Review on probabilistic forecasting of wind power generation. Renew Sustain Energy Rev 32 (2014), 255–270, 10.1016/j.rser.2014.01.033.
    • (2014) Renew Sustain Energy Rev , vol.32 , pp. 255-270
    • Zhang, Y.1    Wang, J.2    Wang, X.3
  • 59
    • 84886095090 scopus 로고    scopus 로고
    • Reporting of irradiance modeling relative prediction errors
    • Hoff, T.E., Perez, R., Kleissl, J., Renne, D., Stein, J., Reporting of irradiance modeling relative prediction errors. Prog. Photovolt. Res. Appl. 21 (2012), 1514–1519 http://dx.doi.org/10.1002/pip.2225.
    • (2012) Prog. Photovolt. Res. Appl. , vol.21 , pp. 1514-1519
    • Hoff, T.E.1    Perez, R.2    Kleissl, J.3    Renne, D.4    Stein, J.5
  • 60
    • 84903805865 scopus 로고    scopus 로고
    • Chapter 6 - Solar Resource Variability. In: Kleissl J, editor. Solar energy forecasting and resource assessment. Boston: Acadamic Press;
    • Perez R, Hoff TE, Chapter 6 - Solar Resource Variability. In: Kleissl J, editor. Solar energy forecasting and resource assessment. Boston: Acadamic Press; 2013. p. 133 - 148.
    • (2013) , pp. 133-148
    • Perez, R.1    Hoff, T.E.2
  • 61
    • 56949103795 scopus 로고    scopus 로고
    • Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations
    • Espinar, B., Ramírez, L., Drews, A., Beyer, H.G., Zarzalejo, L.F., Polo, J., et al. Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations. Sol Energy 83:1 (2009), 118–125, 10.1016/j.solener.2008.07.009.
    • (2009) Sol Energy , vol.83 , Issue.1 , pp. 118-125
    • Espinar, B.1    Ramírez, L.2    Drews, A.3    Beyer, H.G.4    Zarzalejo, L.F.5    Polo, J.6
  • 62
    • 79960850584 scopus 로고    scopus 로고
    • Measuring skewness: a forgotten statistic?
    • [doi:10.1136.25312]
    • Doane, D.P., Seward, L.E., Measuring skewness: a forgotten statistic?. J Stat Educ 19:2 (2011), 1–18 [doi:10.1136.25312].
    • (2011) J Stat Educ , vol.19 , Issue.2 , pp. 1-18
    • Doane, D.P.1    Seward, L.E.2
  • 63
    • 34548156412 scopus 로고    scopus 로고
    • Non-parametric probabilistic forecasts of wind power: required properties and evaluation
    • Pinson, P., Nielsen, H.A., M??ller, J.K., H. Madsen, H., Kariniotakis, G.N., Non-parametric probabilistic forecasts of wind power: required properties and evaluation. Wind Energy 10:6 (2007), 497–516, 10.1002/we.230.
    • (2007) Wind Energy , vol.10 , Issue.6 , pp. 497-516
    • Pinson, P.1    Nielsen, H.A.2    M??ller, J.K.3    H. Madsen, H.4    Kariniotakis, G.N.5
  • 64
    • 84893641491 scopus 로고    scopus 로고
    • Short-term load and wind power forecasting using neural network-based prediction intervals
    • Quan, H., Srinivasan, D., Khosravi, A., Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Trans Neural Netw Learn Syst 25:2 (2014), 303–315, 10.1109/TNNLS.2013.2276053.
    • (2014) IEEE Trans Neural Netw Learn Syst , vol.25 , Issue.2 , pp. 303-315
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 65
    • 84880255073 scopus 로고    scopus 로고
    • Prediction intervals for short-term wind farm power generation forecasts
    • Khosravi, A., Nahavandi, S., Creighton, D., Prediction intervals for short-term wind farm power generation forecasts. IEEE Trans Sustain Energy 4:3 (2013), 602–610, 10.1109/TSTE.2012.2232944.
    • (2013) IEEE Trans Sustain Energy , vol.4 , Issue.3 , pp. 602-610
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 66
    • 77954834717 scopus 로고    scopus 로고
    • Construction of optimal prediction intervals for load forecasting problems
    • Khosravi, A., Nahavandi, S., Creighton, D., Construction of optimal prediction intervals for load forecasting problems. IEEE Trans Power Syst 25:3 (2010), 1496–1503, 10.1109/TPWRS.2010.2042309.
    • (2010) IEEE Trans Power Syst , vol.25 , Issue.3 , pp. 1496-1503
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 67
    • 33745174860 scopus 로고    scopus 로고
    • Quantile regression forests
    • Meinshausen, N., Quantile regression forests. J Mach Learn Res 7 (2006), 983–999, 10.1111/j.1541-0420.2010.01521.x.
    • (2006) J Mach Learn Res , vol.7 , pp. 983-999
    • Meinshausen, N.1
  • 68
    • 85027718031 scopus 로고    scopus 로고
    • On normality assumption in residual simulation for probabilistic load forecasting
    • Xie, J., Hong, T., Laing, T., Kang, C., On normality assumption in residual simulation for probabilistic load forecasting. IEEE Trans Smart Grid, 2015, 1–8, 10.1109/TSG.2015.2447007.
    • (2015) IEEE Trans Smart Grid , pp. 1-8
    • Xie, J.1    Hong, T.2    Laing, T.3    Kang, C.4
  • 69
    • 84903128295 scopus 로고
    • A decision-theoretic approach to interval estimation
    • Winkler, R.L., A decision-theoretic approach to interval estimation. J Am Stat Assoc 67:337 (1972), 187–191, 10.2307/2284720.
    • (1972) J Am Stat Assoc , vol.67 , Issue.337 , pp. 187-191
    • Winkler, R.L.1
  • 70
    • 84963628979 scopus 로고    scopus 로고
    • Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models
    • David, M., Ramahatana, F., Trombe, P.J., Lauret, P., Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models. Sol Energy 133 (2016), 55–72, 10.1016/j.solener.2016.03.064.
    • (2016) Sol Energy , vol.133 , pp. 55-72
    • David, M.1    Ramahatana, F.2    Trombe, P.J.3    Lauret, P.4
  • 71
    • 0000273843 scopus 로고
    • Regression quantiles
    • Koenker, R., Bassett, G., Regression quantiles. Econometrica 46:1 (1978), 33–50.
    • (1978) Econometrica , vol.46 , Issue.1 , pp. 33-50
    • Koenker, R.1    Bassett, G.2
  • 72
    • 84960193121 scopus 로고    scopus 로고
    • Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression
    • Taieb, S.B., Huser, R., Hyndman, R.J., Genton, M.G., Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression. IEEE Trans Smart Grid 7:5 (2016), 2448–2455, 10.1109/TSG.2016.2527820.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.5 , pp. 2448-2455
    • Taieb, S.B.1    Huser, R.2    Hyndman, R.J.3    Genton, M.G.4
  • 73
    • 0040332003 scopus 로고    scopus 로고
    • Quantile regression
    • []
    • Koenker, R., Hallock, K., Quantile regression. J Econ Perspect 15:4 (2001), 143–156, 10.1017/CBO9780511754098 [arXiv:1011.1669v3].
    • (2001) J Econ Perspect , vol.15 , Issue.4 , pp. 143-156
    • Koenker, R.1    Hallock, K.2
  • 74
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach Learn 45:1 (2001), 5–32, 10.1023/A:1010933404324.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 75
    • 25444448065 scopus 로고    scopus 로고
    • Gaussian processes for machine learning
    • MIT Press
    • Rasmussen, C.E., Williams, C.K.I., Gaussian processes for machine learning. 2006, MIT Press.
    • (2006)
    • Rasmussen, C.E.1    Williams, C.K.I.2
  • 77
    • 84867040604 scopus 로고    scopus 로고
    • Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting
    • Girard, A., Rasmussen, C.E., Candela, J.Q., Murray-Smith, R., Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting. Adv Neural Inf Process Syst, 2003, 545–552.
    • (2003) Adv Neural Inf Process Syst , pp. 545-552
    • Girard, A.1    Rasmussen, C.E.2    Candela, J.Q.3    Murray-Smith, R.4
  • 78
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • []
    • Efron, B., Bootstrap methods: another look at the jackknife. Ann Stat 7:1 (1979), 1–26, 10.1214/aos/1176348654 [arXiv:1306.3979v1].
    • (1979) Ann Stat , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 79
    • 79952186591 scopus 로고    scopus 로고
    • Lower upper bound estimation method for construction of neural network-based prediction intervals
    • Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F., Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans Neural Netw 22:3 (2011), 337–346, 10.1109/TNN.2010.2096824.
    • (2011) IEEE Trans Neural Netw , vol.22 , Issue.3 , pp. 337-346
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3    Atiya, A.F.4
  • 80
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman, J.H., Greedy function approximation: a gradient boosting machine. Statistics 29:5 (2001), 1189–1232, 10.1214/aos/1013203451.
    • (2001) Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 81
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • []
    • Bühlmann, P., Boosting for high-dimensional linear models. Ann Stat 34:2 (2006), 559–583, 10.1214/009053606000000092 [arXiv:0606789].
    • (2006) Ann Stat , vol.34 , Issue.2 , pp. 559-583
    • Bühlmann, P.1
  • 82
    • 0001529784 scopus 로고
    • Remarks on some nonparametric estimates of a density function
    • Rosenblatt, M., Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:3 (1956), 832–837, 10.1214/aoms/1177728190.
    • (1956) Ann Math Stat , vol.27 , Issue.3 , pp. 832-837
    • Rosenblatt, M.1
  • 83
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen, E., On estimation of a probability density function and mode. Ann Math Stat 33:3 (1962), 1065–1076, 10.1214/aoms/1177704472.
    • (1962) Ann Math Stat , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 84
    • 0001268552 scopus 로고
    • , A reliable data based bandwidth selection method for kernel density estimation.
    • Sheather SJ, Jones MC, A reliable data based bandwidth selection method for kernel density estimation. http://dx.doi.org/10.2307/2345597; 1991.
    • (1991)
    • Sheather, S.J.1    Jones, M.C.2
  • 85
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • Altman, N.S., An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46:3 (1992), 175–185, 10.1080/00031305.1992.10475879.
    • (1992) Am Stat , vol.46 , Issue.3 , pp. 175-185
    • Altman, N.S.1
  • 87
    • 84927662909 scopus 로고    scopus 로고
    • On the use of maximum likelihood and input data similarity to obtain prediction intervals for forecasts of photovoltaic power generation
    • da Silva Fonseca, J.G., Oozeki, T., Ohtake, H., Takashima, T., Kazuhiko, O., On the use of maximum likelihood and input data similarity to obtain prediction intervals for forecasts of photovoltaic power generation. J Electr Eng Technol 10:3 (2015), 1342–1348, 10.5370/JEET.2015.10.3.1342.
    • (2015) J Electr Eng Technol , vol.10 , Issue.3 , pp. 1342-1348
    • da Silva Fonseca, J.G.1    Oozeki, T.2    Ohtake, H.3    Takashima, T.4    Kazuhiko, O.5
  • 88
    • 84928690428 scopus 로고    scopus 로고
    • Real-time prediction intervals for intra-hour DNI forecasts
    • Chu, Y., Li, M., Pedro, H.T.C., Coimbra, C.F.M., Real-time prediction intervals for intra-hour DNI forecasts. Renew Energy 83 (2015), 234–244, 10.1016/j.renene.2015.04.022.
    • (2015) Renew Energy , vol.83 , pp. 234-244
    • Chu, Y.1    Li, M.2    Pedro, H.T.C.3    Coimbra, C.F.M.4
  • 89
    • 84964483905 scopus 로고    scopus 로고
    • An application of the ECMWF ensemble prediction system for short-term solar power forecasting
    • Sperati, S., Alessandrini, S., Delle, L., An application of the ECMWF ensemble prediction system for short-term solar power forecasting. Sol Energy 133 (2016), 437–450, 10.1016/j.solener.2016.04.016.
    • (2016) Sol Energy , vol.133 , pp. 437-450
    • Sperati, S.1    Alessandrini, S.2    Delle, L.3
  • 90
    • 84949658421 scopus 로고    scopus 로고
    • Model-free computation of ultra-short-term prediction intervals of solar irradiance
    • Torregrossa, D., Boudec, J.L., Paolone, M., Model-free computation of ultra-short-term prediction intervals of solar irradiance. Sol Energy 124 (2016), 57–67, 10.1016/j.solener.2015.11.017.
    • (2016) Sol Energy , vol.124 , pp. 57-67
    • Torregrossa, D.1    Boudec, J.L.2    Paolone, M.3
  • 91
    • 70049096782 scopus 로고    scopus 로고
    • Online short-term solar power forecasting
    • Bacher, P., Madsen, H., Nielsen, H.A., Online short-term solar power forecasting. Sol Energy 83:10 (2009), 1772–1783, 10.1016/j.solener.2009.05.016.
    • (2009) Sol Energy , vol.83 , Issue.10 , pp. 1772-1783
    • Bacher, P.1    Madsen, H.2    Nielsen, H.A.3
  • 92
    • 85015189186 scopus 로고    scopus 로고
    • Ultra-Short-Term Prediction Intervals of Photovoltaic AC Active Power. In: International Conference Probabilistic Methods Application to Power System. PMAPS, 2016
    • Scolari E, Torregrossa D, Boudec JL, Paolone M, Ultra-Short-Term Prediction Intervals of Photovoltaic AC Active Power. In: International Conference Probabilistic Methods Application to Power System. PMAPS 2016, 2016. http://dx.doi.org/10.1109/PMAPS.2016.7764064.
    • (2016)
    • Scolari, E.1    Torregrossa, D.2    Boudec, J.L.3    Paolone, M.4
  • 93
    • 84989181324 scopus 로고    scopus 로고
    • Irradiance prediction intervals for PV stochastic generation in microgrid applications
    • Scolari, E., Sossan, F., Paolone, M., Irradiance prediction intervals for PV stochastic generation in microgrid applications. Sol Energy 139 (2016), 116–129, 10.1016/j.solener.2016.09.030.
    • (2016) Sol Energy , vol.139 , pp. 116-129
    • Scolari, E.1    Sossan, F.2    Paolone, M.3
  • 94
    • 85026349939 scopus 로고    scopus 로고
    • Probabilistic forecasting of photovoltaic generation: an efficient statistical approach
    • Wan, C., Lin, J., Song, Y., Xu, Z., Yang, G., Probabilistic forecasting of photovoltaic generation: an efficient statistical approach. IEEE Trans Power Syst, 8950(8), 2016, 1, 10.1109/TPWRS.2016.2608740.
    • (2016) IEEE Trans Power Syst , vol.8950 , Issue.8 , pp. 1
    • Wan, C.1    Lin, J.2    Song, Y.3    Xu, Z.4    Yang, G.5
  • 95
    • 84942053470 scopus 로고    scopus 로고
    • Optimal granule-based pis construction for solar irradiance forecast
    • Chai, S., Xu, Z., Wong, W.K., Optimal granule-based pis construction for solar irradiance forecast. IEEE Trans Power Syst 31:4 (2016), 3332–3333, 10.1109/TPWRS.2015.2473097.
    • (2016) IEEE Trans Power Syst , vol.31 , Issue.4 , pp. 3332-3333
    • Chai, S.1    Xu, Z.2    Wong, W.K.3
  • 96
    • 84910045324 scopus 로고    scopus 로고
    • Spatial-temporal forecasting of solar radiation
    • Boland, J., Spatial-temporal forecasting of solar radiation. Renew Energy 75 (2015), 607–616, 10.1016/j.renene.2014.10.035.
    • (2015) Renew Energy , vol.75 , pp. 607-616
    • Boland, J.1
  • 97
    • 84963986289 scopus 로고    scopus 로고
    • Prediction intervals for short-term photovoltaic generation forecasts. In: Proceedings of the 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control IMCCC, 2016
    • Wang S, Jia C, Prediction intervals for short-term photovoltaic generation forecasts. In: Proceedings of the 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control IMCCC 2015, 2016, pp. 459–463. http://dx.doi.org/10.1109/IMCCC.2015.103.
    • (2015) , pp. 459-463
    • Wang, S.1    Jia, C.2
  • 98
    • 84987923115 scopus 로고    scopus 로고
    • Short-term probabilistic forecasts for direct normal irradiance
    • Chu, Y., Coimbra, C.F.M., Short-term probabilistic forecasts for direct normal irradiance. Renew Energy 101 (2017), 526–536, 10.1016/j.renene.2016.09.012.
    • (2017) Renew Energy , vol.101 , pp. 526-536
    • Chu, Y.1    Coimbra, C.F.M.2
  • 99
    • 85037358406 scopus 로고    scopus 로고
    • A Bayesian-based approach for the short-term forecasting of electrical loads in smart grids. Part II: numerical applications. In: International Symp. Power Electron. Electr. Drives, Autom. Motion
    • Bracale A, Carpinelli G, Falco PD, A Bayesian-based approach for the short-term forecasting of electrical loads in smart grids. Part II: numerical applications. In: International Symp. Power Electron. Electr. Drives, Autom. Motion, 2016, pp. 129–136.
    • (2016) , pp. 129-136
    • Bracale, A.1    Carpinelli, G.2    Falco, P.D.3
  • 100
    • 84886099832 scopus 로고    scopus 로고
    • Hybrid kalman filters for very short-term load forecasting and prediction interval estimation
    • Guan, C., Luh, P.B., Michel, L.D., Chi, Z., Hybrid kalman filters for very short-term load forecasting and prediction interval estimation. IEEE Trans Power Syst 28:4 (2013), 3806–3817.
    • (2013) IEEE Trans Power Syst , vol.28 , Issue.4 , pp. 3806-3817
    • Guan, C.1    Luh, P.B.2    Michel, L.D.3    Chi, Z.4
  • 101
    • 84874724182 scopus 로고    scopus 로고
    • A bayesian-based approach for a short-term steady-state forecast of a smart grid
    • Bracale, A., Caramia, P., Carpinelli, G., di Fazio, A.R., Varilone, P., A bayesian-based approach for a short-term steady-state forecast of a smart grid. IEEE Trans Smart Grid 4:4 (2013), 1760–1771, 10.1109/TSG.2012.2231441.
    • (2013) IEEE Trans Smart Grid , vol.4 , Issue.4 , pp. 1760-1771
    • Bracale, A.1    Caramia, P.2    Carpinelli, G.3    di Fazio, A.R.4    Varilone, P.5
  • 102
    • 84907485666 scopus 로고    scopus 로고
    • Data-driven model for solar irradiation based on satellite observations
    • Bilionis, I., Constantinescu, E.M., Anitescu, M., Data-driven model for solar irradiation based on satellite observations. Sol Energy 110 (2014), 22–38, 10.1016/j.solener.2014.09.009.
    • (2014) Sol Energy , vol.110 , pp. 22-38
    • Bilionis, I.1    Constantinescu, E.M.2    Anitescu, M.3
  • 103
    • 84965169405 scopus 로고    scopus 로고
    • Nonparametric short-term probabilistic forecasting for solar radiation
    • Grantham, A., Gel, Y.R., Boland, J., Nonparametric short-term probabilistic forecasting for solar radiation. Sol Energy 133 (2016), 465–475, 10.1016/j.solener.2016.04.011.
    • (2016) Sol Energy , vol.133 , pp. 465-475
    • Grantham, A.1    Gel, Y.R.2    Boland, J.3
  • 104
    • 85152019657 scopus 로고    scopus 로고
    • Operational risk assessment of distribution network with consideration of PV output uncertainties. In: China International Conference Electr. Distrib.
    • Tao L, He J, Wang Y, Zhang P, Zhang H, Wang H, Miao Y, Wang J, Operational risk assessment of distribution network with consideration of PV output uncertainties. In: China International Conference Electr. Distrib., 2016, pp. 10–15.
    • (2016) , pp. 10-15
    • Tao, L.1    He, J.2    Wang, Y.3    Zhang, P.4    Zhang, H.5    Wang, H.6    Miao, Y.7    Wang, J.8
  • 105
    • 84956854404 scopus 로고    scopus 로고
    • Strategy to quantify uncertainties of wavelet-grnn-pso based solar pv forecasts using bootstrap confidence intervals
    • AlHakeem, D., Mandal, P., Ul Haque, A., Yona, A., Senjyu, T., Tseng, T.-L., et al. Strategy to quantify uncertainties of wavelet-grnn-pso based solar pv forecasts using bootstrap confidence intervals. Energy Soc Gen Meet, 2015, 1–5.
    • (2015) Energy Soc Gen Meet , pp. 1-5
    • AlHakeem, D.1    Mandal, P.2    Ul Haque, A.3    Yona, A.4    Senjyu, T.5    Tseng, T.-L.6
  • 106
    • 84937764904 scopus 로고    scopus 로고
    • Probabilistic solar power forecasting in smart grids using distributed information
    • Bessa, R., Trindade, A., Silva, C.S., Miranda, V., Probabilistic solar power forecasting in smart grids using distributed information. Int J Electr Power Energy Syst 72 (2015), 16–23, 10.1016/j.ijepes.2015.02.006.
    • (2015) Int J Electr Power Energy Syst , vol.72 , pp. 16-23
    • Bessa, R.1    Trindade, A.2    Silva, C.S.3    Miranda, V.4
  • 107
    • 84892622679 scopus 로고    scopus 로고
    • Probabilistic forecasts of wind power generation accounting for geographically dispersed information
    • Tastu, J., Pinson, P., Trombe, P.J., Madsen, H., Probabilistic forecasts of wind power generation accounting for geographically dispersed information. IEEE Trans Smart Grid 5:1 (2014), 480–489, 10.1109/TSG.2013.2277585.
    • (2014) IEEE Trans Smart Grid , vol.5 , Issue.1 , pp. 480-489
    • Tastu, J.1    Pinson, P.2    Trombe, P.J.3    Madsen, H.4
  • 108
    • 84989939522 scopus 로고    scopus 로고
    • Ensemble forecasting of solar irradiance by applying a mesoscale meteorological model
    • Liu, Y., Shimada, S., Yoshino, J., Kobayashi, T., Miwa, Y., Furuta, K., Ensemble forecasting of solar irradiance by applying a mesoscale meteorological model. Sol Energy 136 (2016), 597–605, 10.1016/j.solener.2016.07.043.
    • (2016) Sol Energy , vol.136 , pp. 597-605
    • Liu, Y.1    Shimada, S.2    Yoshino, J.3    Kobayashi, T.4    Miwa, Y.5    Furuta, K.6
  • 109
    • 84973143544 scopus 로고    scopus 로고
    • GEFCom2014: probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach
    • Nagy, G.I., Barta, G., Kazi, S., Borbély, G., Simon, G., GEFCom2014: probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach. Int J Forecast 32:3 (2016), 1087–1093, 10.1016/j.ijforecast.2015.11.013.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1087-1093
    • Nagy, G.I.1    Barta, G.2    Kazi, S.3    Borbély, G.4    Simon, G.5
  • 110
    • 84975733502 scopus 로고    scopus 로고
    • A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014
    • Juban, R., Ohlsson, H., Maasoumy, M., Poirier, L., Kolter, J.Z., A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014. Int J Forecast 32:3 (2016), 1094–1102, 10.1016/j.ijforecast.2015.12.002.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1094-1102
    • Juban, R.1    Ohlsson, H.2    Maasoumy, M.3    Poirier, L.4    Kolter, J.Z.5
  • 111
    • 85001871691 scopus 로고    scopus 로고
    • Spatial-Temporal Solar Power Forecast through Use of Gaussian Conditional Random Fields
    • S Gen. Meet., no. 2
    • Zhang B, Dehghanian P, Kezunovic M, Spatial-Temporal Solar Power Forecast through Use of Gaussian Conditional Random Fields, in: IEEE PES Gen. Meet., no. 2, 2016, pp. 16–20. http://dx.doi.org/10.1109/PESGM.2016.7741503.
    • (2016) , pp. 16-20
    • Zhang, B.1    Dehghanian, P.2    Kezunovic, M.3    IEEE, P.E.4
  • 112
    • 85003674255 scopus 로고    scopus 로고
    • Probabilistic accumulated irradiance forecast for Singapore using ensemble techniques. In: Conference Rec. IEEE Photovoltatic Special Conference, Vol. 2016-Novem
    • Aryaputera A, Verbois H, Walsh W, Probabilistic accumulated irradiance forecast for Singapore using ensemble techniques. In: Conference Rec. IEEE Photovoltatic Special Conference, Vol. 2016-Novem, 2016, pp. 1113–1118. http://dx.doi.org/10.1109/PVSC.2016.7749786.
    • (2016) , pp. 1113-1118
    • Aryaputera, A.1    Verbois, H.2    Walsh, W.3
  • 113
    • 85017474641 scopus 로고    scopus 로고
    • Short-term ensemble forecast for purchased photovoltaic generation
    • Takeda, H., Short-term ensemble forecast for purchased photovoltaic generation. Sol Energy 149 (2017), 176–187, 10.1016/j.solener.2017.03.088.
    • (2017) Sol Energy , vol.149 , pp. 176-187
    • Takeda, H.1
  • 114
    • 84962305755 scopus 로고    scopus 로고
    • Prediction Intervals for Electric Load Forecast: Evaluation for Different Profiles. In: Proceedings 18th Intelligent System Application to Power System
    • Almeida V, Gama J, Prediction Intervals for Electric Load Forecast: Evaluation for Different Profiles. In: Proceedings 18th Intelligent System Application to Power System, 2015, pp. 1–6. http://dx.doi.org/10.1109/ISAP.2015.7325539.
    • (2015) , pp. 1-6
    • Almeida, V.1    Gama, J.2
  • 115
    • 85152020791 scopus 로고    scopus 로고
    • Generation and Evaluation of Space-Time Trajectories of Photovoltaic Power, Applied Energy, arXiv:1603.06649.
    • Golestaneh F, Pinson P, Gooi HB, Generation and Evaluation of Space-Time Trajectories of Photovoltaic Power, Applied Energy arXiv:1603.06649.
    • Golestaneh, F.1    Pinson, P.2    Gooi, H.B.3
  • 116
    • 84925395797 scopus 로고    scopus 로고
    • PV power forecast using a nonparametric PV model
    • Almeida, M.P., Perpiñán, O., Narvarte, L., PV power forecast using a nonparametric PV model. Sol Energy 115 (2015), 354–368, 10.1016/j.solener.2015.03.006.
    • (2015) Sol Energy , vol.115 , pp. 354-368
    • Almeida, M.P.1    Perpiñán, O.2    Narvarte, L.3
  • 117
    • 85152002352 scopus 로고    scopus 로고
    • Solar PV power forecasting using extreme learning machanical and information fusion
    • le Cadre, H., Aravena, I., Papavasiliou, A., Solar PV power forecasting using extreme learning machanical and information fusion. HAL(April), 2015, 22–24.
    • (2015) HAL , Issue.April , pp. 22-24
    • le Cadre, H.1    Aravena, I.2    Papavasiliou, A.3
  • 118
    • 85151943334 scopus 로고    scopus 로고
    • Improvement of Prediction Interval Estimation Algorithm with Just-In-Time Modeling for PV System Operation. In: Photovoltatic Special Conference (PVSC) IEEE 42nd
    • Yamazaki T, Wakao S, Fujimoto Y, Hayashi Y, Improvement of Prediction Interval Estimation Algorithm with Just-In-Time Modeling for PV System Operation. In: Photovoltatic Special Conference (PVSC), 2015 IEEE 42nd, Vol. 1, 2015, pp. 4–9.
    • (2015) , vol.1 , pp. 4-9
    • Yamazaki, T.1    Wakao, S.2    Fujimoto, Y.3    Hayashi, Y.4
  • 119
    • 84959452571 scopus 로고    scopus 로고
    • Estimation prediction interval of solar irradiance based on just-in-time modeling for photovoltaic output prediction
    • Yamazaki, T., Homma, H., Wakao, S., Fujimoto, Y., Hayashi, Y., Estimation prediction interval of solar irradiance based on just-in-time modeling for photovoltaic output prediction. Electr Eng Jpn (Engl Transl Denki Gakkai Ronbunshi) 195:3 (2016), 1–10, 10.1002/eej.22822.
    • (2016) Electr Eng Jpn (Engl Transl Denki Gakkai Ronbunshi) , vol.195 , Issue.3 , pp. 1-10
    • Yamazaki, T.1    Homma, H.2    Wakao, S.3    Fujimoto, Y.4    Hayashi, Y.5
  • 120
    • 84950134550 scopus 로고    scopus 로고
    • A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting
    • Huang, J., Perry, M., A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting. Int J Forecast 32:3 (2016), 1081–1086, 10.1016/j.ijforecast.2015.11.002.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1081-1086
    • Huang, J.1    Perry, M.2
  • 121
    • 84965081940 scopus 로고    scopus 로고
    • Multi-Model Ensemble for day ahead prediction of photovoltaic power generation
    • Pierro, M., Bucci, F., de Felice, M., Maggioni, E., Moser, D., Perotto, A., et al. Multi-Model Ensemble for day ahead prediction of photovoltaic power generation. Sol Energy 134 (2016), 132–146, 10.1016/j.solener.2016.04.040.
    • (2016) Sol Energy , vol.134 , pp. 132-146
    • Pierro, M.1    Bucci, F.2    de Felice, M.3    Maggioni, E.4    Moser, D.5    Perotto, A.6
  • 122
    • 84911367408 scopus 로고    scopus 로고
    • Master optimization process based on neural networks ensemble for 24-h solar irradiance forecast
    • Cornaro, C., Pierro, M., Bucci, F., Master optimization process based on neural networks ensemble for 24-h solar irradiance forecast. Sol Energy 111 (2015), 297–312, 10.1016/j.solener.2014.10.036.
    • (2015) Sol Energy , vol.111 , pp. 297-312
    • Cornaro, C.1    Pierro, M.2    Bucci, F.3
  • 123
    • 84966351171 scopus 로고    scopus 로고
    • New advanced method and cost-based indices applied to probabilistic forecasting of photovoltaic generation, J Renew Sustain Energy 8 (023505).
    • Bracale A, Carpinelli G, Falco PD, Rizzo R, Russo A, Bracale A, Carpinelli G, Falco PD, Rizzo R, New advanced method and cost-based indices applied to probabilistic forecasting of photovoltaic generation, J Renew Sustain Energy 8 (023505). http://dx.doi.org/10.1063/1.4946798.
    • Bracale, A.1    Carpinelli, G.2    Falco, P.D.3    Rizzo, R.4    Russo, A.5    Bracale, A.6    Carpinelli, G.7    Falco, P.D.8    Rizzo, R.9
  • 124
    • 84968739482 scopus 로고    scopus 로고
    • Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting
    • Davò, F., Alessandrini, S., Sperati, S., Delle Monache, L., Airoldi, D., Vespucci, M.T., Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting. Sol Energy 134 (2016), 327–338, 10.1016/j.solener.2016.04.049.
    • (2016) Sol Energy , vol.134 , pp. 327-338
    • Davò, F.1    Alessandrini, S.2    Sperati, S.3    Delle Monache, L.4    Airoldi, D.5    Vespucci, M.T.6
  • 125
    • 85015991405 scopus 로고    scopus 로고
    • A probabilistic approach to the estimation of regional photovoltaic power production
    • Saint-Drenan, Y., Good, G., Braun, M., A probabilistic approach to the estimation of regional photovoltaic power production. Sol Energy 147 (2017), 257–276, 10.1016/j.solener.2017.03.007.
    • (2017) Sol Energy , vol.147 , pp. 257-276
    • Saint-Drenan, Y.1    Good, G.2    Braun, M.3
  • 126
    • 85152091338 scopus 로고    scopus 로고
    • Chai Songjian, Niu Ming, Xu Z, Lei Lai Loi, Wong KP, Nonparametric conditional interval forecasts for PV power generation considering the temporal dependence. In: 2016 IEEE Power Energy Soc Gen Meet, IEEE
    • Chai Songjian, Niu Ming, Xu Z, Lei Lai Loi, Wong KP, Nonparametric conditional interval forecasts for PV power generation considering the temporal dependence. In: 2016 IEEE Power Energy Soc Gen Meet, IEEE, 2016, pp. 1–5. http://dx.doi.org/10.1109/PESGM.2016.7741953.
    • (2016) , pp. 1-5
  • 127
    • 84982801372 scopus 로고    scopus 로고
    • Forecasting framework for open access time series in energy IEEE International Energy Conference ENERGYCON, 2016
    • Barta G, Nagy G, Papp G, Simon G, Forecasting framework for open access time series in energy, 2016 IEEE International Energy Conference ENERGYCON 2016 arXiv:1606.00656 http://dx.doi.org/10.1109/ENERGYCON.2016.7514015.
    • (2016)
    • Barta, G.1    Nagy, G.2    Papp, G.3    Simon, G.4
  • 128
    • 85152023199 scopus 로고    scopus 로고
    • Forecasting Uncertainty in Electricity Demand. in: AAAI Work Comput Sustain
    • Wijaya TK, Sinn M, Chen B, Forecasting Uncertainty in Electricity Demand. in: AAAI Work Comput Sustain, 2015, pp. 120–126.
    • (2015) , pp. 120-126
    • Wijaya, T.K.1    Sinn, M.2    Chen, B.3
  • 129
    • 84982078838 scopus 로고    scopus 로고
    • Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function
    • He, Y., Xu, Q., Wan, J., Yang, S., Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function. Energy 114 (2016), 498–512, 10.1016/j.energy.2016.08.023.
    • (2016) Energy , vol.114 , pp. 498-512
    • He, Y.1    Xu, Q.2    Wan, J.3    Yang, S.4
  • 130
    • 84995695058 scopus 로고    scopus 로고
    • Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory
    • He, Y., Liu, R., Li, H., Wang, S., Lu, X., Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory. Appl Energy 185 (2017), 254–266, 10.1016/j.apenergy.2016.10.079.
    • (2017) Appl Energy , vol.185 , pp. 254-266
    • He, Y.1    Liu, R.2    Li, H.3    Wang, S.4    Lu, X.5
  • 131
    • 85015177967 scopus 로고    scopus 로고
    • Comparing two model selection frameworks for probabilistic load forecasting. In: 2016 International Conference Probabilistic Methods Applied to Power System Beijing, China, Oct 16-20;
    • Xie J, Hong T, Comparing two model selection frameworks for probabilistic load forecasting. In: 2016 International Conference Probabilistic Methods Applied to Power System Beijing, China, Oct 16-20; 2016. http://dx.doi.org/10.1109/PMAPS.2016.7764081.
    • (2016)
    • Xie, J.1    Hong, T.2
  • 132
    • 84979538942 scopus 로고    scopus 로고
    • Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting
    • Gaillard, P., Goude, Y., Nedellec, R., Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting. Int J Forecast 32:3 (2016), 1038–1050, 10.1016/j.ijforecast.2015.12.001.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1038-1050
    • Gaillard, P.1    Goude, Y.2    Nedellec, R.3
  • 133
    • 84950126041 scopus 로고    scopus 로고
    • GEFCom2014 probabilistic electric load forecasting: an integrated solution with forecast combination and residual simulation
    • Xie, J., Hong, T., GEFCom2014 probabilistic electric load forecasting: an integrated solution with forecast combination and residual simulation. Int J Forecast 32:3 (2016), 1012–1016, 10.1016/j.ijforecast.2015.11.005.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1012-1016
    • Xie, J.1    Hong, T.2
  • 134
    • 84957894815 scopus 로고    scopus 로고
    • Sequence of nonparametric models for GEFCom2014 probabilistic electric load forecasting
    • Mangalova, E., Shesterneva, O., Sequence of nonparametric models for GEFCom2014 probabilistic electric load forecasting. Int J Forecast 32:3 (2016), 1023–1028, 10.1016/j.ijforecast.2015.11.001.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1023-1028
    • Mangalova, E.1    Shesterneva, O.2
  • 135
    • 84956619770 scopus 로고    scopus 로고
    • GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models
    • Dordonnat, V., Pichavant, A., Pierrot, A., GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models. Int J Forecast 32:3 (2016), 1005–1011, 10.1016/j.ijforecast.2015.11.010.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1005-1011
    • Dordonnat, V.1    Pichavant, A.2    Pierrot, A.3
  • 136
    • 84964330415 scopus 로고    scopus 로고
    • Lasso estimation for GEFCom2014 probabilistic electric load forecasting
    • []
    • Ziel, F., Liu, B., Lasso estimation for GEFCom2014 probabilistic electric load forecasting. Int J Forecast 32:3 (2016), 1029–1037, 10.1016/j.ijforecast.2016.01.001 [arXiv:1603.01376v1].
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1029-1037
    • Ziel, F.1    Liu, B.2
  • 137
    • 84971483487 scopus 로고    scopus 로고
    • A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting
    • Haben, S., Giasemidis, G., A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting. Int J Forecast 32:3 (2016), 1017–1022, 10.1016/j.ijforecast.2015.11.004.
    • (2016) Int J Forecast , vol.32 , Issue.3 , pp. 1017-1022
    • Haben, S.1    Giasemidis, G.2
  • 138
    • 84963815349 scopus 로고    scopus 로고
    • Using the ensemble Kalman filter for electricity load forecasting and analysis
    • Takeda, H., Tamura, Y., Sato, S., Using the ensemble Kalman filter for electricity load forecasting and analysis. Energy 104 (2016), 184–198, 10.1016/j.energy.2016.03.070.
    • (2016) Energy , vol.104 , pp. 184-198
    • Takeda, H.1    Tamura, Y.2    Sato, S.3
  • 139
    • 85152079692 scopus 로고    scopus 로고
    • Forecast of ensemble power production by grid-connected PV systems. In: 20th European PV Conference.
    • Lorenz E, Heinemann D, Wickramarathne H, Beyer HG, Bofinger S, Forecast of ensemble power production by grid-connected PV systems. In: 20th European PV Conference, 2007.
    • (2007)
    • Lorenz, E.1    Heinemann, D.2    Wickramarathne, H.3    Beyer, H.G.4    Bofinger, S.5
  • 140
    • 84884891794 scopus 로고    scopus 로고
    • A sparse heteroscedastic model for the probabilistic load forecasting in energy-intensive enterprises
    • Kou, P., Gao, F., A sparse heteroscedastic model for the probabilistic load forecasting in energy-intensive enterprises. Int J Electr Power Energy Syst 55 (2014), 144–154, 10.1016/j.ijepes.2013.09.002.
    • (2014) Int J Electr Power Energy Syst , vol.55 , pp. 144-154
    • Kou, P.1    Gao, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.