메뉴 건너뛰기




Volumn 136, Issue , 2016, Pages 78-111

Review of photovoltaic power forecasting

Author keywords

Grid integration; Solar energy; Solar power forecasting; Value of forecasting

Indexed keywords

ELECTRIC POWER SYSTEM ECONOMICS; ELECTRIC POWER TRANSMISSION NETWORKS; PHOTOVOLTAIC CELLS; SOLAR ENERGY;

EID: 84977650217     PISSN: 0038092X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.solener.2016.06.069     Document Type: Review
Times cited : (972)

References (151)
  • 1
    • 84920720385 scopus 로고    scopus 로고
    • Solar energy prediction using linear and non-linear regularization models: a study on AMS (American Meteorological Society) 2013–14 solar energy prediction contest
    • Aggarwal, S.K., Saini, L.M., Solar energy prediction using linear and non-linear regularization models: a study on AMS (American Meteorological Society) 2013–14 solar energy prediction contest. Energy 78 (2014), 247–256.
    • (2014) Energy , vol.78 , pp. 247-256
    • Aggarwal, S.K.1    Saini, L.M.2
  • 2
    • 84939814087 scopus 로고    scopus 로고
    • An analog ensemble for short-term probabilistic solar power forecast
    • Alessandrini, S., Delle Monache, L., Sperati, S., Cervone, G., An analog ensemble for short-term probabilistic solar power forecast. Appl. Energy 157 (2015), 95–110.
    • (2015) Appl. Energy , vol.157 , pp. 95-110
    • Alessandrini, S.1    Delle Monache, L.2    Sperati, S.3    Cervone, G.4
  • 4
    • 84925395797 scopus 로고    scopus 로고
    • PV power forecast using a nonparametric PV model
    • Almeida, M.P., Perpiñán, O., Narvarte, L., PV power forecast using a nonparametric PV model. Sol. Energy 115 (2015), 354–368.
    • (2015) Sol. Energy , vol.115 , pp. 354-368
    • Almeida, M.P.1    Perpiñán, O.2    Narvarte, L.3
  • 6
    • 84903186946 scopus 로고    scopus 로고
    • A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator
    • Almonacid, F., Perez-Higueras, P., Fernandez, E., Hontoria, L., A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. Energy Convers. Manage. 85 (2014), 389–398.
    • (2014) Energy Convers. Manage. , vol.85 , pp. 389-398
    • Almonacid, F.1    Perez-Higueras, P.2    Fernandez, E.3    Hontoria, L.4
  • 8
    • 84892642238 scopus 로고    scopus 로고
    • A Poisson model for anisotropic solar ramp rate correlations
    • Arias-Castro, E., Kleissl, J., Lave, M., A Poisson model for anisotropic solar ramp rate correlations. Sol. Energy 101 (2014), 192–202.
    • (2014) Sol. Energy , vol.101 , pp. 192-202
    • Arias-Castro, E.1    Kleissl, J.2    Lave, M.3
  • 9
    • 77956177211 scopus 로고    scopus 로고
    • Validated real-time energy models for small-scale grid-connected PV-systems
    • Ayompe, L.M., Duffy, A., McCormack, S.J., Conlon, M., Validated real-time energy models for small-scale grid-connected PV-systems. Energy 35:10 (2010), 4086–4091.
    • (2010) Energy , vol.35 , Issue.10 , pp. 4086-4091
    • Ayompe, L.M.1    Duffy, A.2    McCormack, S.J.3    Conlon, M.4
  • 10
    • 70049096782 scopus 로고    scopus 로고
    • Online short-term solar power forecasting
    • Bacher, P., Madsen, H., Nielsen, H., Online short-term solar power forecasting. Sol. Energy 83 (2009), 1772–1783.
    • (2009) Sol. Energy , vol.83 , pp. 1772-1783
    • Bacher, P.1    Madsen, H.2    Nielsen, H.3
  • 11
    • 84872579679 scopus 로고    scopus 로고
    • Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania
    • Badescu, V., Gueymard, C.A., Cheval, S., Oprea, C., Baciu, M., Dumitrescu, A., Iacobescu, F., Milos, I., Rada, C., Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania. Renew. Energy 55 (2013), 85–103.
    • (2013) Renew. Energy , vol.55 , pp. 85-103
    • Badescu, V.1    Gueymard, C.A.2    Cheval, S.3    Oprea, C.4    Baciu, M.5    Dumitrescu, A.6    Iacobescu, F.7    Milos, I.8    Rada, C.9
  • 13
    • 84937764904 scopus 로고    scopus 로고
    • Probabilistic solar power forecasting in smart grids using distributed information
    • Bessa, R., Trindade, A., Silva, C., Miranda, V., Probabilistic solar power forecasting in smart grids using distributed information. Electr. Power Energy Syst. 72 (2015), 16–23.
    • (2015) Electr. Power Energy Syst. , vol.72 , pp. 16-23
    • Bessa, R.1    Trindade, A.2    Silva, C.3    Miranda, V.4
  • 15
    • 84919895870 scopus 로고    scopus 로고
    • Wind and Solar Energy Curtailment: Experience and Practices in the United States
    • NREL
    • Bird, L., Cochran, J., Wang, X., Wind and Solar Energy Curtailment: Experience and Practices in the United States. 2014, NREL.
    • (2014)
    • Bird, L.1    Cochran, J.2    Wang, X.3
  • 16
    • 84879730046 scopus 로고    scopus 로고
    • Cloud motion vectors from a network of ground sensors in a solar power plant
    • Bosch, J., Kleissl, J., Cloud motion vectors from a network of ground sensors in a solar power plant. Sol. Energy 95 (2013), 13–20.
    • (2013) Sol. Energy , vol.95 , pp. 13-20
    • Bosch, J.1    Kleissl, J.2
  • 18
    • 84887367105 scopus 로고    scopus 로고
    • A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant
    • Bouzerdoum, M., Mellit, A., Massi Pavan, A., A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Sol. Energy 98 (2013), 226–235.
    • (2013) Sol. Energy , vol.98 , pp. 226-235
    • Bouzerdoum, M.1    Mellit, A.2    Massi Pavan, A.3
  • 20
    • 84874707331 scopus 로고    scopus 로고
    • A Bayesian method for short-term probabilistic forecasting of photovoltaic generation in smart grid operation and Control
    • Bracale, A., Caramia, P., Carpinelli, G., Di Fazio, A., Ferruzzi, G., A Bayesian method for short-term probabilistic forecasting of photovoltaic generation in smart grid operation and Control. Energies 6 (2013), 733–747.
    • (2013) Energies , vol.6 , pp. 733-747
    • Bracale, A.1    Caramia, P.2    Carpinelli, G.3    Di Fazio, A.4    Ferruzzi, G.5
  • 22
    • 84977669573 scopus 로고    scopus 로고
    • The Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE. NREL/CP-5D00-62817
    • National Renewable Energy Laboratory Golden, CO
    • Brancucci Martínez-Anido, C.B., Florita, A., Hodge, B.M., The Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE. NREL/CP-5D00-62817. 2014, National Renewable Energy Laboratory, Golden, CO.
    • (2014)
    • Brancucci Martínez-Anido, C.B.1    Florita, A.2    Hodge, B.M.3
  • 23
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Machine Learn. 45:1 (2001), 5–32.
    • (2001) Machine Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 24
    • 80053972368 scopus 로고    scopus 로고
    • Online 24-h solar power forecasting based on weather type classification using artificial neural network
    • Chen, C., Duan, S., Cai, T., Liu, B., Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol. Energy 85 (2011), 2856–2870.
    • (2011) Sol. Energy , vol.85 , pp. 2856-2870
    • Chen, C.1    Duan, S.2    Cai, T.3    Liu, B.4
  • 25
    • 84926040320 scopus 로고    scopus 로고
    • Cloud motion and stability estimation for intra-hour solar forecasting
    • Chow, C., Belongie, S., Kleissl, J., Cloud motion and stability estimation for intra-hour solar forecasting. Sol. Energy 115 (2015), 645–655.
    • (2015) Sol. Energy , vol.115 , pp. 645-655
    • Chow, C.1    Belongie, S.2    Kleissl, J.3
  • 26
    • 84870606178 scopus 로고    scopus 로고
    • Short-term prediction of photovoltaic energy generation by intelligent approach
    • Chow, S., Lee, E., Li, D., Short-term prediction of photovoltaic energy generation by intelligent approach. Energy Build. 55 (2012), 660–667.
    • (2012) Energy Build. , vol.55 , pp. 660-667
    • Chow, S.1    Lee, E.2    Li, D.3
  • 27
    • 84916618688 scopus 로고    scopus 로고
    • Short-term reforecasting of power output from a 48 MWe solar PV plant
    • Chu, Y., Urguhart, B., Gohari, S., Pedro, H., Kleissl, J., Coimbra, C., Short-term reforecasting of power output from a 48 MWe solar PV plant. Sol. Energy 112 (2015), 68–77.
    • (2015) Sol. Energy , vol.112 , pp. 68-77
    • Chu, Y.1    Urguhart, B.2    Gohari, S.3    Pedro, H.4    Kleissl, J.5    Coimbra, C.6
  • 28
    • 84886924216 scopus 로고    scopus 로고
    • Forecasting power output of PV grid connected system in Thailand without using solar radiation measurement
    • Chupong, C., Plangklang, B., Forecasting power output of PV grid connected system in Thailand without using solar radiation measurement. Energy Proc. 9 (2011), 230–237.
    • (2011) Energy Proc. , vol.9 , pp. 230-237
    • Chupong, C.1    Plangklang, B.2
  • 29
    • 84903806790 scopus 로고    scopus 로고
    • Stochastic-learning methods
    • J. Kleissl first ed. Academic Press Waltham
    • Coimbra, C., Pedro, H., Stochastic-learning methods. Kleissl, J., (eds.) Solar Energy Forecasting and Resource Assessment, first ed., 2013, Academic Press, Waltham, 383–406.
    • (2013) Solar Energy Forecasting and Resource Assessment , pp. 383-406
    • Coimbra, C.1    Pedro, H.2
  • 31
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V., Support-vector networks. Machine Learn., 20(3), 1995, 273.
    • (1995) Machine Learn. , vol.20 , Issue.3 , pp. 273
    • Cortes, C.1    Vapnik, V.2
  • 32
    • 84923271003 scopus 로고    scopus 로고
    • Short-term predictability of photovoltaic production over Italy
    • De Felice, M., Petitta, M., Ruti, P., Short-term predictability of photovoltaic production over Italy. Renew. Energy 80 (2015), 197–204.
    • (2015) Renew. Energy , vol.80 , pp. 197-204
    • De Felice, M.1    Petitta, M.2    Ruti, P.3
  • 33
    • 84901231602 scopus 로고    scopus 로고
    • Photovoltaic power forecasting using statistical methods: impact of weather data
    • De Georgi, M.G., Congedo, P.M., Malvoni, M., Photovoltaic power forecasting using statistical methods: impact of weather data. IET Sci. Measure. Technol. 8:3 (2014), 90–97.
    • (2014) IET Sci. Measure. Technol. , vol.8 , Issue.3 , pp. 90-97
    • De Georgi, M.G.1    Congedo, P.M.2    Malvoni, M.3
  • 34
    • 84929332562 scopus 로고    scopus 로고
    • Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate
    • De Georgi, M.G., Congedo, P.M., Malvoni, M., Laforgia, D., Error analysis of hybrid photovoltaic power forecasting models: a case study of mediterranean climate. Energy Convers. Manage. 100 (2015), 117–130.
    • (2015) Energy Convers. Manage. , vol.100 , pp. 117-130
    • De Georgi, M.G.1    Congedo, P.M.2    Malvoni, M.3    Laforgia, D.4
  • 35
    • 84973100859 scopus 로고    scopus 로고
    • Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine
    • De Georgi, M.G., Malvoni, M., Congedo, P.M., Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine. Energy 107 (2016), 360–373.
    • (2016) Energy , vol.107 , pp. 360-373
    • De Georgi, M.G.1    Malvoni, M.2    Congedo, P.M.3
  • 36
    • 84880379200 scopus 로고    scopus 로고
    • Review of solar irradiance forecasting methods and a proposition for small-scale insular grids
    • Diagne, M., David, M., Lauret, P., Boland, J., Schmutz, N., Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 27 (2013), 65–76.
    • (2013) Renew. Sustain. Energy Rev. , vol.27 , pp. 65-76
    • Diagne, M.1    David, M.2    Lauret, P.3    Boland, J.4    Schmutz, N.5
  • 37
    • 84863138074 scopus 로고    scopus 로고
    • An ANN-based approach for forecasting the power output of photovoltaic system
    • Ding, M., Wang, L., Bi, R., An ANN-based approach for forecasting the power output of photovoltaic system. Proc. Environ. Sci. 11:Part C (2011), 1308–1315.
    • (2011) Proc. Environ. Sci. , vol.11 , pp. 1308-1315
    • Ding, M.1    Wang, L.2    Bi, R.3
  • 38
    • 84938244506 scopus 로고    scopus 로고
    • A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zones
    • Do, M.T., Soubdhan, T., Robyns, B., A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zones. Renew. Energy 85 (2016), 959–964.
    • (2016) Renew. Energy , vol.85 , pp. 959-964
    • Do, M.T.1    Soubdhan, T.2    Robyns, B.3
  • 39
    • 84924431355 scopus 로고    scopus 로고
    • A physical hybrid artificial neural network for short term forecasting of PV plant power output
    • Dolara, A., Grimaccia, F., Leva, S., Mussetta, M., Ogliari, E., A physical hybrid artificial neural network for short term forecasting of PV plant power output. Energies 8 (2015), 1138–1153.
    • (2015) Energies , vol.8 , pp. 1138-1153
    • Dolara, A.1    Grimaccia, F.2    Leva, S.3    Mussetta, M.4    Ogliari, E.5
  • 40
    • 84936876749 scopus 로고    scopus 로고
    • Comparison of different physical models for PV power output prediction
    • Dolara, A., Leva, S., Manzolini, G., Comparison of different physical models for PV power output prediction. Sol. Energy 119 (2015), 83–99.
    • (2015) Sol. Energy , vol.119 , pp. 83-99
    • Dolara, A.1    Leva, S.2    Manzolini, G.3
  • 41
    • 0012339214 scopus 로고    scopus 로고
    • PSU/NCAR Mesoscale Modeling System. Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3
    • National Center for Atmospheric Research, Camp Springs Maryland
    • Dudhia, J., Gill, D., Manning, K., Wang, W., Bruyere, C., PSU/NCAR Mesoscale Modeling System. Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3. 2005, National Center for Atmospheric Research, Camp Springs, Maryland.
    • (2005)
    • Dudhia, J.1    Gill, D.2    Manning, K.3    Wang, W.4    Bruyere, C.5
  • 42
    • 84867924308 scopus 로고    scopus 로고
    • Operating Reserves and Variable Generation. NREL/TP-5500-51978
    • National Renewable Energy Laboratory Golden, CO
    • Ela, E., Milligan, M., Kirby, B., Operating Reserves and Variable Generation. NREL/TP-5500-51978. 2011, National Renewable Energy Laboratory, Golden, CO.
    • (2011)
    • Ela, E.1    Milligan, M.2    Kirby, B.3
  • 43
    • 84977677242 scopus 로고    scopus 로고
    • EPIA, September 2012. Connecting the Sun. Solar photovoltaic on the road to large-scale grid integration.
    • EPIA, September 2012. Connecting the Sun. Solar photovoltaic on the road to large-scale grid integration.
  • 44
    • 56949103795 scopus 로고    scopus 로고
    • Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations
    • Espinar, B., Ramírez, L., Drews, A., Beyer, H.G., Zarzalejo, L., Polo, J., Martín, L., Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations. Sol. Energy 83 (2009), 118–125.
    • (2009) Sol. Energy , vol.83 , pp. 118-125
    • Espinar, B.1    Ramírez, L.2    Drews, A.3    Beyer, H.G.4    Zarzalejo, L.5    Polo, J.6    Martín, L.7
  • 49
    • 84901778569 scopus 로고    scopus 로고
    • Characterizing the regional photovoltaic power forecast error in Japan: a study of 5 regions
    • Fonseca, J.G., Oozeki, T., Ohtake, H., Shimose, K., Takashima, T., Ogimoto, K., Characterizing the regional photovoltaic power forecast error in Japan: a study of 5 regions. IEEJ Trans. Power Energy 134:6 (2014), 537–544.
    • (2014) IEEJ Trans. Power Energy , vol.134 , Issue.6 , pp. 537-544
    • Fonseca, J.G.1    Oozeki, T.2    Ohtake, H.3    Shimose, K.4    Takashima, T.5    Ogimoto, K.6
  • 50
    • 84922279541 scopus 로고    scopus 로고
    • Forecasting regional photovoltaic power generation – a comparison of strategies to obtain one-day-ahead data
    • Fonseca, J.G., Oozeki, T., Ohtake, H., Shimose, K., Takashima, T., Ogimoto, K., Forecasting regional photovoltaic power generation – a comparison of strategies to obtain one-day-ahead data. Energy Proc. 57 (2014), 1337–1345.
    • (2014) Energy Proc. , vol.57 , pp. 1337-1345
    • Fonseca, J.G.1    Oozeki, T.2    Ohtake, H.3    Shimose, K.4    Takashima, T.5    Ogimoto, K.6
  • 51
    • 84896043087 scopus 로고    scopus 로고
    • Regional forecasts and smoothing effect of photovoltaic power generation in Japan: an approach with principal component analysis
    • Fonseca, J.G., Oozeki, T., Ohtake, H., Shimose, K., Takashima, T., Ogimoto, K., Regional forecasts and smoothing effect of photovoltaic power generation in Japan: an approach with principal component analysis. Renew. Energy 68 (2014), 403–413.
    • (2014) Renew. Energy , vol.68 , pp. 403-413
    • Fonseca, J.G.1    Oozeki, T.2    Ohtake, H.3    Shimose, K.4    Takashima, T.5    Ogimoto, K.6
  • 53
    • 84927662909 scopus 로고    scopus 로고
    • On the use of maximum likelihood and input data similarity to obtain prediction intervals for forecasts of photovoltaic power generation
    • Fonseca, J.G., Oozeki, T., Ohtake, H., Takashima, T., Ogimoto, K., On the use of maximum likelihood and input data similarity to obtain prediction intervals for forecasts of photovoltaic power generation. J. Electr. Eng. Technol. 10:3 (2015), 1342–1348.
    • (2015) J. Electr. Eng. Technol. , vol.10 , Issue.3 , pp. 1342-1348
    • Fonseca, J.G.1    Oozeki, T.2    Ohtake, H.3    Takashima, T.4    Ogimoto, K.5
  • 55
    • 84953328676 scopus 로고    scopus 로고
    • Very short-term nonparametric probabilistic forecasting of renewable energy generation–with application to solar energy
    • Golestaneh, F., Pinson, P., Gooi, H.B., Very short-term nonparametric probabilistic forecasting of renewable energy generation–with application to solar energy. IEEE Trans. Power Syst.(99), 2016, 10.1109/TPWRS.2015.2502423.
    • (2016) IEEE Trans. Power Syst. , Issue.99
    • Golestaneh, F.1    Pinson, P.2    Gooi, H.B.3
  • 56
    • 84955281190 scopus 로고    scopus 로고
    • Comparison of photovoltaic plant power production prediction methods using a large measured dataset
    • Graditi, G., Ferlito, S., Adinolfi, G., Comparison of photovoltaic plant power production prediction methods using a large measured dataset. Renew. Energy 90 (2016), 513–519.
    • (2016) Renew. Energy , vol.90 , pp. 513-519
    • Graditi, G.1    Ferlito, S.2    Adinolfi, G.3
  • 57
    • 84977653159 scopus 로고    scopus 로고
    • GTM Reseach/SEIA U.S. Solar Market Insight, Report Q2, Executive summary
    • GTM Reseach/SEIA U.S. Solar Market Insight, Report Q2, Executive summary, 2015.
    • (2015)
  • 58
    • 39149112500 scopus 로고    scopus 로고
    • REST2: high-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – validation with a benchmark dataset
    • Gueymard, C.A., REST2: high-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – validation with a benchmark dataset. Sol. Energy 82 (2008), 272–285.
    • (2008) Sol. Energy , vol.82 , pp. 272-285
    • Gueymard, C.A.1
  • 59
    • 84960803470 scopus 로고    scopus 로고
    • Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance
    • Gueymard, C.A., Ruiz-Arias, J.A., Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. Energy, 2015 http://dx.doi.org/10.1016/j.solener.2015.10.010.
    • (2015) Sol. Energy
    • Gueymard, C.A.1    Ruiz-Arias, J.A.2
  • 61
    • 78650057994 scopus 로고    scopus 로고
    • Practical approach for sub-hourly and hourly prediction of PV power output
    • North American Power Symposium (NAPS)
    • Hassanzadeh, M., Etezadi-Amoli, M., Fadali, M., 2010. Practical approach for sub-hourly and hourly prediction of PV power output. North American Power Symposium (NAPS).
    • (2010)
    • Hassanzadeh, M.1    Etezadi-Amoli, M.2    Fadali, M.3
  • 62
    • 84942026696 scopus 로고    scopus 로고
    • The Value of Improved Short-Term Wind Power Forecasting. NREL/ TP-5D00-63175
    • National Renewable Energy Laboratory Golden, CO
    • Hodge, B.-M., Florita, A., Sharp, J., Margulis, M., Mcreavy, D., The Value of Improved Short-Term Wind Power Forecasting. NREL/ TP-5D00-63175. 2015, National Renewable Energy Laboratory, Golden, CO.
    • (2015)
    • Hodge, B.-M.1    Florita, A.2    Sharp, J.3    Margulis, M.4    Mcreavy, D.5
  • 64
    • 84977648303 scopus 로고    scopus 로고
    • in press. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting. Working paper available from <>.
    • Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R.J., in press. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. International Journal of Forecasting. Working paper available from < http://www.drhongtao.com/articles>.
    • Hong, T.1    Pinson, P.2    Fan, S.3    Zareipour, H.4    Troccoli, A.5    Hyndman, R.J.6
  • 65
    • 84977662886 scopus 로고    scopus 로고
    • Hybrid prediction method for solar power using different computational intelligence algorithms
    • Hossain, M.R., Oo, A.M.T., Ali, A.B., Hybrid prediction method for solar power using different computational intelligence algorithms. Smart Grid Renew. Energy 4 (2013), 76–87.
    • (2013) Smart Grid Renew. Energy , vol.4 , pp. 76-87
    • Hossain, M.R.1    Oo, A.M.T.2    Ali, A.B.3
  • 66
    • 84950134550 scopus 로고    scopus 로고
    • A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting
    • Huang, J., Perry, M., A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting. Int. J. Forecast., 2015 http://dx.doi.org/10.1016/j.ijforecast.2015.11.002.
    • (2015) Int. J. Forecast.
    • Huang, J.1    Perry, M.2
  • 67
    • 84977658633 scopus 로고    scopus 로고
    • IEA-Photovoltaic and solar forecasting: state-of-the-art. Report IEA-PVPS T14-01:2013.
    • IEA-Photovoltaic and solar forecasting: state-of-the-art. Report IEA-PVPS T14-01:2013.
  • 68
    • 84977655267 scopus 로고    scopus 로고
    • IEA-The power of transformation, Paris: IEA
    • IEA-The power of transformation, Paris: IEA, 2014.
    • (2014)
  • 69
    • 84977623877 scopus 로고    scopus 로고
    • IEA-Trends 2015 in photovoltaic applications, Executive summary. Report IEA-PVPS T1-27:2015
    • IEA-Trends 2015 in photovoltaic applications, Executive summary. Report IEA-PVPS T1-27:2015.
  • 70
    • 33646476333 scopus 로고    scopus 로고
    • Comparison of eight clear sky broadband models against 16 independent data banks
    • Ineichen, P., Comparison of eight clear sky broadband models against 16 independent data banks. Sol. Energy 80:4 (2006), 468–478.
    • (2006) Sol. Energy , vol.80 , Issue.4 , pp. 468-478
    • Ineichen, P.1
  • 71
    • 0036452677 scopus 로고    scopus 로고
    • A new airmass independent formulation for the Linke turbidity coefficient
    • Ineichen, P., Perez, R., A new airmass independent formulation for the Linke turbidity coefficient. Sol. Energy 73:3 (2002), 151–157.
    • (2002) Sol. Energy , vol.73 , Issue.3 , pp. 151-157
    • Ineichen, P.1    Perez, R.2
  • 73
    • 84900134853 scopus 로고    scopus 로고
    • Renewable Energy Policy Convergence in the EU: The Evolution of Feed-In Tariffs in Germany, Spain and France
    • Ashgate Farnham ISBN: 9781409439097
    • Jacobs, D., Renewable Energy Policy Convergence in the EU: The Evolution of Feed-In Tariffs in Germany, Spain and France. 2012, Ashgate, Farnham ISBN: 9781409439097.
    • (2012)
    • Jacobs, D.1
  • 75
  • 76
    • 67049158586 scopus 로고    scopus 로고
    • Forecasting electric power generation in a photovoltaic power system for an energy network
    • Kudo, M., Takeuchi, A., Nozaki, Y., Endo, H., Sumita, J., Forecasting electric power generation in a photovoltaic power system for an energy network. Electr. Eng. Jpn., 167(4), 2009.
    • (2009) Electr. Eng. Jpn. , vol.167 , Issue.4
    • Kudo, M.1    Takeuchi, A.2    Nozaki, Y.3    Endo, H.4    Sumita, J.5
  • 77
    • 84903807152 scopus 로고    scopus 로고
    • Satellite-based irradiance and power forecasting for the German energy market
    • J. Kleissl first ed. Academic Press Waltham
    • Kühnert, J., Lorenz, E., Heinemann, D., Satellite-based irradiance and power forecasting for the German energy market. Kleissl, J., (eds.) Solar Energy Forecasting and Resource Assessment, first ed., 2013, Academic Press, Waltham, 267–297.
    • (2013) Solar Energy Forecasting and Resource Assessment , pp. 267-297
    • Kühnert, J.1    Lorenz, E.2    Heinemann, D.3
  • 78
    • 84903803996 scopus 로고    scopus 로고
    • Forecasting Solar Irradiance with Numerical Weather Prediction Models. Solar Energy Forecasting and Resource Assessment
    • Elsevier
    • Larson, V.E., Forecasting Solar Irradiance with Numerical Weather Prediction Models. Solar Energy Forecasting and Resource Assessment. 2013, Elsevier.
    • (2013)
    • Larson, V.E.1
  • 79
    • 84954306935 scopus 로고    scopus 로고
    • Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest
    • Larson, D., Nonnenmacher, L., Coimbra, C.F.M., Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest. Renew. Energy 91 (2016), 11–20.
    • (2016) Renew. Energy , vol.91 , pp. 11-20
    • Larson, D.1    Nonnenmacher, L.2    Coimbra, C.F.M.3
  • 80
    • 84937891545 scopus 로고    scopus 로고
    • Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power
    • Leva, S., Dolara, A., Grimaccia, F., Mussetta, M., Ogliari, E., Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. Math. Comput. Simul., 2015 http://dx.doi.org/10.1016/j.matcom.2015.05.010.
    • (2015) Math. Comput. Simul.
    • Leva, S.1    Dolara, A.2    Grimaccia, F.3    Mussetta, M.4    Ogliari, E.5
  • 81
    • 77949611086 scopus 로고    scopus 로고
    • Short-term forecast of power generation for grid-connected photovoltaic system based on advanced grey-Markov chain
    • Li, Y., He, L., Nie, R., Short-term forecast of power generation for grid-connected photovoltaic system based on advanced grey-Markov chain. International Conference on Energy and Environment Technology, 2009.
    • (2009) International Conference on Energy and Environment Technology
    • Li, Y.1    He, L.2    Nie, R.3
  • 82
    • 84956677179 scopus 로고    scopus 로고
    • A hierarchical approach using machine learning methods in solar photovoltaic energy production forecasting
    • Li, Z., Rahman, S.M., Vega, R., Dong, B., A hierarchical approach using machine learning methods in solar photovoltaic energy production forecasting. Energies, 9, 2016, 55.
    • (2016) Energies , vol.9 , pp. 55
    • Li, Z.1    Rahman, S.M.2    Vega, R.3    Dong, B.4
  • 83
    • 84890826233 scopus 로고    scopus 로고
    • An ARMAX model for forecasting the power output of a grid connected photovoltaic system
    • Li, Y., Su, Y., Shu, L., An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renew. Energy 66 (2014), 78–89.
    • (2014) Renew. Energy , vol.66 , pp. 78-89
    • Li, Y.1    Su, Y.2    Shu, L.3
  • 84
    • 84941247752 scopus 로고    scopus 로고
    • Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression
    • Lin, K.P., Pai, P.F., Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. J. Cleaner Product., 2015 http://dx.doi.org/10.1016/j.jclepro.2015.08.099.
    • (2015) J. Cleaner Product.
    • Lin, K.P.1    Pai, P.F.2
  • 85
    • 84919343780 scopus 로고    scopus 로고
    • Embedded nowcasting method using cloud speed persistence for a photovoltaic power plant
    • Lipperheide, M., Bosch, J., Kleissl, J., Embedded nowcasting method using cloud speed persistence for a photovoltaic power plant. Sol. Energy 112 (2015), 232–238.
    • (2015) Sol. Energy , vol.112 , pp. 232-238
    • Lipperheide, M.1    Bosch, J.2    Kleissl, J.3
  • 86
    • 84899128304 scopus 로고    scopus 로고
    • Analysis of daily solar power prediction with data-driven approaches
    • Long, H., Zhang, Z., Su, Y., Analysis of daily solar power prediction with data-driven approaches. Appl. Energy 126 (2014), 29–37.
    • (2014) Appl. Energy , vol.126 , pp. 29-37
    • Long, H.1    Zhang, Z.2    Su, Y.3
  • 87
    • 84883543120 scopus 로고    scopus 로고
    • Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors
    • Lonij, V., Brooks, A., Cronin, A., Leuthold, M., Koch, K., Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors. Sol. Energy 97 (2013), 58–66.
    • (2013) Sol. Energy , vol.97 , pp. 58-66
    • Lonij, V.1    Brooks, A.2    Cronin, A.3    Leuthold, M.4    Koch, K.5
  • 89
    • 84865624003 scopus 로고    scopus 로고
    • Local and regional photovoltaic power prediction for large scale grid integration: assessment of a new algorithm for snow detection
    • Lorenz, E., Heinemann, D., Kurz, C., Local and regional photovoltaic power prediction for large scale grid integration: assessment of a new algorithm for snow detection. Prog. Photovolt.: Res. Appl. 20:6 (2011), 760–769.
    • (2011) Prog. Photovolt.: Res. Appl. , vol.20 , Issue.6 , pp. 760-769
    • Lorenz, E.1    Heinemann, D.2    Kurz, C.3
  • 95
    • 84880412487 scopus 로고    scopus 로고
    • Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques
    • Mandal, P., Madhira, S., Ulhaque, A., Meng, J., Pineda, R., Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. Proc. Comput. Sci. 12 (2012), 332–337.
    • (2012) Proc. Comput. Sci. , vol.12 , pp. 332-337
    • Mandal, P.1    Madhira, S.2    Ulhaque, A.3    Meng, J.4    Pineda, R.5
  • 96
    • 84867850843 scopus 로고    scopus 로고
    • Proposed metric for evaluation of solar forecasting models
    • 0110161-9
    • Marquez, R., Coimbra, C.F.M., Proposed metric for evaluation of solar forecasting models. ASME J. Sol. Energy Eng., 135, 2013 0110161-9.
    • (2013) ASME J. Sol. Energy Eng. , vol.135
    • Marquez, R.1    Coimbra, C.F.M.2
  • 98
    • 84903797045 scopus 로고    scopus 로고
    • Case studies of solar forecasting with the weather research and forecasting model at GL-Garrad Hassan
    • J. Kleissl first ed. Academic Press Waltham
    • Mathiesen, P., Kleissl, J., Collier, C., Case studies of solar forecasting with the weather research and forecasting model at GL-Garrad Hassan. Kleissl, J., (eds.) Solar Energy Forecasting and Resource Assessment, first ed., 2013, Academic Press, Waltham, 357–381.
    • (2013) Solar Energy Forecasting and Resource Assessment , pp. 357-381
    • Mathiesen, P.1    Kleissl, J.2    Collier, C.3
  • 99
    • 77949876934 scopus 로고    scopus 로고
    • A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy
    • Mellit, A., Massi Pavan, A., A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 84 (2010), 807–821.
    • (2010) Sol. Energy , vol.84 , pp. 807-821
    • Mellit, A.1    Massi Pavan, A.2
  • 100
    • 84899888573 scopus 로고    scopus 로고
    • Short-term forecasting of power production in a large-scale photovoltaic plant
    • Mellit, A., Massi Pavan, A., Lughi, V., Short-term forecasting of power production in a large-scale photovoltaic plant. Sol. Energy 105 (2014), 401–413.
    • (2014) Sol. Energy , vol.105 , pp. 401-413
    • Mellit, A.1    Massi Pavan, A.2    Lughi, V.3
  • 101
    • 84924272004 scopus 로고    scopus 로고
    • Integrating Solar PV in Utility System Operations. ANL/DIS-13/18
    • Argonne National Laboratory
    • Mills, A., Botterud, A., Wu, J., Zhou, Z., Hodge, B.M., Heaney, M., Integrating Solar PV in Utility System Operations. ANL/DIS-13/18. 2013, Argonne National Laboratory.
    • (2013)
    • Mills, A.1    Botterud, A.2    Wu, J.3    Zhou, Z.4    Hodge, B.M.5    Heaney, M.6
  • 102
    • 79952415832 scopus 로고    scopus 로고
    • Implications of Wide-Area Geographic Diversity for Short-Term Variability of Solar Power. LBNL-3884E
    • Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division Berkeley, CA
    • Mills, A., Wiser, R., Implications of Wide-Area Geographic Diversity for Short-Term Variability of Solar Power. LBNL-3884E. 2010, Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Berkeley, CA.
    • (2010)
    • Mills, A.1    Wiser, R.2
  • 105
  • 108
    • 84973143544 scopus 로고    scopus 로고
    • GEFCom 2014: probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach
    • Nagy, G., Barta, G., Kazi, S., Borbély, G., Simon, G., GEFCom 2014: probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach. Int. J. Forecast., 2016 http://dx.doi.org/10.1016/j.ijforecast.2015.11.013.
    • (2016) Int. J. Forecast.
    • Nagy, G.1    Barta, G.2    Kazi, S.3    Borbély, G.4    Simon, G.5
  • 109
    • 84977609238 scopus 로고    scopus 로고
    • National Oceanic and Atmospheric Administration, 2003. The GFS atmospheric model. Available on-line: <>.
    • National Oceanic and Atmospheric Administration, 2003. The GFS atmospheric model. Available on-line: < http://www.emc.ncep.noaa.gov/officenotes/newernotes/on442.pdf>.
  • 110
    • 84877329495 scopus 로고    scopus 로고
    • Hybrid predictive models for accurate forecasting in PV systems
    • Ogliari, E., Grimaccia, F., Leva, S., Mussetta, M., Hybrid predictive models for accurate forecasting in PV systems. Energies 6 (2013), 1918–1929.
    • (2013) Energies , vol.6 , pp. 1918-1929
    • Ogliari, E.1    Grimaccia, F.2    Leva, S.3    Mussetta, M.4
  • 112
    • 84861712862 scopus 로고    scopus 로고
    • Assessment of forecasting techniques for solar power production with no exogenous inputs
    • Pedro, H.T.C., Coimbra, C.F.M., Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol. Energy 86 (2012), 2017–2028.
    • (2012) Sol. Energy , vol.86 , pp. 2017-2028
    • Pedro, H.T.C.1    Coimbra, C.F.M.2
  • 113
    • 84868289164 scopus 로고    scopus 로고
    • Solar and photovoltaic forecasting through post-processing of the global environmental multiscale numerical weather prediction model
    • Pelland, S., Galanis, G., Kallos, G., Solar and photovoltaic forecasting through post-processing of the global environmental multiscale numerical weather prediction model. Prog. Photovolt.: Res. Appl., 2011.
    • (2011) Prog. Photovolt.: Res. Appl.
    • Pelland, S.1    Galanis, G.2    Kallos, G.3
  • 114
    • 84934969985 scopus 로고    scopus 로고
    • 3D cloud detection and tracking system for solar forecast using multiple sky imagers
    • Peng, Z., Yu, D., Huang, D., Heiser, J., Yoo, S., Kalb, P., 3D cloud detection and tracking system for solar forecast using multiple sky imagers. Sol. Energy 118 (2015), 496–519.
    • (2015) Sol. Energy , vol.118 , pp. 496-519
    • Peng, Z.1    Yu, D.2    Huang, D.3    Heiser, J.4    Yoo, S.5    Kalb, P.6
  • 115
    • 84903805865 scopus 로고    scopus 로고
    • Solar resource variability
    • J. Kleissl first ed. Academic Press Waltham
    • Perez, R., Hoff, T., Solar resource variability. Kleissl, J., (eds.) Solar Energy Forecasting and Resource Assessment, first ed., 2013, Academic Press, Waltham, 133–148.
    • (2013) Solar Energy Forecasting and Resource Assessment , pp. 133-148
    • Perez, R.1    Hoff, T.2
  • 117
    • 84977656470 scopus 로고    scopus 로고
    • PVCROPS, October 2015. Estimation of the PV power that can be integrated in current EU networks. Deliverable D5.5
    • PVCROPS, October 2015. Estimation of the PV power that can be integrated in current EU networks. Deliverable D5.5.
  • 118
    • 84977645088 scopus 로고    scopus 로고
    • Final Project Report, August
    • PV GRID, Final Project Report, August 2014.
    • (2014)
    • PV, G.R.I.D.1
  • 119
    • 84924367279 scopus 로고    scopus 로고
    • A hybrid method for forecasting the energy output of photovoltaic systems
    • Ramsami, P., Oree, V., A hybrid method for forecasting the energy output of photovoltaic systems. Energy Convers. Manage. 95 (2015), 406–413.
    • (2015) Energy Convers. Manage. , vol.95 , pp. 406-413
    • Ramsami, P.1    Oree, V.2
  • 120
    • 84941622200 scopus 로고    scopus 로고
    • 2D-interval forecasts for solar power production
    • Rana, M., Koprinska, I., Agelidis, V., 2D-interval forecasts for solar power production. Sol. Energy 122 (2015), 191–203.
    • (2015) Sol. Energy , vol.122 , pp. 191-203
    • Rana, M.1    Koprinska, I.2    Agelidis, V.3
  • 121
    • 84969981836 scopus 로고    scopus 로고
    • Univariate and multivariate methods for very short-term solar photovoltaic power forecasting
    • Rana, M., Koprinska, I., Agelidis, V., Univariate and multivariate methods for very short-term solar photovoltaic power forecasting. Energy Convers. Manage. 121 (2016), 380–390.
    • (2016) Energy Convers. Manage. , vol.121 , pp. 380-390
    • Rana, M.1    Koprinska, I.2    Agelidis, V.3
  • 122
    • 84929622158 scopus 로고    scopus 로고
    • Ensemble methods for wind and solar power forecasting – a state-of-the-art review
    • Ren, Y., Suganthan, P., Srikanth, N., Ensemble methods for wind and solar power forecasting – a state-of-the-art review. Renew. Sustain. Energy Rev. 50 (2015), 82–91.
    • (2015) Renew. Sustain. Energy Rev. , vol.50 , pp. 82-91
    • Ren, Y.1    Suganthan, P.2    Srikanth, N.3
  • 123
    • 0033883286 scopus 로고    scopus 로고
    • On the clear sky model of the ESRA e European Solar Radiation Atlas e with respect to the Heliosat method
    • Rigollier, C., Bauer, O., Wald, L., On the clear sky model of the ESRA e European Solar Radiation Atlas e with respect to the Heliosat method. Sol. Energy 68:1 (2000), 33–48.
    • (2000) Sol. Energy , vol.68 , Issue.1 , pp. 33-48
    • Rigollier, C.1    Bauer, O.2    Wald, L.3
  • 124
    • 84866050748 scopus 로고    scopus 로고
    • Towards general purpose neuro-genetic programming socket based formal modeller
    • G. Lee D. Howard J.J. Kang D. Slezak Springer
    • Russo, M., Towards general purpose neuro-genetic programming socket based formal modeller. Lee, G., Howard, D., Kang, J.J., Slezak, D., (eds.) ICHIT (1). In: Lecture Notes in Computer Science, vol. 7425, 2012, Springer, 195–202.
    • (2012) ICHIT (1). In: Lecture Notes in Computer Science , vol.7425 , pp. 195-202
    • Russo, M.1
  • 125
    • 84899880187 scopus 로고    scopus 로고
    • Genetic programming for photovoltaic plant output forecasting
    • Russo, M., Leotta, G., Pugliatti, P., Gigliucci, G., Genetic programming for photovoltaic plant output forecasting. Sol. Energy 105 (2014), 264–273.
    • (2014) Sol. Energy , vol.105 , pp. 264-273
    • Russo, M.1    Leotta, G.2    Pugliatti, P.3    Gigliucci, G.4
  • 126
    • 84994000432 scopus 로고    scopus 로고
    • Photovoltaics energy prediction under complex conditions for a predictive energy management system
    • Schmelas, M., Feldmann, T., Fernandes, J., Bollin, E., Photovoltaics energy prediction under complex conditions for a predictive energy management system. J. Sol. Energy Eng., 137, 2015.
    • (2015) J. Sol. Energy Eng. , vol.137
    • Schmelas, M.1    Feldmann, T.2    Fernandes, J.3    Bollin, E.4
  • 127
  • 128
    • 84860135191 scopus 로고    scopus 로고
    • Artificial intelligence forecast of PV plant production for integration in smart energy systems
    • Simonov, M., Mussetta, M., Grimaccia, F., Leva, S., Zich, R., Artificial intelligence forecast of PV plant production for integration in smart energy systems. Int. Rev. Electr. Eng., 7, 2012, 1.
    • (2012) Int. Rev. Electr. Eng. , vol.7 , pp. 1
    • Simonov, M.1    Mussetta, M.2    Grimaccia, F.3    Leva, S.4    Zich, R.5
  • 129
    • 84960153611 scopus 로고    scopus 로고
    • A robust forecasting framework based on the Kalman filtering approach with a twofold parameter tuning procedure: application to solar and photovoltaic prediction
    • Soubdhan, T., Ndong, J., Ould-Baba, H., Do, M.T., A robust forecasting framework based on the Kalman filtering approach with a twofold parameter tuning procedure: application to solar and photovoltaic prediction. Sol. Energy 131 (2016), 246–259.
    • (2016) Sol. Energy , vol.131 , pp. 246-259
    • Soubdhan, T.1    Ndong, J.2    Ould-Baba, H.3    Do, M.T.4
  • 130
    • 84964483905 scopus 로고    scopus 로고
    • An application of the ECMWF ensemble prediction system for short-term solar power forecasting
    • Sperati, S., Alessandrini, S., Delle Monache, L., An application of the ECMWF ensemble prediction system for short-term solar power forecasting. Sol. Energy 133 (2016), 437–450.
    • (2016) Sol. Energy , vol.133 , pp. 437-450
    • Sperati, S.1    Alessandrini, S.2    Delle Monache, L.3
  • 132
    • 84896048880 scopus 로고    scopus 로고
    • A hybrid intelligent system approach to forecasting of PV generation output
    • Takahashi, M., Mori, H., A hybrid intelligent system approach to forecasting of PV generation output. J. Int. Council Electr. Eng. 3:4 (2013), 295–299.
    • (2013) J. Int. Council Electr. Eng. , vol.3 , Issue.4 , pp. 295-299
    • Takahashi, M.1    Mori, H.2
  • 134
    • 84958254280 scopus 로고    scopus 로고
    • Solar forecasting: methods, challenges, and performance
    • Tuohy, A., et al. Solar forecasting: methods, challenges, and performance. Power Energy Mag., IEEE 13:6 (2015), 50–59.
    • (2015) Power Energy Mag., IEEE , vol.13 , Issue.6 , pp. 50-59
    • Tuohy, A.1
  • 138
    • 0010864753 scopus 로고
    • Pattern recognition using generalized portrait method
    • Vapnik, V., Lerner, A., Pattern recognition using generalized portrait method. Autom. Remote Control 24 (1963), 774–780.
    • (1963) Autom. Remote Control , vol.24 , pp. 774-780
    • Vapnik, V.1    Lerner, A.2
  • 139
    • 84937158999 scopus 로고    scopus 로고
    • An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands
    • Vaz, A., Elsinga, B., van Sark, W., Brito, M., An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands. Renew. Energy 85 (2016), 631–641.
    • (2016) Renew. Energy , vol.85 , pp. 631-641
    • Vaz, A.1    Elsinga, B.2    van Sark, W.3    Brito, M.4
  • 140
    • 84933055350 scopus 로고    scopus 로고
    • Improved model output statistics of numerical weather prediction based irradiance forecasts for solar power applications
    • Verzijlbergh, R., Heijnen, P., de Roode, S., Los, A., Jonker, H., Improved model output statistics of numerical weather prediction based irradiance forecasts for solar power applications. Sol. Energy 118 (2015), 634–645.
    • (2015) Sol. Energy , vol.118 , pp. 634-645
    • Verzijlbergh, R.1    Heijnen, P.2    de Roode, S.3    Los, A.4    Jonker, H.5
  • 141
    • 84956622975 scopus 로고    scopus 로고
    • Photovoltaic and solar power forecasting for smart grid energy management
    • Wan, C., Zhao, J., Song, Y., Xu, Z., Lin, J., Hu, Z., Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst., 1(4), 2015.
    • (2015) CSEE J. Power Energy Syst. , vol.1 , Issue.4
    • Wan, C.1    Zhao, J.2    Song, Y.3    Xu, Z.4    Lin, J.5    Hu, Z.6
  • 142
    • 84904624042 scopus 로고    scopus 로고
    • A novel hybrid model for short-term forecasting in PV power generation
    • 569249
    • Wu, Y.K., Chen, C.R., Rahman, H.A., A novel hybrid model for short-term forecasting in PV power generation. Int. J. Photoenergy, 2014, 2014, 9, 569249.
    • (2014) Int. J. Photoenergy , vol.2014 , pp. 9
    • Wu, Y.K.1    Chen, C.R.2    Rahman, H.A.3
  • 143
    • 84904117815 scopus 로고    scopus 로고
    • A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output
    • Yang, H.T., Huang, C.M., Huang, Y.C., Pai, Y.S., A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. IEEE Trans. Sustain. Energy, 5, 2014, 3.
    • (2014) IEEE Trans. Sustain. Energy , vol.5 , pp. 3
    • Yang, H.T.1    Huang, C.M.2    Huang, Y.C.3    Pai, Y.S.4
  • 146
    • 84875688511 scopus 로고    scopus 로고
    • Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction
    • Yona, A., Senjyu, T., Funabashi, T., Kim, C.H., Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction. IEEE Trans. Sustain. Energy, 4, 2013, 2.
    • (2013) IEEE Trans. Sustain. Energy , vol.4 , pp. 2
    • Yona, A.1    Senjyu, T.2    Funabashi, T.3    Kim, C.H.4
  • 147
    • 84901841673 scopus 로고    scopus 로고
    • A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production. Part I: Deterministic forecast of hourly production
    • Zamo, M., Mestre, O., Arbogast, P., Pannekoucke, O., A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production. Part I: Deterministic forecast of hourly production. Sol. Energy 105 (2014), 792–803.
    • (2014) Sol. Energy , vol.105 , pp. 792-803
    • Zamo, M.1    Mestre, O.2    Arbogast, P.3    Pannekoucke, O.4
  • 148
    • 84901845911 scopus 로고    scopus 로고
    • A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production. Part II: Probabilistic forecast of daily production
    • Zamo, M., Mestre, O., Arbogast, P., Pannekoucke, O., A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production. Part II: Probabilistic forecast of daily production. Sol. Energy 105 (2014), 804–816.
    • (2014) Sol. Energy , vol.105 , pp. 804-816
    • Zamo, M.1    Mestre, O.2    Arbogast, P.3    Pannekoucke, O.4
  • 149
    • 84869888400 scopus 로고    scopus 로고
    • Short-term solar power prediction using a support vector machine
    • Zeng, J., Qiao, W., Short-term solar power prediction using a support vector machine. Renew. Energy 52 (2013), 118–127.
    • (2013) Renew. Energy , vol.52 , pp. 118-127
    • Zeng, J.1    Qiao, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.